Fluid Dynamics Modeling	Historical Remarks
K. J. Åstr{öm 1. Introduction 2. Review of Fluid Dynamics 3. Simple Water Tank 4. Simple Gas Tank 5. Tanks, Pipes and Turbines 6. Summary	 Hydroelectric power Control of dams and turbines Founded in civil engineering A not so well recognized base of automatic control Evangelisti (an IFAC founder) in Italy Many others in civil engineering Vattenfalls Älvkarleby Laboratory Interesting examples
A Modeling Methodology	Modeling Check List
 Cut a system into subsystems Write mass, momentum and energy balances for each subsystem State variables describe storage How accurate do we need to describe storage? The model format is differential algebraic equations Use object orientation to structure the system Let software (Modelica) handle bookkeeping and transformations Build component libraries 	 Understand the process Representations Mathematical models Steady state properties Nonlinear dynamical models Linearization Approximation simplification Validation Librarization
Lecture 5 - Fluid Dynamics Modeling	Review of Fluid Dynamics
 Introduction Review of Fluid Dynamics Simple Water Tank Simple Gas Tank Tanks, Pipes and Turbines Summary 	 Fluid dynamics is much more complicated than circuit theory. A prototype for physical modeling. Learn the basics A large complex field Consult the specialists Computational Fluid Dynamics (CFD) Culture clashes Related fields Continuum Mechanics Hydrology Fluid Mechanics Rheology Gas Dynamics Field theory
Different Points of View	The Theoretical Body
 Equations are obtained by Lagrange: Follow a "fluid particle" Euler: Analyze what happens at a fixed point Equations can be written in Integral form Differential form 	 Long winded calculations (Navier, Stokes and Lamb) Vector analysis div, grad, rot, ∇ rot works only in R³ Tensor calculus Covariant and contravariant summation convention a^{ij}b_j Differential geometry Nice and clean Should be part of our basic education

Balance Equations

Mass balance (Continuity Equation)

$$rac{\partial}{\partial t}\int_V arrho dV + \int_S (\hat{n}arrho v_{
m rel}) dS = 0$$

Momentum Balance

$$\frac{\partial}{\partial t} \int_{V} \varrho v dV + \int_{S} v_{abs} (\hat{n} \varrho v_{rel}) dS = \int_{V} F dV - \int_{S} \rho \hat{n} dS$$

Energy Balance Bernoullis Equation

$$\int_{A}^{B} \frac{\partial v}{\partial t} dt + \frac{1}{2} (v_{B}^{2} - v_{A}^{2}) + \Omega_{B} - \Omega_{A} + \int_{A}^{B} \frac{dp}{\varrho} = 0$$

Euler's Equations of Motion

Assume frictionless fluid with constant density Integral form of momentum balance

$$\frac{\partial}{\partial t}\int_{V} \varrho v dV + \int_{S} v_{abs}(\hat{n} \varrho v_{rel}) dS = \int_{V} \varrho F dV - \int_{S} \rho \hat{n} ds$$

Differential form

Constitutive Equations

Compressible fluid

For gases

where κ is the bulk compressibility.

 $egin{aligned} &
ho =
ho_0 rac{arrho}{arrho_0}, \ &
ho =
ho_0 \Big(rac{arrho}{arrho_0} \Big)^{\gamma}, \end{aligned}$

$$\frac{dv}{dt} = \frac{\partial v}{\partial t} + (v \text{ grad })v = F - \frac{1}{\varrho} \text{grad } \rho$$
$$\frac{dv}{dt} = \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} = F - \frac{1}{\rho} \nabla \rho$$

where

$$\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2}$$

 $rac{darrho}{arrho}=-\kappa
ho(
ho)$

Isothermic Adiabatic Mass Balance - The Continuity Equation

Integral form

$$\frac{\partial}{\partial t}\int_{V}\varrho dV + \int_{S}(\hat{n}\varrho v_{rel})dS = 0$$

Gauss theorem fix control surface

$$\int_{V} \left(\frac{\partial \rho}{\partial t} + \operatorname{div}(\varrho v) \right) dt$$

Differential form

$$\frac{d\rho}{dt} = \frac{\partial\rho}{\partial t} + \operatorname{div}(\rho v) = 0$$
$$\frac{d\rho}{dt} = \frac{\partial\rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$
$$\nabla^{T} = \left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}\right)$$

Navier Stokes Equation

Now consider effects of viscosity Navier (1827) and Stokes (1845)

$$\frac{dv}{dt} = \frac{\partial v}{\partial t} + (v \text{ grad })v = F - \frac{1}{\varrho} \text{grad } \rho + \frac{\lambda + \mu}{\varrho} \text{grad } \operatorname{div} v + \frac{\mu}{\varrho} \Delta v$$
$$\frac{dv}{dt} = \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} = F - \frac{1}{\rho} \nabla \rho + \frac{\lambda + \mu}{\rho} \nabla (\nabla \cdot \mathbf{v}) + \frac{\mu}{\rho} \Delta \mathbf{v}$$

where μ is the viscosity and λ the volume compression factor

$$\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2}$$

Dimension Free Parameters

Find suitable variables to express physical relations

- Presentation of empirical data
- Designing scale experiments
 Ship resistance the Froude's number (1970)

$$Fr = \frac{v^2}{lq}$$

gives the ration of inertial forces to gravity

Preliminary (crude) model validation

Judge what effects are important

Reynolds Number

where $\gamma = C_p/C_v$

Navier-Stokes equation

$$\frac{dv}{dt} = \frac{\partial v}{\partial t} + (v \text{ grad })v = F - \frac{1}{\varrho} \text{grad } \rho + \frac{\lambda + \mu}{\varrho} \text{grad } \operatorname{div} v + \frac{\mu}{\varrho} \Delta v$$

Introduce $\bar{v} = v/v_0$, $\bar{x} = x/x_0$, $\bar{t} = v_0 t/x_0$, $\bar{F} = x_0 F/v_0^2$, $\bar{p} = p/(v_0 x_0)^2$. The equation then becomes

$$rac{\partialar{v}}{\partialar{t}} + (ar{v} ext{ grad })ar{v} = ar{F} - rac{1}{ar{arrho}} ext{grad }ar{
ho} + rac{\mu}{v_0 x_0 arrho} \Deltaar{v}$$

The Reynolds number (ratio of inertial and friction forces)

$$Re = rac{arrho v d}{\eta}$$

tells when viscosity is important

Lecture 5 - Fluid Dynamics Modeling

Introduction
 Review of Fluid Dynamics

- 3. Simple Water Tank
- 4. Simple Gas Tank
- 5. Tanks, Pipes and Turbines
- 6. Summary

A Simple Water Tank
Hard to hard callor ex, of depend on the labor
$$q_{1}^{-2}$$

Answer: Contain endromy
 $\frac{d}{dr} = q_{1} - q_{1} - q_{2}$
 $\frac{dr}{dr} = q_{1} - q_{1} - q_{2}$
 $\frac{dr}{dr} = q_{1} - q_{1} - q_{2}$
 $\frac{dr}{dr} = q_{2} - q_{2} - q_{2} - q_{2}$
 $\frac{dr}{dr} = q_{2} - q_{2} - q_{2} - q_{2} - q_{2}$
 $\frac{dr}{dr} = q_{2} - q_{2$

Ratio of inertia and elastic forces

Linearization

$$M^2 = \frac{v_0^2 x_0 \kappa \varrho_0}{x_0} = \kappa \varrho_0 v_0^2 = \left(\frac{v_0}{c}\right)^2$$

Water Hammer without Friction

Constitutive equation

 $\frac{\partial p}{\partial x} = \frac{1}{\kappa \rho_0} \frac{\partial \varrho}{\partial x}$

Conclusions

- An area where physics is difficult and behavior rich
- Essential to understand the fundamentals
- Good demonstrations of balance equations and constitutive equations
- System theory and physics
- Learn differential geometry instead of vector calculus
- Many examples
- Good libraries missing