	Ships and Aerospace
NTR * SIGI	K. J. Åström
Ships and Aerospace Karl Johan Åström Department of Automatic Control LTH Lund University	 Introduction A Little History Sensing and actuation Stability and Manoevrability Autopilots Dynamic Modeling Ships Dynamic Modeling Aircrafts Summary

Ships and Aerospace

- Cutting edge technology
- Technology driver
- Driving forces: Emerging technologies such as expanded use of steam power, airplanes, space ships
- New components Actuators
 - Actuators
 - Flywheels, Steam servos, Hydraulic servos Sensors
 - Gyroscopes, Pendulums, Accelerometers
- Control principles

 Manoevrability versus stability
 Human-in-the-loop
 Integrated process and control design
 Mission critical applications

Aerospace

- Today few dozen companies for civil and military markets
 Commercial jetliners: Boeing 787 ... Airbus 380 ... private jets,
- military, helicopters, missiles, satellites, UAVs
- Today a 20 billon dollar business (2×10^{10} \$),
- Often cutting edge technoloty Hardware
 - Airplanes, missiles, satellites, gyros, accelerometers
- Simulation: analog and digital
- Control
- Rediscovered integral action Optimal control
 - Kalman filtering
- A very strong technology driver
- Very high safety standards
- Model based systems engineering
- Highly selected and skilled operators: pilots and astronauts
- Pilot in the loop
- Hardware in the loop simulation

Rockets and Missiles

- Jules Verne
- Meshcherskii late 1800
- Tsiolkovskii late 1800
- Goddard 1910-30
- Oberth 1920
- Werner van Braun V2 (A4)
- Sputnik 1957
- Apollo
- JPL and unmanned space crafts Gemini

Era of large steam ships 1835 Great Western Railway Company 1837 Great Western Bristol-New York 1845 Great Britain 1859 Great Eastern

- Engine control overlap with governors
 Open loop Augusta 1855
 Closed loop steam servo Great Eastern
- Steering
- Servo motor (Servomoteur)
- Roll stabilization
- Gun-turrets
- Torpedos
- Submarines

Torpedos

Ships

- Most advanced control systems in the late 1800
- Robert Whitehead demonstrated a torpedo driven by pneumatic engine at Fiume for Austrian Navy in 1869
- Great interest from England
- Whitehead torpedos built for the Admiralty
- Depth control
 - The secret proportional feedback from depth and attitude
- In the US the Howell torpedo driven by heavy flywheel (10000 rpm). Depth control by mechanical servo powered from flywheel. Flywheel acted as a gyro, roll tendency compensated for by feedback.
- 1895 Ludwig Obry of the Austrian Navy invented a gyroscope for use in torpedo.

Ships and Aerospace

K. J. Åström

- 1. Introduction
- 2. A Little History
- 3. Sensing and actuation
- 4. Stability and Manoevrability
- 5. Autopilots
- 6. Dynamic Modeling Ships
- 7. Dynamic Modeling Aircrafts
- 8. Summary

Flight Control in Germany

Driving forces:

- The Versailles Peace Treaty of June 28, 1919 prohibited Germany to have air force, tanks and heavy artillery.
- Development civil aviation, rockets and missiles
- Requirements and specifications for flight-control systems from Lufthansa who made regular flights to Moscow, London, Paris and Rome in the 1920s. Interest to keep schedules under all meteorological conditions. Instruments such as turn indicators, magnetic compass, air speed indicators used. Desire to control direction automatically.
- Instrument flight tedious, one person keeps the course by looking at the compass, the other holds speed and altitude. Instruments were important.

Major actors:

- Air Ministry, The Army Ordinance Department
- Industry: Anschütz, Siemens, Askania, Möller-Patin

Advances in Theory

W. Oppelt: "A general theory of flight control did not exist at that time, it was unknown that all control problems followed the same rules. In every application-filed an own control philosophy arose and led sometimes to very curious ideas. Since the basis for an objective proof was not available, the different opinions were presented with persistence according to the temperament of the individual."

Works by Stodola and Tolle well known. Teaching by Max Schuler, head of the Institute of Applied Mechanics in Göttingen since 1923. "Einführung in die Theorie der selbstättigen regeler." Leipzig 1956.

Karl Küpfmüller (1897-1977) Prof Darmstadt 1928. "Über die Dynamik der selbstättigen Verstärkungsregeler" ENT Vol 5 1928, circuit theory, stability, block diagrams. Stability from step responses with an interesting mathematical model.

Prof Adolf Leonhard Stuttgart 1936 (1899-1995)

The German Guided Missile Program

A very extensive program

- Rocket technology
- ► V-1
- V-2
- Radio guidance
- TV guidance
- IR guidance
- Technology: Sensors, actuators, controls
- Strong impact on future US and USSR programs

The V1 Cruise Missile

- Originally proposed by Air Ministry Technical Office at beginning of war. Turned down by General Staff
- Project reestablished June 10, 1942
- Development, testing, troop training and production very fast 2 years and 3 days
- Military operations began June 13, 1944 with 5000 systems
- 8000 missiles launched against London, 2000 lost immediately, about 2400 reached the target

Winfried Oppelt 1912-1999

- Dipl. ing. Technische Physik, Technische Hochschule Darmstadt 1934
- Deutsche Versuchsanstalt f
 ür Luftfahrt Berlin 1934-37
- Anschütz Kiel 1937-42
- Siemens Luftfahrtgerätewerk Berlin 1942-45
- PhD Darmstadt 1943
- ▶ TH Braunschweig 1943-47, Hartmann und Braun 1947-57
- Built a premier control department in Darmstadt
- Lecturer in EE TH Darmstadt 1952-57
- Professor TH Darmstadt 1957-77
- Kleines Handbuch technischer Regelvorgänge, 1954.
- A Historical Review of Autopilot Development, Research and Theory in Germany. ASME J. Dynamics Systems, Measurement and Control 98:3(1976) 215-222.

Missiles

- How to achieve superior spaceflight capability
- Germany 1940-45
 Cruise missiles V1
 Ballistic missiles V2
- Sputnik Oct 4 1957
- Juri Gagarins April 12 1961
- Kennedy and NASA
- Apollo 11 July 1969
- Landings on Mars and Ve

Collection of German Guided Missiles

The V1 Cruise Missile

Ships and Aerospace

K. J. Åström

- 1. Introduction
- 2. A Little History
- 3. Sensing and actuation
- 4. Stability and Manoevrability
- 5. Autopilots
- 6. Dynamic Modeling Ships
- 7. Dynamic Modeling Aircrafts
- 8. Summary

Birds

John Maynard Smith, *The Importance of the nervous system in the evolution of animal flight.* **Evolution**, 6 (1952) 127-129.

The earliest birds pterosaurs, and flying insects were stable. This is believed to be because in the absence of a highly evolved sensory and nervous system they would have been unable to fly if they were not. To a flying animal there are great advantages to be gained by instability. Among the most obvious is manoeuvrability, it is of equal importance to an animal which catches its food in the air and to the animals upon which it preys. It appears that in the birds and at least in some insects the evolution of the sensory and nervous systems rendered the stability found in earlier forms no longer necessary.

Draper on Wright

The Wright Brothers rejected the principle that aircraft should be made inherently so stable that the human pilot would only have to steer the vehicle, playing no part in stabilization. Instead they deliberately made their airplane with negative stability and depended on the human pilot to operate the movable surface controls so that the flying system - pilot and machine - would be stable. This resulted in increased manoeuvrability and controllability.

The 43rd Wilbur Wright Memorial Lecture before the Royal Aeronautical Society, May 19 1955

Ships and Aerospace

K. J. Åström

- 1. Introduction
- 2. A Little History
- 3. Sensing and actuation
- 4. Stability and Manoevrability
- 5. Autopilots Human in the Loop Sperry and Minorsky Three German Autopilots
- 6. Dynamic Modeling Ships
- 7. Dynamic Modeling Aircrafts
- 8. Summary

Stable or Unstable Systems

- Codesign of process and controllers offer many possibilities
- Should we design processes to be stable or unstable? Birds - how nature does it The Wright Brothers Early auto-pilots Understanding of flight dynamics Stable airplanes High performance military aircrafts

Wilbur Wright 1901

We know how to construct airplanes. Men also know how to build engines. Inability to balance and steer still confronts students of the flying problem. When this one feature has been worked out, the age of flying will have arrived, for all other difficulties are of minor importance

Wilbur Wright Western Society of Engineers 1901

JAS Gripen

- Advantages of unstable aircraft
- Unstable operating conditions
- Rate saturation due to hydraulics

Flight Control

Lockheed Constellation 1943 - 5 person crew

> pilot, copilot, flight engineer, navigator, radio operator

Boeing 777 1995 - 2 person crew

pilot, copilot

Human in and out of the Loop

Cooper-Harper Pilot Ratings

- Feedback makes the combination behave as a linear system.
- Nice example of how feedback can be used to shape linear behavior
- from nonlinear components. See Billman regulator later.

The Autopilot - From Sperry Manual

Controller parameters

- Rudder ratio (proportional gain $k_p = 1, 2, 3, 4$)
- Rate sensitivity (derivative gain $k_d = 0 135$)
- **•** Rate signal filtering ($T_f = 0, 5, 10, 15$ factory chosen)
- Rudder bias (integral gain $k_i \approx 0.001$)
- Weather adjust (dead zone max 3°)

Under practical seaway conditions, ships are always subject to some yawing and this can create large rudder swings through the rate channel action. Such rudder swings may not contribute to course regulation of the ship since the ship's response is not fast enough, and these useless rudder swings are classified as 'rudder activity'. Rudder activity must be avoided since it induces additional drag on the ship and wear of the steering system. The solution is to filter the derivative. This filtering can be very effective, but the filter constants must be prudently chosen.

Minorsky 1885

Directional stability of automatically steered bodies J. Am. Soc. Naval Eng. 34 (1922) 284- $\,$

$$J\frac{d^2\theta}{dt^2} + D\frac{d\theta}{dt} = K\delta + M_d$$

Systematic exploration of different controller structures

$$\begin{split} \delta &= -k_1\theta - k_2\frac{d\theta}{dt} - k_3\frac{d^2\theta}{dt^2} & \text{ first class controller} \\ \frac{d\delta}{dt} &= -k_1\theta - k_2\frac{d\theta}{dt} - k_3\frac{d^2\theta}{dt^2} & \text{ second class controller} \\ \frac{d^2\delta}{dt^2} &= -k_1\theta - k_2\frac{d\theta}{dt} - k_3\frac{d^2\theta}{dt^2} & \text{ third class controller} \end{split}$$

Practical Experiments

Sea trials battleship USS New Mexico 1923.

First controller

$$-k_1\theta - k_2rac{d heta}{dt}$$

Deviation (proportional) and check helm (derivative)!

 $\delta =$

Deviations around 6° Confusion because of integrating action i rudder engine. Increasing k_2 reduced fluctuations to 2° . Reduced to $1/6^\circ$ when acceleration feedback was added.

Considerable practical problems in implementation, sensors and controllers.

Minorsky's work had little impact compared with Sperry and Anschütz who had lots of practical experience and skilled engineers. Sperry had 400 autopilots in operation by 1932. Minorsky gave up his patents to Bendix in 1930.

Lesson learned: Theory is not enough!

Askania 1927

Experience in airplane instrumentation, altimeter, air-driven turn-indicator, magnetic compass with pneumatic pickoff, airspeed indicator. Also experience with jet-tube based industrial controllers.

- Askania
- Sensors: Altimeter, turn indicator, magnetic compass, air-speed indicator (all pneumatic)
- Actuator: pneumatic jet tube
- ▶ Test flights in 1927 airship Zeppelin LZ 127
- Production unit tested on Junkers W32 and Ju 52
- Disappointing results
- Only mean value of magnetic compass could be used for feedback, gyroscope was needed for good results
- Great improvement with gyroscope licensed from Sperry

Nicholas Minorsky 1885-

- Born 1885 in Karcheva
- Imperial Technical School St. Petersburg (Vyshnegradski?)
- Joined Russian Navy 1917
- Emigrated USA 1918
- Assistant to Steimetz at GE Research
- Experiments with US Navy 1922 PID

 $d^2 \theta$

- Successful but never pursued
- Competed with Sperry
- Patents sold to Bendix 1930
- Professor at Stanford

Ship with Second Class Controller

dA

Ship

Controller

$$J\frac{dt^2}{dt^2} + D\frac{dt}{dt} = K\delta + M_d$$

 $\frac{d\delta}{dt}=-k_1\theta-k_2\frac{d\theta}{dt}-k_3\frac{d^2\theta}{dt^2}$ Closed loop system

$$J\frac{d^{3}\theta}{dt^{3}} + (D + Kk_{3})\frac{d^{2}\theta}{dt^{2}} + Kk_{2}\frac{d\theta}{dt} + Kk_{1}\theta = \frac{dM_{a}}{dt}$$

A constant disturbance torque will not give any steady state heading deviation! Integral action!

Controller can influence all terms of characteristic equation, hence complete freedom! Stability condition by Hurwitz

$$(D + Kk_3)Kk_2 > JKk_1$$

Three German Autopilots

Askania's Autopilot

Siemens - Three axis Autopilot

Siemens Central-Laboratories had finished work on radio control of target ship "Zähringen". Collaboration with Bykov. Received order for remote controlled airplane 1927.

- Stabilization with Siemens radio- and command-link.
- Experiments with automatic take-off and landing.
- Autopilot not satisfactory, hardware problems.
 - New design 1930 under Fishel. Sensors: magnetic compass, rate gyro, later also directional. gyro, pendulum, airspeed, barometric altimeter. Actuation: Hydraulic with internal feedback.
- Successful test 1932. Air Ministry decides to have electro-hydraulic directional control, not a three axis autopilot. New gyro and improved electro-hydraulic servos.
- Successful design used in nearly all types of airplanes.
- More than 100 000 gyros and 35 000. directional controllers K1Vü were manufactured up to end of WWII.

The Möller-Patin Autopilot

Möller had worked for Askania but left in 1934. Two goals:

- Pure electric control
- Match the controllers dynamic behavior to the pilot

Innovations

►

- Use actuator as a pure integrating device
- Added feedback from angular acceleration

Test in mid 1930 gave surprisingly good results that could not be explained (complex zeros!). Operation was very smooth because of integrator.

Later additional improvements due to simplicity of electric signal processing.

Mass Production ordered by Air Ministry.

Dynamic Modeling of Ships

Dynamics

Wind and Waves

Added Mass

The added mass can be computed by analysing the flow aroudnthe ship. For a sperical ship in an infinite flued it can be shown that the added mass is

 $\ddot{Y} = \frac{1}{2}\rho V$

where V is the volume of the sphere and ρ the density of the surrounding liquid.

Siemens K IV ü

Ships and Aerospace

K. J. Åström

- 1. Introduction
- 2. A Little History
- 3. Sensing and actuation
- 4. Stability and Manoevrability
- 5. Autopilots
- 6. Dynamic Modeling Ships
- 7. Dynamic Modeling Aircrafts
- 8. Summary

Equations of Motion

Mass and momentum balances

$$\begin{split} m\Big(\frac{du}{dt} - rv - y_g\frac{dr}{dt} - x_gr^2\Big) &= X\\ m\Big(\frac{dv}{dt} + ru - x_g\frac{dr}{dt} - x_gr^2\Big) &= X\\ J\frac{dr}{dt} + m\Big(x_g\Big(\frac{dv}{dt} + ur\Big) - y_g\Big(\frac{du}{dt} - rv\Big)\Big) &= M \end{split}$$

surge equation

sway equation yaw equation

The hydrodynamic forces have the form

$$Y = Y(u, v, r, \dot{u}, \dot{v}, \dot{r}, \ddot{u}, \ddot{v}, \ddot{r})$$

which can create nonlinear behavior.

Also notice the dependence on the second derivatives \ddot{u} , \ddot{v} , \ddot{r} . These terms are called added mass and added momentum, they are caused by the necessity to accelerate part of the water surrounding the ship.

Scaling

The equations of motion are conveniently scaled. Introducing L length of ship, V velocity, ρ density, Δ volume displacemetn

Prime A system ρ , L, VPrime B system ρ , L, T and VBis system L, ρ , g, μ , Δ

The scaled systems are surprisingly similar for many different ships

Flight Control Summary

Driving forces: Emergence of a new technology. Air travel and air K. J. Åström warfare. Technology Sensors: Gyros Pendulums Accelerometers Compass 1. Introduction Actuators: Hydraulic, electric on Boeing 787 2. A Little History Signal processing 3. Sensing and actuation Theory versus practice 4. Stability and Manoevrability Some new elements 5. Autopilots Integrated process and control design Man-in-the-loop 6. Dynamic Modeling Ships Later Developments 7. Dynamic Modeling Aircrafts Mission critical 8. Summary Flight control Navigation, guidance, automatic landing

Ships and Aerospace

Summary

- Many similarities between ship and flight dynamics, added mass is a major difference
- Good models can be obtained by physics, validated by tank and flight tests