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Physical modelling AC Power systems

OLOF SAMUELSSON, INDUSTRIAL ELECTRICAL ENGINEERING AND AUTOMATION



Outline

AThe electric power system

AElectromagnetic transients

APhasor model at steady state i power flow
AElectro-mechanical and mechanical oscillations
ADynamic phasor simulation

AlLinearized DAE and ODE

AModal analysis

ACase study: Iceland
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The Nordic synchronous area

AThree main parts of a power system
1 Electricity consumption i demand
1 Electricity generation i power plants
1 Electricity network or grid

ANordic area is one dynamic system
T National borders just organizational boundaries
I HVDC links permit trading but block most dynamics
I Western Denmark in Continental Europe area
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levels

A Transmission 420 kV and 230 kV
A TSO Svenska Kraftnat
A Meshed structure

A Subtransmission 145 kV
A DSO Vattenfall, E.ON, Ellevio + few
A Meshed structure

A MV distribution 10-70 kV

A DNO Géteborg Energi, Kraftringen,
DSOs + hundreds

A Radial structure

A LV distribution 0.4 kV
A See MV distribution
A Radial structure
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Inputsi What drives the system?

APower flow variations
¢ Consumer demand determines consumption
¢ Electricity market determines production
¢ Weather determines variable production

ADisturbances
¢ Weather
¢ Equipment failure
¢ Human error
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Operation

A Goals
1. Clear faults fast (safety) and selectively
2. Voltage should be less than 10 % from nominal value

3. Frequency should be less than 0.1 Hz from nominal 50 Hz
¢ Schedule generation to balance consumption
¢ Frequency control manages deviations in power balance

A Challenges
¢ Many owners
¢ Large distance
¢ Many components
¢ Many time scales
¢ Limited observability
¢ Limited controllability
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Power system automation by time scal

AProtection (50 msi 3s)
¢ For each component: Detect abnormal situation and isolate fault

AFrequency control (s)
¢ Turbine control

A Stability controls (1 Hz)
¢ Power oscillation damping

AVoltage control (s-min)
¢ Transformers, generators, capacitors

A Control room: Mainly monitoring + dispatch of repair crew
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Modelling challenges

AModel scope
¢ Different models for different purposes
¢ Models are geographically limited i extent and resolution
¢ Models are temporally limited

AKeeping model valid
¢ Svenska Kraftnat manages transmission+subtransmission model
¢ Each DNO manages MV+LV distribution model (asset database, GIS)
¢ Control room software manages network topology (breaker status)
¢ Least square fitting of actual operating point to data + measurements
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Power line physics

AMagnetic field from current in conductors | / / /
¢ Series inductance L in H/km \J\ ;’ ‘L /

AOhmic losses from current in conductors
¢ Series resistance R in Wkm

AElectrostatic field between different potentials
¢ Shunt capacitance C in F/km

| . ———

AOhmic losses from discharges to air
¢ Shunt conductance G in W/km

R L
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Electromagnetic transients (EMT)

Spinning (kV)
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ARelevant waveform resolution: ns to s

APurpose: Matching with high voltage lab measurements

AModelling
¢ Explicit waveforms represent voltages and currents
¢ Three-phase line p-model has nine dynamic states
A Simulation software
¢ EMTP, PSCAD/EMTDC, RSCAD/EMTDC

¢ Everything modelled as RLC-circuits with sources
¢ Typically fixed time step ns to ns
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Complex phasors

ADuring a cycle, an AC quantity can be represented by a complex number
Aln power engineering, absolute value of phasor is rms value

AFrequency is implicit; typically nominal

A
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Dynamic phasor simulation

ARelevant waveform resolution: few cycles and up
APurpose: Analyse behaviour of entire system

AModelling
¢ Complex phasors represent voltages and currents
¢ Three-phase line p-model has no dynamic states

A Simulation software
¢ PSS/E, PowerFactory, EUROSTAG, ARISTO
¢ Network modelled as complex impedances, dynamics in generators
¢ Typically variable time step ms and up
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ARISTO reattime simulator

ABy Svenska Kraftnat/ABB
¢ For operator training b7 L A
¢ EMS can use SCADA or ARISTO as data source \

A Circuit breaker-based model X
¢ Connecting/sectionalizing bus bars changes topology

e w*tmnm*ﬁcrrtwo& f

ARISTO — StationDiagram / 42

AFull Nordic model

T401  T402 -

¢ 29 000 switches B ) oL M

1500 enerato rS RT132 RT132 RT131 RT131 L 12 T3 W Ao
C g RU Rz RS R4 Bk
P ; wa 18f177t177f199t404 1 2054 563 |4 563
0 20; zalt 75|t 151 (¢ 77§ 27 | 27|4 200
C 3000 Ioads \[kA] Yoo oot oso| Yo 7o |Tose| 1oz |Tadr|F2 20 Y250 ase

3200 switchyards A =
C switchyards i%br’}b%i}? _J}

130 kv
<4

L 4

<

&

B130

130 kY

2022-05-03 14

FT142




Normalization eliminates transformers

Sbase » Sbase

Vbasel Vbasez
2 N 4
Ibasel I Ibase2
|
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Igul |:|I Ipu2
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A At each voltage level an admittance matrix captures all lines

AAn admittance matrix capturing several voltage levels very complicated

AWorking with normalizedi iper uni to quantities
¢ Normalizing to common MVA base eliminates transformers
¢ Normalizing to MVA base of each component A parameters similar

ANormalized quantities is numerically advantageous
¢ Power systems analysis key application of early computer analysis
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AFind V and g and based on that flows and losses

AExample: 100 MY4 base
AUnknowns: x=[q, 03 V3] Slack PV bug]re-somw
1 - V=120 2 - =1
Ay=f(x): E
f(x):[PZ(X) PS(X) Q3(X)]T1 jn.2 j0.25
P.(x) is P from bus k to rest of network PQ bus
y=[60 -80 -60]" 3 JT‘-
A Solve numerically often with Newton-Raphson S4=804 60 MYA

AJacobian inherits structure of admittance matrix

APower flow calculations basis for power system planning
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Symmetry

ASymmetry = All phase quantities have same
magnitude and °120 phase separation
¢ Enough to compute one phase
¢ Other phases only differ by phase angle
¢ Three-phase power = 3 x single phase power

AMost faults are unsymmetric
¢ Tree leaning on one phase conductor
¢ Lightning strike
¢ Object falling on two phase conductors etc.

AUnsymmetry is managed by change of
coordinates using fisequence components
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Electromechanical oscillations

AGenerator speeds
¢ All tend towards 50 Hz, oscillation around 50 Hz (Americas 60 Hz)
¢ Kinetic energy (Jw?)/2 varies, power oscillates

AResonance!
¢ 1-3 Hz single generator, <1 Hz generator groups

4600 = Observed COI Power (Dittmer Control Center)

400 = 0-90 s
ca0.25 Hz

200

4000

MW flow California-Oregon, 10 August 1996
just before blackout of 7.5 million people
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Mechanical oscillations
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AGeneral system
¢ Many resonances (modes)
¢ Complex mode shapes

ATwo-mass system
¢ M1 vs M2 = swing mode
¢ M1 with M2 = rigid body
¢ Frequency dynamics

A Single-mass system
¢ Only swing mode

Olof Samuelsson
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Dynamic phasor model

AComplex variables represented as [YQ@ O&@] or

[0 O® o1 (@
ANetwork equations with bus admittance matrix: 'O ®
ANonlinear differential-algebraic equations for component i:
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Synchronous generato :
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Analysis methods

ANon-linear time simulations
¢ Anything can be simulated
¢ Operating point must be selected
¢ Disturbance must be selected 1 only excites some dynamics

AModal analysis of linearized model
¢ Steady state operating point must be selected
¢ Only valid near linearization point
¢ Reveals all dynamics

ABest to combine!
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Linearization simplifies

P.4 DP 4
D d
7, / |
\._‘3' _

ASize of disturbance

Nonlinear model for large changes P.=K,-sind

Linearized model for small changes DP_=K,-D d
AHow small is small?

oSmall o6 i s when IJinear model is vali
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Linearized DAE ..., .

— 0
Ax,=x,—x,

ALinearize around operating point A= 11— 1°

Ay=y-y°
d [ Ax Ax
dae 3. [m{d] =A dae{‘m,d ] + B .MU
a a
AThen N
X
Ay = Cdnel:mj:l + D gaett
9 9
_IO _A“Alz_r;'xﬂa r?xa
where Ed“e_[o 0] Ad‘”_[AzlAzz | Jg dg
Qxd ﬁxa
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C, =|C, Cy|=|—
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Atd
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Ay
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Example: IEEE Dus

T
AOne generator:  xgn =(A) Vrer Erp T ¢ 14
dx
Egen % =A gen” gen + Bgen Vbusg
"o
diﬁ!g dxgen _ Vbusg,real
dt Vbit:g,mmg

A FU ” SySte m: XT = [xgenl xgen2 xgen?s Vg;tsl v V§;459:|

Egenl

diag EgenZ ﬂ:
Egen3 dt
0

2022-05-03

A genl

A

gen2

B

B gen2 P
A genl B3

genl

Cgenl CgenZ CgenS Ybus_
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