Physical modeling in Julia

For those about to control

Acknowledgement

This presentation contains an assortment of content contributed by multiple people

- Chris Rackauckas
- Yingbo Ma
- Probably more, thank you!

Outline

- X Differential equations
- Equation-based modeling
 - Symbolics
 - ModelingToolkit (MTK)
 - Tools on top of MTK
- MTK Standard library
- Current status
- Project ideas

:Julia computing

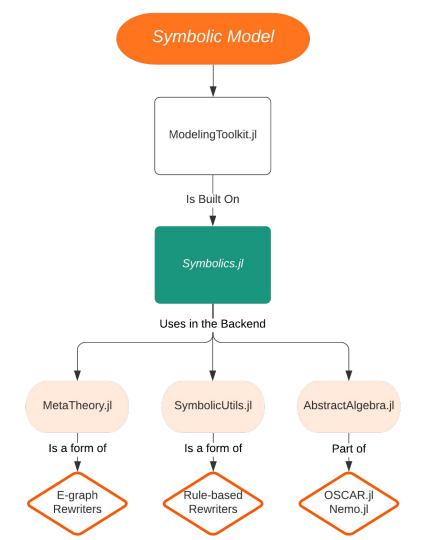
Differential equations code demo

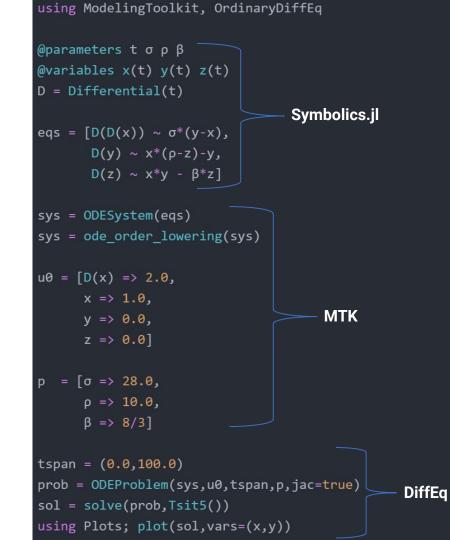
Modeling controlled systems using DifferentialEquations.jl

- Incorporating input data
- State-feedback controller with ZoH

Equation-based modeling

- Symbolics
- ModelingToolkit (MTK)
- Tools on top of MTK





Symbolics is a Type-Based Computer Algebra System (CAS)

using Symbolics
@variables a # equivalent to a::Real, symtype(a) == Sym{Real}
@variables b[1:2,1:2] # symtype(b) == SymArr{Real}
@variables c::Complex # symtype(c) == Complex{Sym{Real}}

The algebra and symbolic simplification rules are type-dependent

Two Worlds of Rewrite Systems Working Together

Rule-Based Rewriter: SymbolicUtils.jl

```
PLUS_RULES = [
```

```
@rule(~x::isnotflat(+) => flatten_term(+, ~x))
@rule(~x::needs_sorting(+) => sort_args(+, ~x))
@ordered_acrule(~a::is_literal_number + ~b::is_literal_number => ~a + ~b)
```

```
 \begin{aligned} & \text{@acrule}(^{*}(\sim x) + ^{*}(\sim \beta, \ \sim x) \Rightarrow ^{*}(1 + \sim \beta, \ (\sim x)...)) \\ & \text{@acrule}(^{*}(\sim \alpha, \ \sim x) + ^{*}(\sim \beta, \ \sim x) \Rightarrow ^{*}(\sim \alpha + \sim \beta, \ (\sim x)...)) \\ & \text{@acrule}(^{*}(\sim x, \ \sim \alpha) + ^{*}(\sim x, \ \sim \beta) \Rightarrow ^{*}(\sim \alpha + \sim \beta, \ (\sim x)...)) \end{aligned}
```

```
 \begin{array}{l} @ acrule(\sim x + *(\sim\beta, \ \sim x) \ \Rightarrow \ *(1 + \sim\beta, \ \sim x)) \\ @ acrule(*(\sim\alpha::is_literal_number, \ \sim x) \ + \ \sim x \ \Rightarrow \ *(\sim\alpha + 1, \ \sim x)) \\ @ rule(+(\sim x::hasrepeats) \ \Rightarrow \ +(merge_repeats(*, \ \sim \infty)...)) \end{array}
```

```
@ordered_acrule((~z::_iszero + ~x) => ~x)
@rule(+(~x) => ~x)
```

Pros: Fast, automatically parallelized, and uses standard rules Cons: Simplification result is dependent on rule application order!

E-Graph Based Rewriter: MetaTheory.jl

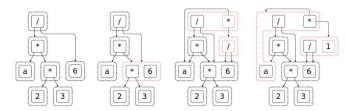


Figure 1: Equality saturation constructs the e-graph from a set of rules applied to an input expression. The four depicted e-graphs represent the process of equality saturation for the equivalent ways to write a * (2 * 3)/6. The dashed boxes represent equivalence classes, and regular boxes represent e-nodes.

Pros: Deterministic result based on a cost function Cons: Requires a separate rule set

High Performance Codegen With Symbolics

Linear indexing of the in-place operations on a sparse matrix

Reduction of computed operations via simplify

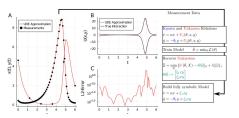
#MIKArg#255 [2999], var	, ##MIKArg#255 [2000], Var ##MIKArg#255 [2001], Var ##MIKArg#255 [2002], Var	н
#MTKArg#253"[3018], var	"##MTKArg#253"[3019], var"##MTKArg#253"[3020], var"##MTKArg#253"[3021], var"	##
#MTKArg#253"[3037], var	"##MTKArg#253"[3038], var"##MTKArg#253"[3039], var"##MTKArg#253"[3040], var"	Ħ
#MTKArg#253"[3056], var	"##MTKArg#253"[3057], var"##MTKArg#253"[3058], var"##MTKArg#253"[3059], var"	##
egin		
Threads.@spawn begin		
(var"##MTIIF	<pre>Var#255").nzval[1] = (getproperty(Base, :+))(-400.0, (getproperty(Base, :*))</pre>	(-
(var"##MTIIF	Var#255").nzval[2] = 100.0	
(var"##MTIIF	Var#255").nzval[3] = 100.0	
(var"##MTIIF	<pre>Var#255").nzval[4] = (getproperty(Base, :*))(-1, u1,1,2)</pre>	
(var"##MTIIF	Var#255").nzval[5] = u _{1,1,2}	
(var"##MTIIF	Var#255").nzval[6] = 200.0	
(var"##MTIIF	<pre>Var#255").nzval[7] = (getproperty(Base, :+))(-400.0, (getproperty(Base, :*))</pre>	(-
(var"##MTIIF	Var#255").nzval[8] = 100.0	
(var"##MTIIF	Var#255").nzval[9] = 100.0	
(var"##MTIIF	<pre>Var#255").nzval[10] = (getproperty(Base, :*))(-1, u2,1,2)</pre>	
(var"##MTIIF	Var#255").nzval[11] = u _{2,1,2}	
(var"##MTIIF	2Var#255").nzval[12] = 100.0	

Automatically spawns threads based on the number of non-zeroes in the sparse Jacobian and the number of CPU cores

Symbolics code demo

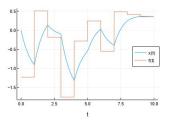
What is ModelingToolkit?

A symbolic language and compilers for models.



1. MTK is the symbolic side of SciML

Symbolic modeling for all numerical simulation

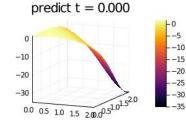


3. MTK is an acausal modeling system

Like Modelica, SimScape, etc.

2. MTK is a symbolic-numeric optimizer

Automatically optimize code for ODE solvers



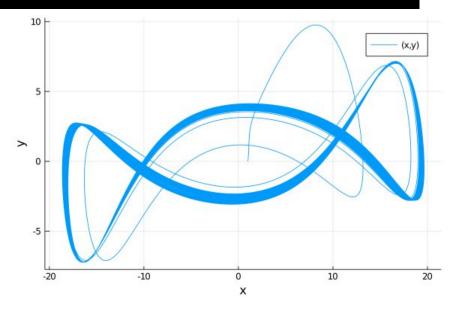
4. MTK is a DSL building tool

Catalyst.jl, PDE interfaces, Optimal control etc.

What sets MTK apart from alternatives?

- Acausal, equation based
- Open source
- Julia all the way down
- Exposes symbolic language to the user
- Very wide scope
 - ODE, PDE, ... all kinds of DE
 - Optimization
 - Deep learning
 - Anything that benefits from symbolic modeling
- Differentiable

ModelingToolkit.jl – The Modeling Frontend to a Symbolic Ecosystem



using ModelingToolkit, OrdinaryDiffEq

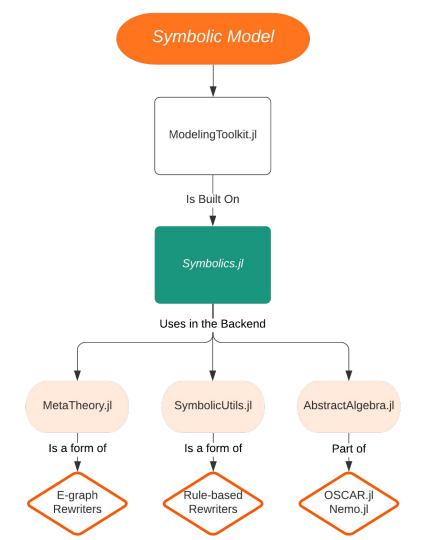
@parameters t $\sigma \rho \beta$ @variables x(t) y(t) z(t)
D = Differential(t)

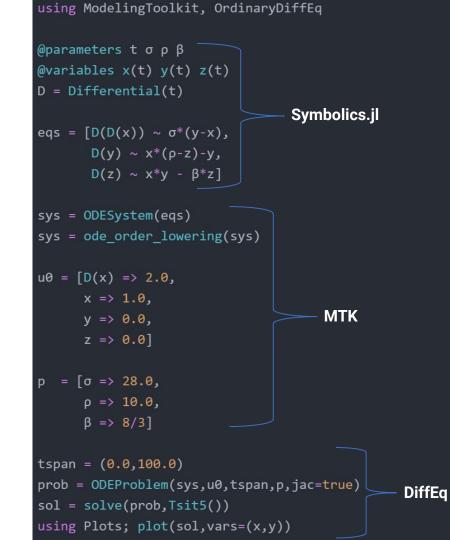
eqs = $[D(D(x)) \sim \sigma^*(y-x),$ $D(y) \sim x^*(\rho-z)-y,$ $D(z) \sim x^*y - \beta^*z]$

sys = ODESystem(eqs)
sys = ode_order_lowering(sys)

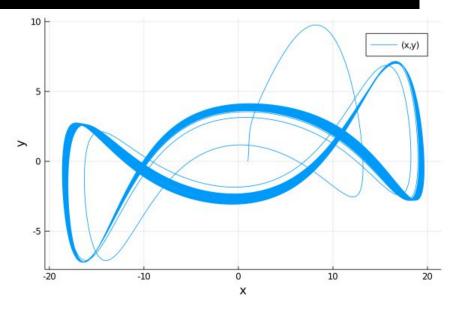
u0 = [D(x) => 2.0, x => 1.0, y => 0.0, z => 0.0]

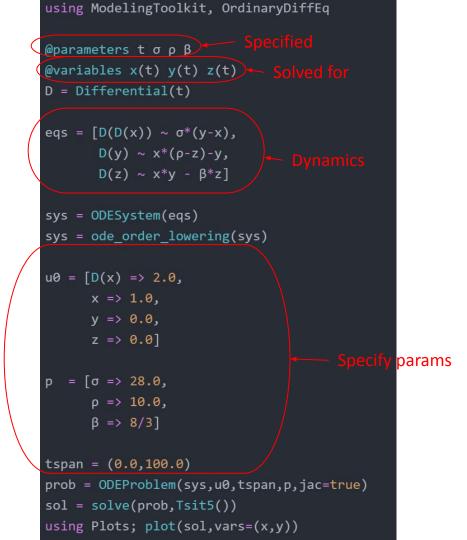
tspan = (0.0,100.0)
prob = ODEProblem(sys,u0,tspan,p,jac=true)
sol = solve(prob,Tsit5())
using Plots; plot(sol,vars=(x,y))





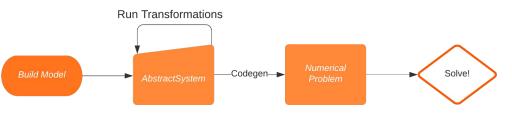
ModelingToolkit.jl – The Modeling Frontend to a Symbolic Ecosystem





ModelingToolkit is "Actually" About Stable Transformations of Models

$$u'' = f(u)$$
$$u' = x$$
$$u' = x$$
$$x' = f(u)$$



using ModelingToolkit, OrdinaryDiffEq @parameters t $\sigma \rho \beta$ @variables x(t) y(t) z(t) D = Differential(t)eqs = $[D(D(x)) \sim \sigma^*(y-x)]$, $D(y) \sim x^*(\rho-z)-y$, $D(z) \sim x^*y - \beta^*z$ sys = ODESystem(eqs) sys = ode order lowering(sys) u0 = [D(x) => 2.0,x => 1.0, y => 0.0, z => 0.0] = $[\sigma => 28.0]$, ρ => 10.0, $\beta \Rightarrow 8/31$ tspan = (0.0, 100.0)prob = ODEProblem(sys,u0,tspan,p,jac=true) sol = solve(prob,Tsit5())

using Plots; plot(sol,vars=(x,y))

What is a compiler?

- Transforms code to other code
 - C to assembly
 - Julia to LLVM, LLVM to assembly
 - Complicated model to simple model
- A compiler has one or many *compiler passes*
 - Dead-code elimination
 - Expression rewriting
 - Symbolic simplification X+0 -> x
- MTK model compiler is implemented in Julia
 - Alias elimination, index reduction, tearing, order lowering
 - You can write an MTK compiler pass

What Kinds of Transformations Do You Get?

- Analytically calculate Jacobians, Hessians, etc.
- Automatically determine sparsity patterns
- Automatically parallelize the generated code
- Automatically simplify the model and eliminate redundant variables
- Automatically transform equations to require positivity

using DifferentialEquations, ModelingToolkit, Plots

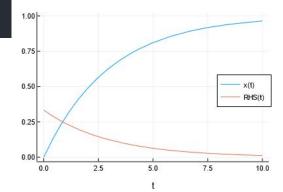
@variables t x(t) RHS(t) # independent and dependent variables
@parameters τ # parameters

D = Differential(t) # define an operator for the differentiation w

simplesys = structural_simplify(fol_separate)
print(equations(simplesys))
#[Differential(t)(x(t)) ~ (t^-1)*(1 - x(t))]

sol = solve(prob)
plot(sol, vars=[x,RHS])

structural_simplify: The typical Modelica Transforms + more



• Etc...

What Kinds of Transformations Do You Get? DAE Index Reduction

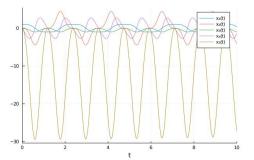
```
using DifferentialEquations, ModelingToolkit
using LinearAlgebra, Plots
```

sol = solve(pendulum prob)

Let me fix that for you...

@named traced_sys = modelingtoolkitize(pendulum_prob)
pendulum_sys = structural_simplify(traced_sys)
prob = ODAEProblem(pendulum_sys, [], tspan)
sol = solve(prob, Tsit5(),abstol=1e-8,reltol=1e-8)
plot(sol, vars=states(traced_sys))

structural_simplify: The typical Modelica transforms



Warning: dt <= dtmin. Aborting. There is either an error in your model specification or the true solution is unstable. @ SciMLBase C:\Users\accou\.julia\packages\SciMLBase\AOoIW\src\integrator interface.jl:345

What Kinds of Transformations Do You Get? DAE Index Reduction

$$\begin{array}{ll} x' = v_x \\ v'_x = Tx \\ y' = v_y \\ v'_y = Ty - g \\ 0 = x^2 + y^2 - L^2 \end{array} \begin{array}{ll} \text{Not solvable by standard} \\ x' = v_x \\ v'_x = xT \\ y' = v_x \\ y' = v_y \\ 0 = 2 \left(v_x^2 + v_y^2 + y(yT - g) + Tx^2 \right) \end{array}$$

Composable (Acausal) Modeling via Subsystems

using JuliaSim

```
R = 1.0
C = 1.0
V = 1.0
@named resistor = Resistor(R=R)
@named capacitor = Capacitor(C=C)
@named source = ConstantVoltage(V=V)
@named ground = Ground()
```

rc_eqs = [
 Describe how the subsystems relate
 connect(source.p, resistor.p)
 connect(resistor.n, capacitor.p)
 connect(capacitor.n, source.n, ground.g)
]
@named rc_model = ODESystem(rc_eqs,

systems=[resistor, capacitor, source, ground])

```
julia> equations(rc_model)
16-element Vector{Equation}:
0 ~ resistor+p+i(t) + source+p+i(t)
source+p+v(t) ~ resistor+p+v(t)
0 ~ capacitor+p+i(t) + resistor+n+i(t)
resistor+n+v(t) ~ capacitor+p+v(t)
```

```
Differential(t)(capacitor+v(t)) ~ capacitor+p+i(t)*(capacitor+C^-1)
source+V ~ source+p+v(t) - source+n+v(t)
0 ~ source+n+i(t) + source+p+i(t)
ground+g+v(t) ~ 0
```

structural_simplify: Contains main model transforms

```
sys = structural_simplify(rc_model)
```

```
julia> equations(sys)
2-element Vector{Equation}:
0 ~ capacitor<sub>+</sub>v(t) + resistor<sub>+</sub>R*capacitor<sub>+</sub>p<sub>+</sub>i(t) - source<sub>+</sub>V
Differential(t)(capacitor<sub>+</sub>v(t)) ~ capacitor<sub>+</sub>p<sub>+</sub>i(t)*(capacitor<sub>+</sub>C<sup>-</sup>1)
```

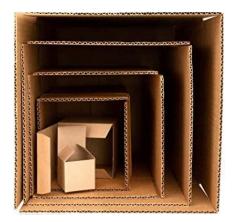
Compose vs. extend

compose

Place an instance of a sub-system into an outer system

extend

Copy the *contents* of sub-system into inheriting system



Compose vs. extend

compose

extend

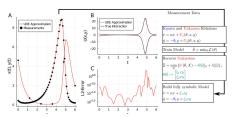
```
function Resistor(;name, R=1.0)
 @named oneport = OnePort()
 @unpack v, i = oneport
 pars = @parameters R=R
 eqs = [
        v ~ i * R
 ]
    extend(ODESystem(eqs, t, [], pars; name=name), oneport)
Ond
```

```
julia> @named R = Resistor(R=1)
Model R with 4 equations
States (6):
v(t) [defaults to 0.0]
i(t) [defaults to 0.0]
p.v(t) [defaults to 1.0]
p.i(t) [defaults to 1.0]
n.v(t) [defaults to 1.0]
n.i(t) [defaults to 1.0]
Parameters (1):
R [defaults to 1]
```

MTK code demo

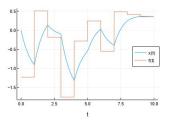
What is ModelingToolkit?

A symbolic language and compilers for models.



1. MTK is the symbolic side of SciML

Symbolic modeling for all numerical simulation

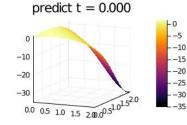


3. MTK is an acausal modeling system

Think like Modelica, SimScape, etc.

2. MTK is a symbolic-numeric optimizer

Automatically optimize code for ODE solvers



4. MTK is a DSL building tool

Catalyst.jl, PDE interfaces, optimal control

ModelingToolkit has System Types Matching Each SciML Numerical Domain

LinearSolve.jl: Unified Linear Solver Interface

$$A(p)x = b$$

NonlinearSolve.jl: Unified Nonlinear Solver Interface f(u, n) = 0

$$f(u,p)=0$$

DifferentialEquations.jl: Unified Interface for all Differential Equations u' - f(u, n, t)

$$du = f(u, p, t)dt + g(u, p, t)dW_t$$

The SciML Common Interface for Julia Equation Solvers

https://scimlbase.sciml.ai/dev/

GalacticOptim.jl: Unified Optimization Interface

minimize f(u, p)subject to $g(u, p) \le 0, h(u, p) = 0$

Quadrature.jl: Unified Quadrature Interface

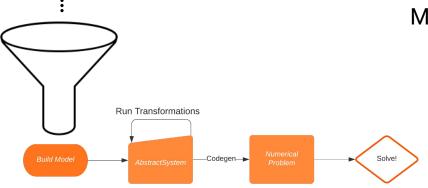
$$\int_{lb}^{ub} f(t,p)dt$$

Unified Partial Differential Equation Interface

$$u_t = u_{xx} + f(u)$$
$$u_{tt} = u_{xx} + f(u)$$
$$\vdots$$

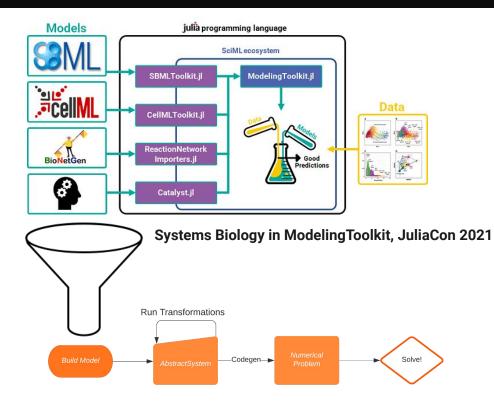
Models Can Come From DSLs

- Pumas.jl
- Catalyst.jl
- OrbitalTrajectories.jl
- AstrodynamicalModels.jl
- BlockSystems.jl
- Conductor.jl
- PowerSystemsDynamics.jl



A growing ecosystem of DSLs all feed into ModelingToolkit systems.

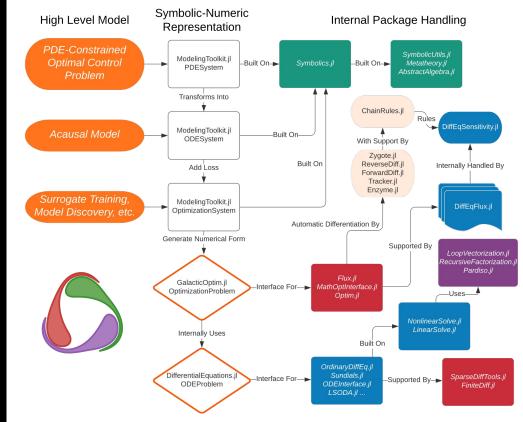
Models Can Come From External File Formats



SciML's Modeling Ecosystem: ModelingToolkit's Numerical Counterpart

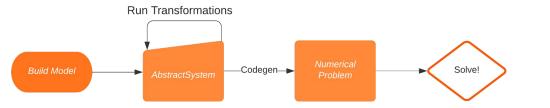
SciML's Common Interface:

- Consistent interface for all numerics
- Symbolic modeling for all forms
- Automated inverse problems and adjoints
- Composes across the whole package ecosystem
- Generic and composable programming
- Uses and embraces the work of other developers



The SciML Common Interface, Oversimplified

Machine Learning Surrogates as Approximate Transformations



If you build a machine learning method that outputs differential-algebraic equations, then it qualifies as an "approximate" stable transformation

- Take in a differential equation and the outputs to surrogatize over
- Create a new differential equation system that is approximately the same input/output mapping (dimensionality reduction)
- Represent that system as an MTK model

Because it's approximate, it needs user-intervention.

We developed the continuous-time echo state network as a surrogate method which is robust to stiffness and has these properties.

using JuliaSim

```
sys = ODESystem(...)
prob = ODEProblem(sys, u0, tspan, p)
param_space = [...]
surralg = LPCTESN(1000, output_function = (u,t) -> u[1:3])
sim = DEProblemSimulation(prob, reltol = 1e-12, abstol = 1e-12)
```

```
odesurrogate = JuliaSimSurrogates.surrogatize(
    sim,param_space,
    surralg,100 # n_sample_pts
)
```

```
newsys = ODESystem(odesurrogate)
```


ModelingToolkit's General PDE Specifications

```
using ModelingToolkit
import ModelingToolkit: Interval, infimum, supremum
```

@parameters x y
@variables u(..)

```
Dxx = Differential(x)^2
Dyy = Differential(y)^2
eq = Dxx(u(x,y)) + Dyy(u(x,y)) \sim -sin(pi*x)*sin(pi*y)
bcs = [u(0,y) ~ 0.f0, u(1,y) ~ -sin(pi*1)*sin(pi*y),
       u(x,0) \sim 0.f0, u(x,1) \sim -\sin(pi^*x)^*\sin(pi^*1)
domains = [x \in Interval(0.0, 1.0),
           y \in Interval(0.0, 1.0)
pde_system = PDESystem(eq,bcs,domains,[x,y],[u])
```

$$\frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 u(x,y)}{\partial y^2} = -\sin(\pi x) * \sin(\pi y)$$

with the boundary conditions:

$$u(0, y) = 0u(1, y) = -sin(\pi) * sin(\pi y)u(x, 0) = 0,u(x, 1) = -sin(\pi x) * sin(\pi)$$

on the space domain:

$$x \in [0,1], y \in [0,1]$$

ModelingToolkit's General PDE Specifications

```
using ModelingToolkit
import ModelingToolkit: Interval, infimum, supremum
@parameters x y
@variables u(...)
Dxx = Differential(x)^2
Dyy = Differential(y)^2
eq = Dxx(u(x,y)) + Dyy(u(x,y)) \sim -\sin(pi^*x)^*\sin(pi^*y)
bcs = [u(0,y) \sim 0.f0, u(1,y) \sim -\sin(pi^{*}1)^{*}\sin(pi^{*}y),
       u(x,0) \sim 0.f0, u(x,1) \sim -\sin(pi^*x)^*\sin(pi^*1)
domains = [x \in Interval(0.0, 1.0)],
            y \in Interval(0.0, 1.0)
pde_system = PDESystem(eq,bcs,domains,[x,y],[u])
```

Solving PDEs is generally about transforming mathematical equations into other forms.

See "Solving Partial Differential Equations in Julia", JuliaCon 2018

ModelingToolkit's General PDE Solver: Finite Difference Method

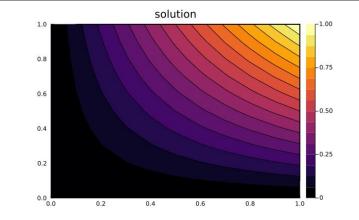
using ModelingToolkit
import ModelingToolkit: Interval, infimum, supremum

```
@parameters x y
@variables u(..)
Dxx = Differential(x)^2
Dyy = Differential(y)^2
```

2D PDE

Transform it into a symbolic NonlinearSystem via Finite Differences discretization = MOLFiniteDifference([x=>dx,y=>dy], nothing, centered_order=2) prob = discretize(pdesys,discretization) sol = solve(prob) using Plots xs,ys = [infimum(d.domain):dx:supremum(d.domain) for d in domains]

```
u_sol = reshape(sol.u, (length(xs),length(ys)))
plot(xs, ys, u_sol, linetype=:contourf,title = "solution")
```



ModelingToolkit's General PDE Solver: Physics-Informed Neural Networks

2021

using ModelingToolkit import ModelingToolkit: Interval, infimum, supremum

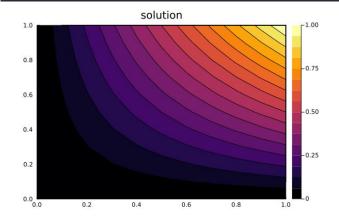
```
@parameters x y
@variables u(...)
```

```
Dxx = Differential(x)^2
```

```
Dyy = Differential(y)^2
```

```
eq = Dxx(u(x,y)) + Dyy(u(x,y)) \sim -sin(pi*x)*sin(pi*y)
bcs = [u(0,y) \sim 0.f0, u(1,y) \sim -\sin(pi^{*}1)^{*}\sin(pi^{*}y),
       u(x,0) \sim 0.f0, u(x,1) \sim -\sin(pi^*x)^*\sin(pi^*1)
domains = [x \in Interval(0.0, 1.0)],
            y \in Interval(0.0, 1.0)
pde system = PDESystem(eq,bcs,domains,[x,y],[u])
```

Easy and Customizable PINN PDE Solving with NeuralPDE.jl, JuliaCon



ModelingToolkit's General PDE Solver: Physics-Informed Neural Networks

using ModelingToolkit import ModelingToolkit: Interval, infimum, supremum

```
@parameters x y
@variables u(...)
Dxx = Differential(x)^2
Dyy = Differential(y)^2
eq = Dxx(u(x,y)) + Dyy(u(x,y)) \sim -\sin(pi^*x)^*\sin(pi^*y)
bcs = [u(0,y) \sim 0.f0, u(1,y) \sim -\sin(pi^{*}1)^{*}\sin(pi^{*}y),
        u(x,0) \sim 0.f0, u(x,1) \sim -\sin(pi^*x)^*\sin(pi^*1)
domains = [x \in Interval(0.0, 1.0),
            y \in Interval(0.0, 1.0)
pde system = PDESystem(eq,bcs,domains,[x,y],[u])
```

Coming soon:

Finite Volume methods Spectral methods Finite element methods

•••

All PDE solving with unified interface

Looking to collaborate with all Julia PDE developers to make this a reality.

ModelingToolkitStandardLibrary

Modeled after Modelica stdlib

- Blocks
 - PID
 - StateSpace
 - FirstOrder
 - ..
- Mechanical
 - Rotational
- Electrical
- Magnetic
- Thermal

MTK: Work in progress-Current status

Solid

- Standard compiler transforms
- Composable modeling in continuous time

Basic functionality

- Symbolic events
- Component library
- Units

Needs more work

- Discrete time
- General events
- Documentation
- Optimization problems
 - Optimal control
- Helpful error messages
- Array variables
- Input-output
- Linearization
- Trimming
- Inverting models
- GUI

Project ideas

- Model validity checker
 - Add metadata to model (<u>https://github.com/SciML/ModelingToolkit.jl/pull/1560</u>)
 - Post hoc solution validation?
 - Online solution validation as callback?
- Composable code callbacks
 - Symbolic callbacks supported
 - How about non-symbolic callbacks?
- Bayesian estimation of model parameters
 - Prior-metadata for parameters
 - Code-gen for likelihood evaluation

