OLOF SAMUELSSON, INDUSTRIAL ELECTRICAL ENGINEERING AND AUTOMATION

Physical modelling – AC Power systems

[TH]

FACULTY OF

ENGINEERING

Outline

- The electric power system
- Electromagnetic transients
- Phasor model at steady state power flow
- Electro-mechanical and mechanical oscillations
- Dynamic phasor simulation
- Linearized DAE and ODE
- Modal analysis
- Case study: Iceland

The Nordic synchronous area

- Three main parts of a power system
 - -Electricity consumption demand
 - -Electricity **generation** power plants
 - -Electricity network or grid
- Nordic area is one dynamic system
 - National borders just organizational boundaries
 - HVDC links permit trading but block most dynamics
 - Western Denmark in Continental Europe area

Voltage levels

- Transmission 420 kV and 230 kV
- TSO Svenska Kraftnät
- Meshed structure
- Subtransmission 145 kV
- **DSO** Vattenfall, E.ON, Ellevio + few
- Meshed structure
- MV distribution 10-70 kV
- DNO Göteborg Energi, Kraftringen, DSOs + hundreds
- Radial structure
- LV distribution 0.4 kV
- See MV distribution
- Radial structure

Inputs – What drives the system?

- Power flow variations
 - Consumer demand determines consumption
 - Electricity market determines production
 - Weather determines variable production
- Disturbances
 - Weather
 - Equipment failure
 - Human error

Operation

- Goals
- 1. Clear faults fast (safety) and selectively
- 2. Voltage should be less than 10 % from nominal value
- 3. Frequency should be less than 0.1 Hz from nominal 50 Hz
 - Schedule generation to balance consumption
 - Frequency control manages deviations in power balance
- Challenges
 - Many owners
 - Large distance
 - Many components
 - Many time scales
 - Limited observability
 - Limited controllability

Power system automation by time scale

- Protection (50 ms 3 s)
 - For each component: Detect abnormal situation and isolate fault
- Frequency control (s)
 - Turbine control
- Stability controls (1 Hz)
 - Power oscillation damping
- Voltage control (s-min)
 - Transformers, generators, capacitors
- Control room: Mainly monitoring + dispatch of repair crew

Modelling challenges

- Model scope
 - Different models for different purposes
 - Models are geographically limited extent and resolution
 - Models are temporally limited
- Keeping model valid
 - Svenska Kraftnät manages transmission+subtransmission model
 - Each DNO manages MV+LV distribution model (asset database, GIS)
 - Control room software manages network topology (breaker status)
 - Least square fitting of actual operating point to data + measurements

Power line physics

- Magnetic field from current in conductors
 - Series inductance L in H/km
- Ohmic losses from current in conductors
 - Series resistance R in Ω/km
- Electrostatic field between different potentials
 - Shunt capacitance C in F/km
- Ohmic losses from discharges to air
 - Shunt conductance G in Ω^{-1}/km

Electromagnetic transients (EMT)

- Relevant waveform resolution: ns to μs
- Purpose: Matching with high voltage lab measurements
- Modelling
 - Explicit waveforms represent voltages and currents
 - Three-phase line π -model has <u>nine</u> dynamic states
- Simulation software
 - EMTP, PSCAD/EMTDC, RSCAD/EMTDC
 - Everything modelled as RLC-circuits with sources
 - Typically fixed time step ns to μs

Complex phasors

- During a cycle, an AC quantity can be represented by a complex number
- In power engineering, absolute value of phasor is rms value

Dynamic phasor simulation

- Relevant waveform resolution: few cycles and up
- Purpose: Analyse behaviour of entire system
- Modelling
 - Complex phasors represent voltages and currents
 - Three-phase line π -model has <u>no</u> dynamic states
- Simulation software
 - PSS/E, PowerFactory, EUROSTAG, ARISTO
 - Network modelled as complex impedances, dynamics in generators
 - Typically variable time step ms and up

Olof Samuelsson

ARISTO real-time simulator

- By Svenska Kraftnät/ABB
 - For operator training
 - EMS can use SCADA or ARISTO as data source
- Circuit breaker-based model
 - Connecting/sectionalizing bus bars changes topology
- Full Nordic model
 - 29 000 switches
 - 1500 generators
 - 3000 loads
 - 3200 switchyards \rightarrow

Normalization eliminates transformers

- At each voltage level an admittance matrix captures all lines
- An admittance matrix capturing several voltage levels very complicated

- Working with normalized "per unit" quantities
 - Normalizing to common MVA base eliminates transformers
 - Normalizing to MVA base of each component \rightarrow parameters similar
- Normalized quantities is numerically advantageous
 - Power systems analysis key application of early computer analysis

Steady state power flow

- Find V and θ and based on that flows and losses
- Example:
- Unknowns: $x = [\theta_2 \ \theta_3 \ V_3]^T$
- y=f(x): f(x)=[P₂(x) P₃(x) Q₃(x)]^T, P_k(x) is P from bus k to rest of network y=[60 -80 -60]^T

- Solve numerically often with Newton-Raphson
- Jacobian inherits structure of admittance matrix
- Power flow calculations basis for power system planning

 $\begin{bmatrix} \frac{\partial P_2}{\partial \theta_2} & \frac{\partial P_2}{\partial \theta_3} & \frac{\partial P_2}{\partial V_3} \\ \frac{\partial P_3}{\partial \theta_2} & \frac{\partial P_3}{\partial \theta_3} & \frac{\partial P_3}{\partial V_3} \\ \frac{\partial Q_3}{\partial \theta_2} & \frac{\partial Q_3}{\partial \theta_3} & \frac{\partial Q_3}{\partial V_3} \end{bmatrix}$ $J = \frac{\partial f_i}{\partial x_j} =$

2022-05-03

Symmetry

- Symmetry = All phase quantities have same magnitude and ±120° phase separation
 - Enough to compute one phase
 - Other phases only differ by phase angle
 - Three-phase power = 3 x single phase power
- Most faults are unsymmetric
 - Tree leaning on one phase conductor
 - Lightning strike
 - Object falling on two phase conductors etc.
- Unsymmetry is managed by change of coordinates using "sequence components"

Electro-mechanical oscillations

- Generator speeds
 - All tend towards 50 Hz, oscillation around 50 Hz (Americas 60 Hz)
 - Kinetic energy $(J\omega^2)/2$ varies, power oscillates
- Resonance!
 - 1-3 Hz single generator, <1 Hz generator groups

MW flow California-Oregon, 10 August 1996 just before blackout of 7.5 million people

Mechanical oscillations

- General system
 - Many resonances (modes)
 - Complex mode shapes
- Two-mass system
 - M1 vs M2 = swing mode
 - M1 with M2 = rigid body
 - Frequency dynamics
- Single-mass system
 - Only swing mode

Dynamic phasor model

- Complex variables represented as $[Re(\cdot) \ Im(\cdot)]^T$ or $[Abs(\cdot) \ Arg(\cdot)]^T$
- Network equations with bus admittance matrix: $I = Y_{bus}V$
- Nonlinear differential-algebraic equations for component i:

$$\begin{cases} \dot{x}_{d,i} = f_i (x_{d,i}, x_{a,i}, u_i) \\ 0 = g_i (x_{d,i}, x_{a,i}, u_i), d = \text{dynamic, } a = \text{algebraic, } u = \text{inputs, } y = \text{outputs} \\ y_i = h_i (x_{d,i}, x_{a,i}, u_i) \end{cases}$$

• Build system:

$$\begin{cases} \dot{x}_{d} = f\left(x_{d}, x_{a}, u\right) \\ 0 = g\left(x_{d}, x_{a}, u\right) \\ y = h\left(x_{d}, x_{a}, u\right) \end{cases} \text{ where } x_{d} = \begin{bmatrix} x_{d,1} \\ \vdots \\ x_{d,k} \end{bmatrix}, x_{a} = \begin{bmatrix} x_{a,1} \\ \vdots \\ x_{a,k} \\ y \\ V \end{bmatrix}, u = \begin{bmatrix} u_{1} \\ \vdots \\ u_{k} \end{bmatrix}, y = \begin{bmatrix} y_{1} \\ \vdots \\ y_{k} \end{bmatrix}$$
Olof Samuelsson

20

20

Analysis methods

- Non-linear time simulations
 - Anything can be simulated
 - Operating point must be selected
 - Disturbance must be selected only excites <u>some</u> dynamics
- Modal analysis of linearized model
 - Steady state operating point must be selected
 - Only valid near linearization point
 - Reveals all dynamics
- Best to combine!

Linearization simplifies

Size of disturbance

Nonlinear model for large changes $P_e = K_1 \cdot \sin \delta$ Linearized model for small changes $\Delta P_e = K_2 \cdot \Delta \delta$

• How small is small?

"Small" is when linear model is valid ©

2022-05-03

Eliminate algebraic variables

• Inserting
$$x_a = -A_{22}^{-1} (A_{21}x_d + B_2u)$$

• gives the ODE
$$\begin{aligned} \dot{x}_{d} &= A_{ode} x_{d} + B_{ode} u \\ y &= C_{ode} x_{d} + D_{ode} u \end{aligned}$$
• where
$$\begin{aligned} A_{ode} &= A_{11} - A_{12} A_{22}^{-1} A_{21} \\ B_{ode} &= B_{1} - A_{12} A_{22}^{-1} B_{2} \\ C_{ode} &= C_{1} - C_{2} A_{22}^{-1} A_{21} \\ D_{ode} &= D_{1} - C_{2} A_{22}^{-1} B_{2} \end{aligned}$$

• Note: *D*_{ode} generally not zero

Modal analysis ODE

• Right modal matrix holds the right eigenvectors with **mode observability** information of the dynamic states:

 $\Phi^{-1}A_{ode}\Phi = \Lambda$ $A_{ode}\Phi = \Phi\Lambda$

٦

• Left modal matrix holds the left eigenvectors with **mode controllability** information of the dynamic states:

$$\Psi A_{ode} \Psi^{-1} = \Lambda$$
$$\Psi A_{ode} = \Lambda \Psi$$

Modal analysis DAE

• Right eigenvectors

$$A\Phi_{dae} = E\Phi_{dae}\Lambda$$

Left eigenvectors

$$\Psi_{dae}A = \Lambda \Psi_{dae}E$$

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} \Phi_{dae,d} \\ \Phi_{dae,a} \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \Phi_{dae,d} \\ \Phi_{dae,a} \end{bmatrix} \Lambda$$

$$\begin{bmatrix} \Psi_{dae,d} & \Psi_{dae,a} \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \Lambda \begin{bmatrix} \Psi_{dae,d} & \Psi_{dae,a} \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}$$

Mode observability in algebraic • Mode controllability in algebraic variables:
 variables:

$$\Phi_{dae,a} = -A_{22}^{-1}A_{21}\Phi_{dae,d}$$

$$\Psi_{dae,a} = -\Psi_{dae,d} A_{12} A_{22}^{-1}$$

Example: IEEE 9-bus

 ODE mode shapes
 = generator speed elements in right eigenvectors

= phase angle information from algebraic parts of right eigenvectors

Time-scale decomposition

• RL-circuit example:
$$L\frac{di}{dt} + Ri = u \Leftrightarrow L\frac{di}{dt} = -Ri + u \Leftrightarrow \frac{L}{R}\frac{di}{dt} = -i + \frac{u}{L}$$

Time constant!

- Scale row i of A and B matrices so that A(i,i)=-1
- Then the factor in front of $\dot{x}_{d,i}$ can be interpreted as a time constant
- If some time constants are small enough

$$\begin{bmatrix} I & 0 \\ 0 & \varepsilon \end{bmatrix} \frac{d}{dt} \begin{bmatrix} \Delta x_{slow} \\ \Delta x_{fast} \end{bmatrix} = A \begin{bmatrix} \Delta x_{slow} \\ \Delta x_{fast} \end{bmatrix}$$

 setting them to zero yields algebraic equations, like for the network equations in a phasor model

The Icelandic power system 2002

- Peak load 2002 1000 MW (Sweden 28 000 MW)
- New plant of 690 MW (!) on-line 2007

Case study and solution structure

- Scope
 - Icelandic national power system with electro-mechanical oscillations
 - Find the difficult situations challenging stability
 - Suggest damping controller!
- Multi-dimensional problem
 - Many fault locations \rightarrow many linearized models
 - Many possible control signals
 - Many possible measurement signals
 - Before, combine all with all, after

Model of Icelandic power system

- 37 generators
- ≈590 dynamic states
- 202 network nodes
- ≈810 algebraic states
- Adae ≈1400x1400
- Aode ≈590x590

Control design: Measurement signal

- What quantity is best to measure?
 - Generator speed or power
 - Voltage magnitude
 - Voltage phase angle by GPS-based PMU:s
- Where to measure?
 - Location of generator or network node
- If choice not optimum
 - Oscillation not visible
 - Oscillation less visible need more gain

Control design: Control signal

- What to control?
 - Generator voltage (for free)
 - Real power (requires new actuator)
- Where to control?
 - Location of generator or network node
- If choice not optimum
 - Less impact on oscillation
 - Actuator must be larger (expensive!)

Control design: Closing the loop

- Control signal selected
- Measurement signal selected
- Local control or communication need
- Design controller
 - Phase characteristic
 - Gain
 - Root locus plot for both

Eigenvalues
$$A\varphi = \varphi\lambda |\lambda I - A| = 0 \quad \lambda = \sigma \pm j\omega$$

• Response of one mode ~ $|\varphi_i|e^{\lambda t - \arg \varphi_i} = |\varphi_i|e^{\sigma t} \cos(\omega t - \arg \varphi_i)$

- σ is damping and ω is frequency

• Complex pair = resonance = mode

Controller

- Increase gain from zero
- Plot eigenvalues
 - Root locus plot
- If direction is $\boldsymbol{\alpha}$ degrees wrong
 - Phase compensation of α degrees at mode frequency

Spring-mass model

- Circle area ~ kinetic energy in power plant
- Distance ~ impedance ~ spring length
- Think
 - One large mass and two small
 - Long springs

Critical faults

- Scenarios
 - Intact system
 - Fault at 23
 - Fault at 34
 - Fault at 44
 - Fault at 45

Olof Samuelsson

Mode shape case 23

• Interarea mode involves all generators

Right eigenvector \rightarrow Mode observability – speed

43

Left eigenvector \rightarrow Mode controllability – Voltage controller setpoint

Interarea mode controllable at 4061/2

Root locus plots

- Interarea mode damped in all cases
- Gain selected

Time simulations

Power system modelling – summary

- Dynamics in time scales from µs to decades
- Active and reactive power as important as voltage and current
- Waveforms, one or three complex phasors represent three-phase AC quantity
- (Steady state) Operating point important in practice one every hour
 - Time simulations valid for one disturbance at one operating point
 - Modal analysis valid for any disturbance at one operating point
- In modal analysis: Use information in algebraic variables of DAE
- Physical understanding necessary to debug and interpret simulations
- Great effort to keep large models up to date

"The purpose of computing is insight, not numbers"

Richard Hamming, Numerical Methods for Scientists and Engineers (1962)

LTH

FACULTY OF ENGINEERING