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Historical Remarks

◮ Hydroelectric power
◮ Control of dams and turbines
◮ Founded in civil engineering

A not so well recognized base of automatic control
Evangelisti (an IFAC founder) in Italy
Many others in civil engineering
Vattenfalls Älvkarleby Laboratory

◮ Interesting examples

A Modeling Methodology

◮ Cut a system into subsystems
◮ Write mass, momentum and energy balances for each subsystem
◮ State variables describe storage
◮ How accurate do we need to describe storage?
◮ The model format is differential algebraic equations
◮ Use object orientation to structure the system
◮ Let software (Modelica) handle bookkeeping and transformations
◮ Build component libraries

Modeling Check List

◮ Understand the process
◮ Representations
◮ Mathematical models
◮ Steady state properties
◮ Nonlinear dynamical models
◮ Linearization
◮ Approximation simplification
◮ Validation
◮ Librarization
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Review of Fluid Dynamics

Fluid dynamics is much more complicated than circuit theory. A prototype
for physical modeling.
◮ Learn the basics
◮ A large complex field
◮ Consult the specialists
◮ Computational Fluid Dynamics (CFD)
◮ Culture clashes

Related fields

◮ Continuum Mechanics
◮ Fluid Mechanics
◮ Gas Dynamics

◮ Hydrology
◮ Rheology
◮ Field theory

Different Points of View

Equations are obtained by
◮ Lagrange: Follow a "fluid particle"
◮ Euler: Analyze what happens at a fixed point

Equations can be written in
◮ Integral form
◮ Differential form

The Theoretical Body

◮ Long winded calculations (Navier, Stokes and Lamb)
◮ Vector analysis

div, grad, rot,∇
rot works only in R3

◮ Tensor calculus
Covariant and contravariant summation convention aijbj

◮ Differential geometry
Nice and clean
Should be part of our basic education
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Balance Equations

Mass balance (Continuity Equation)

�
�t

∫

V
ρdV +

∫

S
(n̂ρvrel)dS = 0

n

v

S
Momentum Balance

�
�t

∫

V
ρvdV +

∫

S
vabs(n̂ρvrel)dS =

∫

V
FdV −

∫

S
pn̂dS

Energy Balance Bernoullis Equation
∫B

A

�v
�t

dr +
1
2
(v2

B − v2
A) + ΩB − ΩA +

∫B

A

dp
ρ = 0

Mass Balance - The Continuity Equation

Integral form
�
�t

∫

V
ρdV +

∫

S
(n̂ρvrel)dS = 0

Gauss theorem fix control surface
∫

V

(�ρ
�t

+ div(ρv)
)

dV

Differential form

dρ
dt

=
�ρ
�t

+ div(ρv) = 0

dρ
dt

=
�ρ
�t

+∇ · (ρv) = 0

∇T =
( �
�x1

, ��x2
, ��x3

)

Euler’s Equations of Motion

Assume frictionless fluid with constant density
Integral form of momentum balance

�
�t

∫

V
ρvdV +

∫

S
vabs(n̂ρvrel)dS =

∫

V
ρFdV −

∫

S
pn̂ds

Differential form

dv
dt

=
�v
�t

+ (v grad )v = F − 1
ρ grad p

dv
dt

=
�v
�t

+ (v ·∇)v = F − 1
ρ∇p

where

∆ =
�2

�x2
1
+
�2

�x2
2
+
�2

�x2
3

Navier Stokes Equation

Now consider effects of viscosity Navier (1827) and Stokes (1845)

dv
dt

=
�v
�t

+ (v grad )v = F − 1
ρ grad p +

λ + µ
ρ grad div v +

µ
ρ ∆v

dv
dt

=
�v
�t

+ (v ·∇)v = F − 1
ρ∇p +

λ + µ
ρ ∇(∇ · v) +

µ
ρ∆v

where µ is the viscosity and λ the volume compression factor

∆ =
�2

�x2
1
+
�2

�x2
2
+
�2

�x2
3

Constitutive Equations

Compressible fluid
dρ
ρ = −κp(ρ)

where κ is the bulk compressibility.
For gases

p = p0
ρ
ρ0

, Isothermic

p = p0

( ρ
ρ0

)γ
, Adiabatic

where γ = Cp/Cv

Dimension Free Parameters

Extensively used in modeling
◮ Find suitable variables to express physical relations
◮ Presentation of empirical data
◮ Designing scale experiments

Ship resistance the Froude’s number (1970)

Fr =
v2

lg

gives the ration of inertial forces to gravity

◮ Preliminary (crude) model validation
◮ Judge what effects are important

Reynolds Number

Navier-Stokes equation

dv
dt

=
�v
�t

+ (v grad )v = F − 1
ρ grad p +

λ + µ
ρ grad div v +

µ
ρ ∆v

Introduce v̄ = v/v0, x̄ = x/x0, t̄ = v0t/x0, F̄ = x0F/v2
0 , p̄ = p/(v0x0)

2.
The equation then becomes

�v̄
� t̄

+ (v̄ grad )v̄ = F̄ − 1
ρ̄ grad p̄ +

µ
v0x0ρ

∆v̄

The Reynolds number (ratio of inertial and friction forces)

Re =
ρvd

η

tells when viscosity is important
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A Simple Water Tank

How do level h and outflow qout depend on the inflow qin?
Assume: Constant density

dV
dt

= qin − qout Massbalance

V =

∫h

0
A(h)dh Geometry

qout = a
√

2gh Energybalance

What parameters are relevant?
How do we determine them?

Analysis and Simplification

Choosing h as a state variable we find

dh
dt

=
1

A(h)
(

qin − a
√

2gh
)

qout = a
√

2gh

One function A(h) and one parameter a.

Steady state relation

qout = qin

h =
q2

in

2ga2

Not influenced by A!

q
in

h

A Difficulty

The equation
dh
dt

=
1

A(h)
(

qin − a
√

2gh
)

Equation not Lipschitz for h = 0! Trouble!
When water level is below the upper part of the hole we get

qout =

∫h

0

√
2gx dA(x)

Rectangular cross section of width b give dA(x) = bdx, hence

qout =

∫h

0

√
2gxbdx =

2
3

bh
√

2gh

Linearization

Equations

dh
dt

=
1

A(h)
(

qin − a
√

2gh
)

qout = a
√

2gh

Linearized equation

dδh
dt

= − q0

2A(h0)h0
δh +

1
A(h0)

δqin

δqout =
q0

2h0
δqin

◮ Physical interpretation

Transfer functions

H
Qin

=
2h0

q0

1
1 + sT

Qout

Qin
=

1
1 + sT

Static gain
2h0

q0
.

Time constant T =
2Ah0

q0

Solving the Equation

For zero inflow we have
dh
dt

= − a
A

√
2gh

The solution is

h =
(√

h0 −
a
A

√
g/2t

)2
= h0

(

1− t
T

)2

qout = a
√

2gh0
(

1− t
T
)

= q0
(

1− t
T
)

Summary of Simple Water Tank

◮ Simple prototype modeling
◮ Equations difficult to solve analytically even in this simple case (cf

Vannevar Bush)
◮ Mathematical conditions (Lipschitz good indicators)
◮ Linearization and steady state solutions helpful for insight
◮ Special cases useful to validate results
◮ Physical interpretation of parameters useful
◮ Think about good transformations
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The Simple Gas Tank

We will now look at the same problem as the simple tank but we will
change from an incompressible to a compressible fluid. The only thing that
changes is thus the constitutive equations. The behavior will however be
very different.
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Constitutive Equations

Isothermic changes, the Ideal Gas Law

pV = nRT

p = p0
ρ
ρ0

Adiabatic state changes
p = p0

( ρ
ρ0

)κ

where κ = cp/cv

Fluid Air He CO2

κ 1.4 1.66 1.30

Flow Through a Nozzle

Energy balance

v2

2
− v2

A

2
+

∫B

A

dp
ρ = 0

Constitutive equation

p = pA

( ρ
ρ0

)κ

dp = κpA

( ρ
ρ0

)κ−1 dρ
ρ

Hence

v2
B =

2κ
κ − 1

pA

pB

(

1−
(ρB

ρA

)
κ−1

κ

)

Velocity

vB =

√√√√ 2κ
κ − 1

pA

pB

(

1−
(ρB

ρA

)κ−1
)

vB =

√√√√ 2κ
κ − 1

pA

pB

(

1−
(pB

pA

)
κ−1

κ

)

Mass Flow Rate

WB = a

√√√√2κpAρA

κ − 1

(

(pB

pA

)
2
κ −

(pB

pA

)
κ+1

κ

)

Critical pressure

pc

pA
=

( 2
κ + 1

)
κ

κ−1

For air pc/pA = 0.53.
Speed of sound at critical
pressure

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

pB/pA

Comment

When the flow rate equals the speed of sound the communication from
down stream to upstream is broken. For air this happens approximately
when pA > pB.
Blandaren: Om man springer fortare an ljuset svartnar det för ögonen!
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Pressure Drop in Pipes

Laminar Flow Hagen Poiseuille 1840

∆p = 8η {v
r2 + 2

ρv2

2

General expression

∆p = f
{
d

1
2

ρv2

Effects on inlet shape on pressure drop

Tank with Outlet Pipe

Mass storage in tank and momentum storage in pipe
Energy balance:

∫B

A

�v
�t

dr +
1
2
(v2

B − v2
A) + ΩB − ΩA +

∫B

A

dp
ρ = 0

Constant velocity v along the pipe tur-
bulent flow

{dv
dt

+
1
2
(v2 − 0)− gh + f

l
d

v2

2
= 0

{dv
dt

+
1 + c

2
v2 − gh = 0

where c = f
{
d
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Tank with Pipe and Turbulent Flow

Summary of equations

dh
dt

= − a
A

v +
1
A

qin

dv
dt

=
g
{ h− 1 + c

2{ v2

qout = av

Stationary solutions

h =
1 + c
2a2g

q2
in

v =
1
a

qin

qout = qin

Linearize

dδh
dt

= − a
A

δv +
1
A

δqin

dδv
dt

=
g
{
(

δh− 2h
v

δv
)

δqout = aδv

Frequency and damping

ω =

√
ag
A{

ζ =
1 + c

2a

√
A

ag{qin =
h
v

√
Ag
a{

Water Turbine

How does turbine power depend on valve opening?
Water hammer is a phenomenon that can occur in any piping system
where valves are used to control the flow of liquids or steam. Water
hammer is the result of a pressure surge, or high-pressure shockwave that
propagates through a piping system when a fluid in motion is forced to
change direction or stop abruptly.

Equations
Bernoulli

l
dv
dt

+
1
2

(

v2
u − 0

)

− gh +
c
2

v2 = 0

auvu = av

P =
1
2

ρauv3
u =

1
2

ρ a3

a2
u

v3

Add mass balance:

dh
dt

= − a
A

v +
1
A

qin

dv
dt

=
g
{ h− a2 + ca2

u

2{a2
u

v2

P =
1
2

ρ a3

a2
u

v3

Stationary solutions

h =
a2 + ca2

u

2ga2a2
u

q2
in

Assume Perfect Level Control

Assume that the inflow is used to keep the level constant and neglect
friction. The model then becomes.

dδv
dt

= −2gh
{

(1
v

δv − 1
au

δau

)

δP =
3P
v

δv − 2P
au

δau

Transfer function
GδPδau =

P
au

1− 2sT
1 + sT

where
T =

{v
2gh

=
{v
v2

u
=
{
vu

au

a
==

{
v

(au

a

)2

Compressible Fluids Water Hammer

Constitutive equation:
dρ
ρ = −κp

Scaled inertia term
¯vgrad v =

v2
0

x0

�v̄
�x̄

Scaled elastic forces
1
ρ grad p =

1
κρ0x0

�ρ̄
�x̄

Ratio of inertia and elastic forces

M2 =
v2

0 x0κρ0

x0
= κρ0v2

0 =
(v0

c

)2

Compressible Fluids Water Hammer

Mass balance (Continuity Equation)

�v
�t

+ div(ρv) = 0

Navier Stokes

�v
�t

+ (v ·∇)v = F − 1
ρ∇p +

λ + µ
ρ ∇(∇ · v) +

µ
ρ∆v

Constitutive equation
�p
�x

=
1

κρ0

�ρ
�x

Linearization

Neglect inertia and viscous forces and linearize

�ρ
�t

+ ρ0
�v
�x

= 0

�v
�t

+
1

ρ0

�p
�x

= 0

The constitutive equation

�ρ
�x

= −κp

gives

�ρ
�p

=
ρ
�p
�p
�x

Hence

�ρ
�t

+ ρ0
�v
�x

= 0

�v
�t

+
1

κρ2
0

�ρ
�x

Eliminate ρ

�2v
�x2 −

1
κρ0

�2v
�t2 = 0

Wave equation. Propagation ve-
locity.

Water Hammer without Friction
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Water Hammer with Friction Surge Tanks

◮ Use surge tank to avoid pressure transients due to water hammer
◮ Instabilities have been observed
◮ How to avoid them

Modeling

Mass balance

A
dh
dt

= av − auvu

Energy balance. Follow a stream-
line along the tube

{dv
dt

+
c
2

v2 + gh− gh1 = 0

v2
u = 2gh

P =
1
2

ρauv3
u

The model

dh
dt

= −au

A

√
2gh +

a
A

v

dv
dt

=
g
{ (h1 − h)− c

2{v2

P =
1
2

ρauv3
u =

1
2

ρau(2gh)3/2

Replace v2 by vpvp to allow for
bidirectional flow!

Linearization

Steady state solution

h =
a2

a2 + ca2
u

h1

v =

√
a2

u

a2 + ca2

√
2gh1

Linearization

dδh
dt

= −au
√

2gh
A

δh
h

+
a
A

δv

dδv
dt

= −g
{δh− (1 + c)v

{ δv +
g
{δh1

Linearization

dh2

dt
= − a3

A2

√
2gh2 +

a1

A2
v

dv
dt

=
g
{ (h1 − h)− c

2{v2

P =
1
2

ρA2(2gh)3/2

Thoma’s Formula

Introduce a control system that changes au to keep output power constant,
i.e. P0 =

ρ
2

auv3
u

Hence

auvu =
2P0

ρv2
u
=

P0

ρgh

The system is then described by

dh
dt

= − P0

Agρh
+

a
A

v

dv
dt

=
g
{ (h1 − h)− c

2{v2

dδh
dt

=
P0

Agρh2 δh +
a
A

δv

dδv
dt

= −g
{δh− cv

{ δv +
g
{δh1

We have P0
Agρh2 = av

Ah . Hence

dδh
dt

=
av
Ah

δh +
a
A

δv

dδv
dt

= −g
{δh− cv

{ δv +
g
{δh1

Thoma’s Formula, Cont

The linearized equation

dδh
dt

=
av
Ah

δh +
a
A

δv

dδv
dt

= −g
{δh− cv

{ δv +
g
{δh1

Stability conditions

cv
{ >

av
Ah

ag
A{ >

acv2

Ah{

Hence Ach > a{ and
cv2

gh
< 1.
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Many Examples

◮ Incompressible
Chains of Dams
Hydroelectric Power Stations
Sloshing in rockets and milk packages

◮ Compressible
Pressure regulators
Pneumatic Controllers
Gas distribution networks

◮ Mixed systems
Active damping
Vibration isolation
Head Boxes for Paper Machines
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Conclusions

◮ An area where physics is difficult and behavior rich
◮ Essential to understand the fundamentals
◮ Good demonstrations of balance equations and constitutive equations
◮ System theory and physics
◮ Learn differential geometry instead of vector calculus
◮ Many examples
◮ Good libraries missing
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