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Natural Science and Engineering Science

Many similarities but also many differences

Natural Phenomena
Insight

Understanding
Analysis
Isolation

Fundamental Laws

Technical Systems
Insight

Understanding
Synthesis
Interaction

System Principles

Feedback is a a good system principle!
Recall the Magic of Feedback

The Magic of Feedback

Good properties:
◮ Attenuate effects of disturbances - process control, automotive
◮ Make good systems from bad components - feedback amplifier
◮ Follow command signals - robotics, automotive
◮ Stabilize and shape behavior - flight control

Bad properties:
◮ Feedback may cause instability
◮ Feedback feeds measurement noise into the system

Arthur C. Clarke: Any sufficiently advanced technology is indistinguishable
from magic

Modeling - a very Rich Field
◮ Mechanical systems

Classical mechanics
Microsystems
Mechatronics

◮ Fluid systems
◮ Thermal systems
◮ Thermofluid
◮ Electric circuits

Resistors
Capacitors
Transformers
Networks

◮ Electronics
◮ Electromechanical systems

Motors
Generators

◮ Vehicles
Bicycles and cars
Ships
Airplanes and rockets

◮ Power systems
Steam generators
Hydro-electric
Networks

◮ Chemical processes
Reactors
Distillation columns

◮ Biological systems
Compartment models
Pharmacokinetics

◮ Ecosystems
◮ Economics

Mechanical Systems

◮ Mechanical systems a cornerstone of all engineering education
◮ Many examples

Lab systems (pendula)
Robotics stationary and mobile
Important elements of vehicles

◮ Mechatronics
◮ Micromechanics
◮ Sensors

Gyros and accelerometers
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Astronomy - Role Model for Natural Science

Astronomy is on of the oldest natural sciences. It investigates celestial
objects such as planets, moons and stars. The early civilizations in
recorded history made methodical observations of the night sky. These
include the Babylonians, Greeks, Indians, Egyptians, Chinese, Maya, and
many ancient indigenous peoples of the Americas.
◮ Experiments
◮ Ulugh Beg grandson of Timur Lenk Observatory in Samarkand 1420
◮ Tycho Brahe 1546-1601
◮ Hans Lippershey 1608 patent for a refracting telescope.
◮ Galileo 1609
◮ Kepler 1571-1630
◮ Theory emerges
◮ Newton 1643-1727

Key Problem

Predict the future positions of the planets.
◮ The emergence of Natural Science
◮ Conceptual insight
◮ How do they move
◮ What causes the motion
◮ How can be motion be described
◮ Abstractions Physical Laws
◮ Interplay of observation and theory
◮ Recently extremely precise measurements
◮ Recently verifiction of Einsteins relativity throry

A prime example of a modeling effort that spanned many centuries with
brillant contributors and revolutionary consequences.
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An Example - The Giant Modelers

The different phases
◮ Early Observations: Tycho Brahe and Timur Lenk
◮ Finding features: Kepler
◮ Theory development: Newton
◮ Improved data treatment: Gauss
◮ Abstraction: Euler, Lagrange, Hamilton and Jacobi
◮ Further abstractions: Poincare, Birkhoff
◮ Recent contributions Smale, Arnold and Chaos

Astronomical Observations

◮ Optical astronomy
Earth bound
In space Hubble

◮ Radio astronomy
Five-hundred-meter Aperture Spherical radio Telescope (FAST)
Chinese:, nicknamed Tianyan (lit. "Sky’s/Heaven’s Eye"). FAST has a
500 m diameter dish constructed in a natural depression in the
landscape.

◮ Combining antennas over the world
◮ On 11 February 2016 it was announced that the LIGO collaboration

had directly observed gravitational waves for the first time in
September 2015. The second observation of gravitational waves was
made on 26 December 2015 and announced on 15 June 2016. Barry
Barish, Kip Thorne and Rainer Weiss were awarded the 2017 Nobel
Prize in Physics for leading this work.

Features from Observation

Tycho Brahe was mathematician at the court of Emperor Rudolf II in Prag,
Kepler was his assistant. Brahe reluctantly gave Kepler data for Mars, the
planet whose path deviates most from a circle.
By analysis of the data Kepler found three laws.

1. Planets move in ellipses with the sun at the center
2. Equal areas are covered in equal times
3. Time to go around the sun related to the size of the orbit
4. Keplers formula

M = E − e sinE

The Three Body Problem - Poincare

Newton could solve his equations for two bodies, the sun and the earth,
and obtain ellipsoidal orbits.
Efforts to solve the equations for three planets failed. Poincare gave a new
view. He emphasized the qualitative aspects and started a new vigorous
development.

The Planet Ceres and Karl Friedrich Gauss

The dwarf planet Ceres is the largest ob-
ject in the asteroid belt between Mars and
Jupiter, and it’s the only dwarf planet located
in the inner solar system. It was the first
member of the asteroid belt to be discov-
ered when Giuseppe Piazzi spotted it in 1801.
The planet was lost after 41 days of obser-
vations because it had an almost circular or-
bit. Gauss decided to find in and invented the
least squares method. Ceres was rediscov-
ered in January 1802. Gauss was polishing
his manuscript and published in 1809.

Carl Friedrich Gauss
1777-1855

Karl Friedrich Gauss and Least Squares

The story of the planet Ceres, discovered in 1781, almost circular orbit.
Vanished from view. Recovered by Gauss method in 1802. K. F. Gauss
Teoria Motus Corporum Coelestium 1809.
“The most probable values of the unknown parameters, are those which
minimize the sum of the squares of the differences between the observed
and computed values.”
“The principle that the sum of the squares of the differences between
observed and computed quantities must be a minimum may be considered
independently of the calculus of probabilities.”
“Instead of using the sum of squares (our principle) we could use sum of
any even power of the errors. But of all these principles ours is the most
simple.”

Laser Interferometer Gravitational-Wave Observatory (LIGO)

The LIGO concept built upon early work by many scientists to test a
component of Albert Einstein’s theory of general relativity, the existence of
gravitational waves.
In 1967 Rainer Weiss of MIT published an analysis of interferometer use
and initiated the construction of a prototype which was never completed.
The current LIGO multi-kilometer-scale gravitational wave detectors uses
laser interferometry to measure the minute ripples in space-time caused by
passing gravitational waves from cataclysmic cosmic events such as
colliding neutron stars or black holes, or by supernovae. It consists of two
widely-separated interferometers within the United States—one in Hanford,
Washington and the other in Livingston, Louisiana—operated in unison to
detect gravitational waves.
The Nobel Prize in Physics 2017 was divided, one half awarded to Rainer
Weiss, the other half jointly to Barry C. Barish and Kip S. Thorne "for
decisive contributions to the LIGO detector and the observation of
gravitational waves."
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Newton a Modeling Giant

Newton investigated the motion of two planets subject to a gravitational
force. He formulated the law for gravitation

F = k
mM
r2

and he also formulated the law of momentum balance

d
dt

mv = F , m
d2x
dt2 = F

and the analog for angular momentum.
He also developed differential calculus to be able to manipulate the
equations.
The theory that emerged covered much more than the original problem.
The three-body problem defied analysis.

Lagrange’s Equation

Introduce
q generalized coordinates
p generalized momenta

Compute
Potential energy V(q)

Kinetic energy T(p, q)

Lagrangian L = T − V

Equations of motion

d
dt
�L
�q̇
−
�L
�q

= F

Joseph-Louis Lagrange
1813-1976

Hamilton’s Equations

Let q be the generalized coordinates, the
hamiltionian is the total energy of the system

H(p, q) = V(q) + T(q)

Equations of motion are

dq
dt

=
�H
�p

dp
dt

= −
�H
�q

The system moves so that the total energy is
minimal!

William Rowan Hamilton
1805-1865 Algebra of

quaternions

The Hamilton-Jacobi Equation

Let q be the generalized coordinates and let H(q, p) = T(p, q) + V(q) be
the Hamiltionian (total energy). The Hamilton-Jacobi equation is

�S
�t

+ H
(

q, �S
�q

)

= 0

Compare Pontryagins Maximum Principle!

H(x, p, u) = V(x, u) + pT f(x, u)

H0(x, p) = minuH(x, p, u)
�S
�t

+ H0

(

x, �S
�x

)

= 0

dq
dt

=
�H0

�p
, dp

dt
= −

�H0

�q

The Hamilton-Jacobi-Bellman Equation

dx
dt

= f(x, u), min
u

V(x.u)

The Hamiltonian

H(x, p, u) = V(x, u) + pT f(x, u)

H0(x, p) = minuH(x, p, u)

Hamilton-Jacobi-Bellman equation

�S
�t

+ H0
(

x, �S
�x

)

= 0

Pontryagins maximum principle

dx
dt

=
�H0

�p
, dp

dt
= −

�H0

�x

Richard Ernest Bellman
1920-1984
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Pendulum on a Cart
xp = x + l sinθ
yp = l cosθ
ẋp = ẋ + lθ̇ cosθ
ẏp = −lθ̇ sinθ

Potential energy

V = mgl cosθ

x

θ

Kinetic energy

T =
1
2

Jθ̇ 2 +
1
2

mcart ẋ2 +
1
2

m(ẋ2
p + ẏ2

p)

=
1
2
(J + ml2)θ̇ 2 +

1
2
(mcart + m)ẋ2 + mlẋθ̇ cosθ

=
1
2

Jpθ̇ 2 +
1
2

Mẋ2 + mlẋθ̇ cosθ

Equations of Motion

L = T − V =
1
2

Jpθ̇ 2 +
1
2

Mẋ2 + mlẋθ̇ cosθ − mgl cosθ

�L
�θ̇

= Jpθ̇ + mlẋ cosθ

�L
�ẋ

= Mẋ + mlθ̇ cosθ

�L
�θ = −mlẋθ̇ sinθ + mgl sinθ

�L
�x

= 0

Lagranges Equations
d
dt
�L
�q̇
−
�L
�q

= F

give the following equations of motion

Jpθ̈ + mlẍ cosθ − mgl sinθ = 0

mlθ̈ cosθ − mlθ̇ 2 sinθ + Mẍ = F
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Assessment

Does the equation

Jpθ̈ + mlẍ cosθ − mgl sinθ = 0

mlθ̈ cosθ − mlθ̇ 2 sinθ + Mẍ = F

make sense?
◮ Interpretation of the different terms
◮ What happens if the cart is very heavy?

(Hint M = m + mcart )
◮ Can we find a suitable normalization?
◮ When can the interaction between pendulum and cart be neglected?
◮ How many independent parameters are there?

Normalisation 1

Jpθ̈ + mlẍ cosθ − mgl sinθ = 0

mlθ̈ cosθ − mlθ̇ 2 sinθ + Mẍ = F

Divide first equation with Jp and the second with M. Hence

θ̈ +
ml
Jp

ẍ cosθ − mgl
Jp

sinθ = 0

ml
M

θ̈ cosθ − ml
M

θ̇ 2 sinθ + ẍ =
F
M

Four parameters ml
Jp

, ml
M , ω0 =

√
mgl/Jp and 1/M! Notice that all

parameters are not dimension free!

Normalisation 2

Use
◮ 1/ω0 as a time scale
◮ l as a length scale
◮ 1/(Ml) as unit of force (u is acceleration)

◮ α =
ml2

Jp
=

ml2

ml2 + J

◮ β =
m
M

Then

θ̈ + αẍ cosθ − sinθ = 0

βθ̈ cosθ − βθ̇ 2 sinθ + ẍ = u

Only two parameters!!

Linearisation

Normalized and scaled equations of motion

θ̈ + αẍ cosθ − sinθ = 0

βθ̈ cosθ − βθ̇ 2 sinθ + ẍ = u

Linearize

θ̈ + αẍ cosθ0 − θ cosθ0 = 0

βθ̈ cosθ0 + ẍ = u

Notice sign changes for the equilibria

α =
ml2

Jp
=

ml2

ml2 + J

β =
m
M

Stabilizing a Pendulum on Cart

Start with normalized equations in linearized form

θ̈ + αẍ cosθ0 − θ cosθ0 = 0

βθ̈ cosθ0 + ẍ = u

Eliminate x!

(1−αβ cos2 θ0)θ̈ − θ cosθ0 = −αu cosθ0

where

αβ =
ml2

J + ml2
m
M

Notice that 1−αβ does not change sign.

Stabilizing the Pendulum

(1−αβ cos2 θ0)θ̈ − θ cosθ0 = −αu cosθ0

Up position (θ0 = 0)

(1−αβ )θ̈ − θ = −αu

Down position (θ0 = π )

(1−αβ )θ̈ + θ = αu

A PD controller will do the job. It adds a terms θ and θ̇ .
Safe to experiment in down position!

PD Control

up (1−αβ )θ̈ − θ = −αu

down (1−αβ )θ̈ + θ = αu

PD αu = kθ + kvθ̇

Closed loop

up (1−αβ )θ̈ + kvθ̇ + (k − 1)θ = 0

down (1−αβ )θ̈ − kvθ̇ + (1− k)θ = 0
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The Furuta Pendulum

xcm = r cosφ − { sinθ sinφ
ycm = r sinφ + { sinθ cosφ
zcm = { cosθ
ẋcm = −rφ̇ sinφ − {φ̇ cosφ sinθ − {θ̇ sinφ cosθ
ẏcm = rφ̇ cosφ − {φ̇ sinφ sinθ + {θ̇ cosφ cosθ
ẏcm = −{θ̇ sinθ

x

y

z

φ

θ

,
,

Velocity of center of mass of swinging pendulum

v2 = r2φ̇2 + {2φ̇2 sin2 θ + 2r{φ̇θ̇ cosθ + {2θ̇ 2

Equations of Motion

Kinetic Energy

2T = mv2 + Jbφ̇2 + J(θ̇ 2 + φ̇2 sin2 θ)
= (Jb + mr2 + (J + m{2) sin2 θ)φ̇2 + mr{φ̇θ̇ cosθ + (J + m{2)θ̇ 2

= (Ja + Jp sin
2 θ)φ̇2 + mr{φ̇θ̇ cosθ + Jpθ̇ 2

where

Jp = J + m{2

Ja = Jb + mr2

Potential Energy
V = mg{ cosθ

Equations of Motion ...

�L
�θ =− mr{φ̇θ̇ sinθ + Jpφ̇2 sinθ cosθ + mg{ sinθ

�L
�θ̇

=Jpθ̇ + mr{φ̇ cosθ

�L
�φ =0

�L
�φ̇ =mr{θ̇ cosθ + (Ja + Jp sin

2 θ)φ̇

Equations of motion

Jp(θ̈ − φ̇2 sinθ cosθ) + mr{φ̈ cosθ − mg{ sinθ = 0

mr{θ̈ cosθ − mr{θ̇ 2 sinθ + 2Jpθ̇φ̇ sinθ cosθ + (Ja + Jp sin
2 θ)φ̈ = u.

Interpretation of the Equations

Jp(θ̈ − φ̇2 sinθ cosθ) + mr{φ̈ cosθ − mg{ sinθ = 0

mr{θ̈ cosθ − mr{θ̇ 2 sinθ + 2Jpθ̇φ̇ sinθ cosθ + (Ja + Jp sin
2 θ)φ̈ = u.

Physical interpretations
◮ Interpretation of terms
◮ Crosscoupling
◮ Orders of magnitude

Normalization

Introduce

ω0 =

√
mgl
J

, α =
mr{
Jp

, β =
mr{
Ja

Choose 1/ω0 as time scale and 1/Ja as torque scale. Then the equations
become

θ̈ − φ̇2 sinθ cosθ + αφ̈ cosθ − sinθ = 0

βθ̈ cosθ − βθ̇ 2 sinθ + 2
β
αθ̇φ̇ sinθ cosθ +

(

1 +
β
α sin2 θ

)

φ̈ = u.

Comparison with Pendulum on a Cart

Furuta pendulum

θ̈ − φ̇2 sinθ cosθ + αφ̈ cosθ − sinθ = 0

βθ̈ cosθ − βθ̇ 2 sinθ + 2
β
αθ̇φ̇ sinθ cosθ +

(

1 +
β
α sin2 θ

)

φ̈ = u.

Pendulum on a cart

θ̈ + αẍ cosθ − sinθ = 0

βθ̈ cosθ − βθ̇ 2 sinθ + ẍ = u

◮ When are the systems essentially the same?
◮ When do they differ significantly?
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The Ball and Beam

x = −(a + R) sinφ + Rθ cosφ
y = (a + R) cosφ + Rθ sinφ

a

O

A
R

Kinetic energy

2T = m(ẋ2 + ẏ2) + J(φ̇ − θ̇)2 + Jbeamφ̇2

=
(

J + Jbeam + m(a + R)2 + mR2θ
)

φ̇2

− 2
(

J + mR(a + R)
)

φ̇θ̇ +
(

J + mR2
)

θ̇ 2

Potential energy

V = mg
(

(a + R) cosφ + Rθ sinφ
)

+ amg cosφ
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Equations of Motion

�L
�φ̇ =

(

J + Jbeam + m(a + R)2 + mR2θ
)

φ̇ −
(

J + mR(a + R)
)

�L
�θ̇

=
(

J + mR(a + R)
)

θ̇ −
(

J + mR(a + R)
)

φ̇

�L
�φ = −

�V
�φ

�L
�θ = −

�V
�θ

Equations of motion
(

J + Jbeam + m(a + R)2 + mR2θ
)

φ̈ −
(

J + mR(a + R
)

θ̈

+
1
2

mR2θ̇φ̇2 − ... = M

−
(

J + mR(a + R)
)

φ̈ +
(

J + mR(a + R)
)

θ̈ + ... = 0

Mechanical Systems

1. Introduction
2. Astronomy
3. Newton, Lagrange, Hamilton and Jacobi
4. Pendulum on a Cart
5. Furuta Pendulum
6. Ball and Beam
7. Summary

Summary

◮ Nice systematic formalism
◮ Details messy
◮ A good case for computerized tools
◮ Physical interpretations
◮ Normalization and scaling
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