
Discrete Systems
Karl-Erik Årzén

Material

• The material comes from
• PhD course “Discrete Event Systems”, 1998
• PhD course “Discrete & Hybrid Systems”, 2004
• Lecture on Discrete Event Systems from the Market-Driven Systems course
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DES
Examples

Many of the systems that we deal with are discrete event 
systems or hybrid systems (combinations of discrete event 
systems and continuous systems):

• manufacturing processes

• communication networks

• computers

• transportation systems

• ...



Discrete Production Processes
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DES Academia

Large interest for DES and hybrid systems:

• Conferences, e.g., WODES - IFAC Workshop on Discrete 
Event Systems

• PhD projects at Swedish control departments over 
the years (e.g., Linköping and Chalmers)

Unfortunately, DES spread out in many different courses:

• digital systems, telecommunication systems, automatic 
control, industrial automation, mathematics, ...

Discrete Event Systems - Definitions

Definition:
A Discrete Event System (DES) is a discrete-state, event-driven system, that is, its 
state evolution depends entirely on the occurrence of asynchronous discrete 
events over time.

Sometimes the name Discrete Event Dynamic System (DEDS) is used to 
emphasize the dynamic nature of DES.

7

Discrete Event Systems

1. The state space is a discrete set
2. The state transition mechanism is event-driven
3. The events can be synchronized by a clock, but they do not have to

be (i.e., the system can be asynchronous)
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Continuous-Time Systems
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Discrete-Event Systems
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DES Untimed Models of DES
Only consider the order of the events (state changes) –
untimed, or logical, languages

t
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DES Timed Models of DES
Also consider when the events occur – timed languages

t

1 2 3 4 5X = (s , s , s , s , s , s6)
x(t)

s6
s5
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s3
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s1

t1 t2 t3 t4 t5 t6 t7

e1 e2 e3 e4e5 e6 e7

(s2, 0)(s5, t1)(s4, t2)(s1, t3) ⋅ ⋅ ⋅ or (e1, t1)(e2, t2)(e3, t3)(e4, t4) ⋅ ⋅ ⋅

Examples: Timed automata, Timed Petri nets, ... 15



DES
Stochastic Timed Models of DES

A timed language (set of timed sequences of events) together 
with a probability distribution over this set.

Contain:

• event information (occurrences, orderings)

• timing information (exact times when the event occurs)

• statistical information (probabilities of different sample 
paths)

Examples: Stochastic timed Petri nets, Stochastic timed 
automata, Markov chains, Queuing theory, ...

Uses of Formal Methods

Specification: Define a complete
ans unambiguous syntax and
semantics for describing the desired
and actual system/program
behaviour
Verification: Determine whether a 
given system/program satisfies given 
properties (specifications)
Analysis: Determine the behavioral 
characteristics (input/output state 
traj.) of a given dynamic system 
Synthesis: Given a model of a sys-
temand a specification of the desired 
controlled behaviour, synthesize a 
controller to achieve the specification

spec

specsys
?
=

sys = ?

sys

?

= spec
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DES

Modeling Approaches

Several modeling approaches exist for DES:

Two of the more common approaches are:

• language-based modeling

• algebraic-based modeling

DES
Language-Based Modeling

A DES is modeled as a generator of a formal language.

The event set of the DES is thought of as the alphabet of the 
language.

Event sequences are thought of as words in the language.

An automaton generates a language by manipulating the 
alphabet (events) according to a specified set of rules.

State-transition based approach.



DES

Linköping: (Germundsson, Gunnarsson)

Algebraic-Based Modeling
Modeling using polynomial over finite fields (ändliga kroppar). 

Polynomial model = a set of polynomial equations:

p1(x,u, x+) = 0, ⋅ ⋅ ⋅ , pk(x,u, x+) = 0

where pi are polynomial in the state x, input u, and next state
x+.
Underlying field is {0, 1} -> Boolean polynomials 

Closely related to Boolean algebra

Boolean expression x1 ∧ x2:

1 − (1 − x1)(1 − x2) = x1 + x2 − x1x2 ∈ F2[x1, x2]

DES Generic Setting & Generic Problems

The events Σ are divided in two mutually exclusive groups

Σ = Σc ∪ Σu

Σc : Controllable events. Can be prevented from occurring by 
the controller

Σu : Uncontrollable events. Cannot be prevented. Can, e.g.
represent faults that occur.

Generic Problems:
• Safety (Forbidden state) problem
• Liveness (Goal state) problem

DES The Forbidden State Problem

The safety problem.

A certain set of dangerous states must be avoided.
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DES
The Goal State Problem

The liveness problem.

Find a controller that ensures that the system reaches a set
of goal states ( + in minimum time ) ( + for all possible initial
states)

Idea:

• avoid going to states from which an uncontrollable event 
may take you into a state from which the goal state cannot 
be reached.

Boolean Logic

How do we control a machine?

Automation of the discrete operations (on-off) is largely a matter
of a series of carefully timed on-off steps. The equipment
performing the operations operates in an on-off manner.

Discrete signals
• Control parameters: true or false
• Actuators: on or off

Interlocks (”förreglingar”)
• Output = function(input)
• Boolean algebra

23

George Boole (1815-1864)
Boole approached logic in a new 

way reducing it to a simple 
algebra, incorporating logic
into mathematics. 

He also worked on differential 
equations, the calculus of finite 
differences and general 
methods in probability.

An investigation into the Laws of 
Thought, on Which are 
founded the Mathematical
Theories of Logic and 
Probabilities (1854)

24



Logic:
Operations and symbols
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Logic: Rules

Boolean Algebra:

Logical Rules
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Example:   1 + 𝑎𝑎 = 1 and  0 + 𝑎𝑎 = 𝑎𝑎
Example:   𝑎𝑎 + �𝑎𝑎 = 1 and  𝑎𝑎 � �𝑎𝑎 = 0
Example:   𝑎𝑎 + 𝑎𝑎 = 𝑎𝑎 and  𝑎𝑎 � 𝑎𝑎 = 𝑎𝑎

Logics: Example

Discrete logics can also be used for other types of applications, 
e.g., alarms.

Alarm for a batch reactor:
Raise an alarm if the temperature in 
the tank is too high, T,  and the cooling
is closed, not-Q, or if the temperature
is high and the inlet valve is open, V1.  

Truth table:

Logic (Disjunctive normal form):
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𝑦𝑦 = 𝑇𝑇 �𝑄𝑄 �𝑉𝑉 + 𝑇𝑇 �𝑄𝑄𝑉𝑉 + 𝑇𝑇𝑄𝑄𝑉𝑉
𝑦𝑦 = 𝑇𝑇 �𝑄𝑄 �𝑉𝑉 + 𝑉𝑉 + 𝑇𝑇𝑄𝑄𝑉𝑉

𝑦𝑦 = 𝑇𝑇 �𝑄𝑄 + 𝑇𝑇𝑄𝑄𝑉𝑉
𝑦𝑦 = 𝑇𝑇( �𝑄𝑄 + 𝑄𝑄𝑉𝑉)

Logic nets



Automata

Automata Models

• Automata

• Regular expressions & languages

• Other language classes

Lots of definitions – not particularly difficult

1

Objectives
Assume that a discrete event system is described by an 
automaton.
Given an event sequence, we want to determine if each
admissible sequence (trajectory) has some desired property.
Typical properties:
• stability (e.g., state convergence)
• correct use of resources (e.g., mutual exclusion)
• correct event ordering (e.g., database consistency)
• desirable dynamic behavior (e.g., no deadlocks)
• ...

In a control context, one asks if it is possible modify (by a
control action) the set of admissible trajectories so that each 
trajectory has the desired property.
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Definitions

• Σ : set of events, “alphabet”

• A string (trace, word) is a finite sequence of events from Σ.

• |s| : length of a string

• ε : empty string

• s1 concatenated with s2 => s1s2



DES

• Σ∗ : Kleene closure = the set of all finite strings of ele-
ments of Σ

Example:

Σ = {a, b} => Σ∗ = {ε , a, b, aa, ab, ba, bb, aaa, ⋅ ⋅ ⋅ }

• A language L = a subset of Σ∗

Example: 0 , Σ, Σ∗

DES

• 𝑠𝑠′ 𝑖𝑖𝑠𝑠 a prefix of s if 𝑠𝑠 ′𝑡𝑡= s with 𝑠𝑠 , 𝑠𝑠 ′ , 𝑡𝑡= Σ∗ (Note: ε and s
are prefixes of s)

• Languages are sets:

– union
– intersection
– complement
– difference
– concatenation : Let L1, L2 ⊆ Σ∗, then

L1 L2 = {s ∈ Σ∗ : (s = s1s2) ∧(s1 ∈ L1) ∧(s2 ∈ L2)}

DES

• Prefix closure: The prefix-closure L̄ of L is the language 
consisting of all the prefixes of all strings in L.

Example: If L = {abc, cde} then
L̄ = {ε , a, ab, abc, c, cd, cde}

In general, L ⊆ L̄. L is prefix-closed if L = L̄.

DES
Regular Expressions

A compact way of defining complex languages with a possibly 
infinite number of words.

1. ⊘ is a regular expression denoting the empty set. ε is a 
regular expression denoting the set {ε } , and e is a regular 
expression denoting the set {e } for all e ∈ Σ.

2. If r and s are regular expressions, then rs, (r + s), r∗, and
s∗ are regular expressions.

3. There are no other regular expressions than those con-
structed by applying rules 1 and 2 a finite number of times.



DES
Example: Let Σ = {α , β,γ } be an alphabet. The regular 
expression (α + β )γ ∗ denotes the language

L = {α , β,αγ , βγ ,αγ γ , βγ γ ,αγγγ , βγγγ , ⋅ ⋅ ⋅ }

Example: The regular expression (αβ )∗ + γ denotes the 
language

L = {ε ,γ ,αβ ,αβαβ ,αβα βαβ , ⋅ ⋅ ⋅ }

• Any language that can be denoted by a regular expression 
is a regular language.

DES Automata and Regular Expressions

Kleene’s Theorem:
Regular expressions and finite-state automata are equivalent, 
in the sense that there always exists a finite-state automaton 
that marks a given regular language, and, given a finite-state 
automaton, the language that it generates can be denoted by a 
regular expression.

Regular expression (α + β )∗α

L = {α ,αα , βα ,ααα ,αβα , βαα , ββα , ⋅ ⋅ ⋅ } α
αβ

β

DES
Automata

A Deterministic Automaton, denoted G is a 6-tuple

G = (X , Σ, f , ΣG , x0, Xm )

where

• X is the set of states

DES
Automata

A Deterministic Automaton, denoted G is a 6-tuple

G = (X , Σ, f , ΣG , x0, Xm )

where

• X is the set of states
• Σ is the set of events associated with the transitions in G



DES
Automata

A Deterministic Automaton, denoted G is a 6-tuple

G = (X , Σ, f , ΣG , x0, Xm )

where

• X is the set of states
• Σ is the set of events associated with the transitions in G
• f : X x Σ → X is the partial transition function, f (x, e) = x1
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• ΣG (x) is the active event function of G at x, i.e., the set of 
all events e for which f (x, e) is defined
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DES
Automata

A Deterministic Automaton, denoted G is a 6-tuple

G = (X , Σ, f , ΣG , x0, Xm )

where

• X is the set of states
• Σ is the set of events associated with the transitions in G
• f : X x Σ → X is the partial transition function, f (x, e) = x1

• ΣG (x) is the active event function of G at x, i.e., the set of
all events e for which f (x, e) is defined

• x0 is the initial state
• Xm ⊆ X is the set of marked states of X , completion

states



DES

• Also called

– Generator
– State Machine

• X finite => deterministic finite automaton (DFA)

Generated and Marked Languages

Think of G as a directed graph and consider 1) all paths that 
can be followed from the initial state and 2) among these paths 
all the paths that end in a marked state.

• The language generated by G is

L(G) = {s ∈ Σ∗ : f (x0, s) is defined}

• The language marked by G is

Lm(G) = {s ∈ L(G) : f (x0, s) ∈ Xm }

DES

• Two automata are equivalent if they generate and mark 
the same languages.

• Blocking – the automaton reaches a state x where
ΣG (x) = ⊘ but x ∈/ Xm. Commonly called a deadlock.

• Another cause of blocking is livelock. G enters a cycle of 
unmarked states with no transitions leading out.

DES
• Regular languages (denoted R ) are of practical interest

– finite memory
– Computer Science
– Compilers/Parsers

• Not all languages are regular, e.g., anbn : n ≥ 0.



DES Automata as String Acceptors

So far, an automaton has been viewed as a generator of 
events, i.e. the events can be seen as outputs that are gen-
erated by a state-transition.

Alternatively one can view an automaton as an acceptor 
(recognizer) of strings (words) from some language, i.e., the 
events can be viewed as inputs that trigger state transitions.

The latter view is often used in computer science.

Automata Composition

Automata can be composed in different ways

• Product composition

• Parallel composition

• Shuffle composition

DES

Example: Product Composition

G1 G2 G1 x G2

x2 x3 x5 x6

(x1 , x4)

(x3 , x5)

e1

x1

e2 e2e2

x4

e3

Automata Composition

Automata can be composed in different ways

• Product composition

• Parallel composition

• Shuffle composition



Example: Parallel Composition
G2G1

x2 x3 x5 x6

1 4(x , x )

(x2 , x4)

(x1 , x6)

(x2 , x6)
(x3 , x5)

e1e1

e1

x1

e2

e2

e2

x4

e3

e3

𝐺𝐺1 ∥ 𝐺𝐺2

A common event can only be 
executed if the two automata 
both execute it simultaneously

The two automata are 
“synchronized” on the common 
events

The other events are not 
subject to such constraints and 
can be executed whenever 
possible.

𝑒𝑒3

Automata Composition

Automata can be composed in different ways

• Product composition

• Parallel composition

• Shuffle composition

G2G1

Shuffle G1∥G2

x2 x3 x5 x6

(x1 , x4)

(x3 , x4)

(x3 , x5)

(x2 , x6)
(x3 , x6)

e1

e1

e1

x1 
e2

e1

(x1 , x6)

e2

(x1 , x5)

e2e3

e2
(x2 , x4)

e3

e3

(x2 , x5)

e

e3

x4 

e4

e4

e4
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Example: Shuffle Composition

Shuffle composition: If Σ ∩ Σ2 = ⊘,
then there are no  synchronized
transitions and G1∥G2 is the
concurrent behavior of G1 and G2.

Applications of Finite Automata

• Modeling of DES, often in the context of Supervisory 
Control Theory

• Lexical analyzers

– lexical-analyzer generators take as input regular 
expressions describing some tokens (e.g., C
identifiers) and produces a finite automaton that 
recognizes any token

– used as a module in a compiler

• Text editors

– substitution of strings matching a regular expression



Other automata

• A Regular Language can be recognized by a Finite Automaton
• A Context-Free Language can be recognized by a Push-Down Automaton
• Push-down automaton: ≈

• Finite automaton +
• External memory consisting of a LIFO stack

• Context-free Languages and Grammars are of great practical importance
• Defining programming languages (Backus-Naur form)
• Formalizing the notion of parsing
• …..

• Can describe
• Arithmetic expressions with arbitrary nesting of balanced parenthesis
• Block structures in programming languages

Other Classes of Languages

Chomsky’s language hierarchy

Type Language Grammar Machine
3 Regular Language Regular Grammar Finite Automaton
2 Context-Free Language Context-Free Grammar Push-Down Automaton
1 Context-Sensitive Language Context-Sensitive Grammar Linear-bounded Automaton
0 Recursively Enumerable Language Unrestricted Grammar Turing machine

DES
Litterature

A large number of textbooks on automata theory are available.

Most of them are geared towards computer science applica-
tions of automata.

• Hopcroft, J.E. and J. D. Ullman (1979): Introduction to 
Automata Theory, Languages and Computation,
Addison- Wesley

Geared towards control and Supervisory Control Theory

• Cassandras, G. C. and S. Lafortune (2010): 
Introduction to Discrete Event Systems, Springer-Verlag

Supervisory Control Theory (SCT)

• Ramadge–Wonham framework
• Peter J. Ramadge & Murray Wonham, Univ of Toronto, 1982

• Method for automatically synthesizing supervisors that restrict the behavior of a 
plant such that as much as possible of the given specifications are fulfilled. 

• The plant is assumed to spontaneously generate events. 
• The events are either controllable or uncontrollable. 
• The supervisor observes the string of events generated by the plant and might 

prevent the plant from generating a subset of the controllable events. However, 
the supervisor has no means of forcing the plant to generate an event. 

• In its original formulation the SCT considered the plant and the specification to be 
modeled by formal languages, not necessarily regular languages generated by 
finite automata as was done in most subsequent work. 



Supervisory Control Theory 
(SCT)

• In Sweden
• Reglerteknik @ Chalmers
• Bengt Lennartsson, Martin Fabian, Knut Åkesson
• Supremica toolbox

• Wonham, M. and K. Cai: “Supervisory Control of 
Discrete-Event Systems”, Springer Verlag

DES State automata with output

State automata can also model discrete event systems with 
output.

The marked state set is usually omitted.

The definition of the automaton is expanded to also include

• Y – the set of output events (output set)
• the output function g : X x Σ → Y

{ ⋅ ⋅ ⋅ , e, ⋅ ⋅ ⋅ }
𝑥𝑥′ =f (x, e)

y = g(x, e) e
y

DES Mealy machines

A synchronized (clocked) network is known as a Mealy-
machine.

x(t + 1) = f (x(t), e(t))
y(t) = g(x(t), e(t))

e(t)

x(t + 1) = f (x(t), e(t))x(t)

y(t) = g(x(t), e(t))

Delay

DES Moore machines
The output only depends on the current state (no direct term).

x(t + 1) = f (x(t), e(t))
y(t) = g(x(t))

e(t)

x(t + 1) = f (x(t), e(t))

x(t)

y(t) = g(x(t))
Delay



DES

• Every Mealy machine can be simulated by a Moore 
machine, but the Moore machine may require more states

• It is possible to convert a Moore machine to a Mealy 
machine

• It is possible to convert a Mealy machine to a Moore 
machine

DES
Mealy => Moore

e /y0 0
e0/y0 e0/y0

e0/y0

e1/y0

e1/y0

e /y1 1

x0

e1/y0

x1

x2x3

x0/y0 x1/y0

x2/y0

x4/y0e0

e0

x3/y1

e0

e0 e0

e0

e1
e1

e1

e1

Timed Automata

DES

6
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Timed Automata

R. Alur and D.L. Dill, “A Theory of Timed Automata”, Theoreti-
cal Computer Science, 126: 183–235, 1994

The framework is most often used in the computer science 
area for program verification, model checking, etc.

The basis for much of the discrete-based work on hybrid 
systems, e.g., linear hybrid automata, hybrid automata,



DES

6
9

Timed Automata

Deterministic finite automaton augmented with a finite set of 
(real-valued) clocks.

The states of the automaton are called vertices
(locations) and the transitions (arcs, edges) are called
switches.

Switches are instantaneous. 

Time can elapse in locations.

A clock can be reset to zero simultaneously with any switch.

The reading of a clock equals the time elapsed since the last 
time it was reset (time is global).

DES
With each switch one may associate a clock constraint, and 
require that the switch may occur only if the current values of 
the clocks satisfy this constraint.

With each location we associate a clock constraint called its 
invariant, and require that time can elapse in a location only as 
long as its invariant stays true.

s

7
0

a, x := 0

x ≥ 1, b

sI

x ≤ 2

DES
Multiple Clocks

Multiple clocks allow multiple concurrent delays.

s0

7
1

s3
a, x := 0 b, y := 0

c
cs2

x < 1
s1

x < 1

d, y > 2

DES

7
2

Definition

A timed automaton A is a tuple 〈L, L0, Σ, X , I, E〉, where

• L is a finite set of locations

• L0 ⊆ L is a set of initial locations
• Σ is a finite set of labels (events)
• X is a finite set of clocks
• I is a mapping that labels each location s ∈ L with some 

clock constraint in Φ( X )

• E ⊆ L x Σ x 2X x Φ( X ) x L is the set of switches. A switch
〈s, a, λ,φ , sI〉 represents a transition from s to sI on symbol
a. φ is a clock constraint over X that specifies when the
switch is enabled, and the set λ ⊆ X gives the clocks to
be reset with this switch.



System Description 
Timed Automata:Α

Specification:φ
Requirements Α Satisfies φ

Yes!

No!

Model Checking

• Requirements often 
specified using some 
variant of temporal 
logic

• Linear Temporal Logic
• Signal Temporal Logic
• ……

Gautham Nayak Seetanadi’s PhD thesis

State Machine Extensions
1- Statecharts

DES Extended State Machines

• Statecharts
• Grafcet
• JGrafchart

1

DES

7
6

Statecharts

Statecharts: A Visual Formalism for
Complex Systems, David Harel, The
Weitzmann Institute, Israel, Science of
Computer Programming 8 (1987)

Currently very popular

• Stateflow toolbox for Matlab
• UML tools (Rational Rose, Rational 

Rhapsody, MS Visio, ……)
• StateGraph in Modelica



DES

7
7

Statecharts

Statecharts =

• state-transition graphs +

• depth (hierarchical states) +

• orthogonality (concurrency, parallel states) +

• broadcast communication (communication between 
concurrent components)

DES
Syntax

XOR Superstate

D

A

B
c (P)

C

a / e

b

d

Input event
Output event

State
Condition 
"guard"

7
8

DES
Syntax

Default state (initial state)

D

A

B
c (P)

C

a / e

b

d

7
9

DES
Syntax

History arrows:

Alarm

Off

On

d d

H

a

8
0

On event ‘a’ the last visited state within D becomes active.



DES Syntax
AND Superstates:

Y

A D

B

C

E

G

Fa b (in G) c
d

a

g

Y is the orthogonal product of A and D
When in state (B,F) and event a occurs, the system transfers
simultaneously to (C,G).
Compare with automata composition.

DES Syntax
Interfaces for AND Superstates:

A D

B

C

E

G

F

J H

K L

H

ν δ η(in B)

εβθαω

DES

• δ exit from J ⇒ (B, E)

• α exit from K ⇒ (C, F)

• ν exit from J ⇒ (B, F)

• β exit from L ⇒ (C,most recently visited state in D)

• ω exit from (B, G) ⇒ K

• η exit from (B, F) ⇒ H

• θ exit from (C, D) ⇒ K

• ε exit from (A, D) ⇒ L

DES
Statecharts Semantics

In Harel’s first paper the formal semantics was not defined, i.e. 
Statecharts was an unofficial language.

In “The STATEMATE Semantics of Statecharts”, Harel and 
Naamad, ACM Trans. Soft. Eng. Method. 5:4, (1996)” Harel 
defines “his” semantics.

By then around 20 competing semantics were around.



State Machine Extensions
2 - Grafcet

DES Grafcet

Defined in France 1977 by AFCET (Association Francaise pour 
la Cybernétique Economique et Technique) as a:

• formal specification and realization method for logical 
controllers

Standardized in IEC 848, IEC 61131-3 (Sequential Function 
Charts (SFC))

Has its roots in Petri nets and automata theory

DES
Basic elements

Steps:

• active or inactive

S1

S1.x = 1 when active

S1.T = number of time units since the 
step last became active

Initial step

Transitions ("övergång"):

condition true and/or event occurred + 
previous step active

DES Control structures
Alternative paths:
• branches

a a

mutually exclusive

• repetition



DES
Parallel paths:

join 
(synchronization)

split

DES Simplified Evolution Rules

1. The initial step(s) is active when the function chart is 
initiated.

2. A transition is fireable if:
• all steps preceding the the transition are active (en-

abled).
• the receptivity (transition condition and/or event) of the 

transition is true
A fireable transition must be fired.

3. All the steps preceding the transition are deactivated and
all the steps following the transition are activated when a
transition is fired

20

DES

a = 1 or 0 a = 0

a = 1

a) Not enabled b) Enabled but not firable

c) Firable d) After the change from c)

DES
Actions

Action block

Action types:

• standard action (level action)

S1 V

S1

V

S1 V

V

V

S1

S2
S2



DES

• stored action (impulse action) 
logical assignment

S1

S2

1 Unstable situation
(stored actions performed)

S V = 1

S V = 0

DES
S1

t

V
Standard 
action

S1

t

V

Conditional 
action S1

t

condition

S1

cond.

t

V

S1

S2

t1

t2

S1

t1

V

S2

t2

Stored 
action

C V

S V = 1

S V = 0

DES

S1

t

S1

t

V

S1

t

S1

t

V

Time−limited 
action L V 8 s.

8

Time−delayed 
action D V 5s.

5

Hierarchy with Macro Steps



Grafcet editors
• Several Grafcet editors available
• Generate PLC code, C or even Java.
• In industry, Grafcet is known as Sequential Function Charts (SFC)

• Slightly different semantics

Reference

• René David & Hassane Alla: “Petri Nets
& Grafcet: Tools for modelling discrete 
event systems”, Addison Wesley

• GIPSA-Lab, Grenoble

State Machine Extensions
3- JGrafchart

JGrafchart
• Graphical editor + runtime system (interprets the function charts) for 

extended Grafcet
• Combines concepts from ordinary programming languages with

Grafcet
• Features

• Exception handling
• Procedures
• Concurrent threads
• …..

• Used in Lab 2 of Real-Time Systems course



Background
• IT4 (NUTEK) project 1988 – 1991: “Knowledge-

Based Real-Time Control Systems”
• ABB, Alfa-Laval Automation, Telelogic

• Digital twin technology
• Multiple digital models and views of the plant
• E.g., R. Rengaswamy, Dinkar Mylaraswamy, K.-E. 

Årzén, V. Venkatasubramanian: (2001) A 
comparison of model-based and neural network-
based diagnostic methods, Engineering 
Applications of Artificial Intelligence, Volume 14, 
Issue 6,

• Used the Steritherm process from Alfa-Laval as 
test case

• UHT treatment of dairy products
• Sequence control important, i.e., Grafcet

• G2 from Gensym Corp
• Real-time expert system framework
• Ideally suited for implementing graphical 

languages
• Implemented Grafchart in G2

Background

• 1996-1998
• Migrated Grafchart to Java
• JGo Graphics library

• JGrafchart
• PhD Theses by Charlotta Johnsson, Rasmus Olsson and Alfred Theorin
• <Demo>

Petri Nets

DES

1
0
5

Petri Nets

C.A Petri, TU Darmstadt, 1962

A mathematical and graphical modeling method. 

Describe systems that are:

• concurrent

• asynchronous

• distributed

• nondeterministic



DES

1
0
6

Petri Nets

Can be used at all stages of system development:

• modeling

• analysis

• simulation/visualization (“playing the token game”)

• synthesis (Petri net versions of SCT)

• implementation (Grafcet)

DES

1
0
7

Application areas

• communication protocols

• distributed systems

• distributed database systems

• flexible manufacturing systems

• logical controller design

• multiprocessor memory systems

• data-flow computing systems

• fault tolerant systems

• ...

DES

1
0
8

Introduction

A Petri net is a directed bipartite graph consisting of places P
and transitions T.

Places are represented by circles.

Transitions are represented by bars (or rectangles) 

Places and transitions are connected by arcs.

In a marked Petri net each place contains a cardinal (zero or 
positive integer) number of tokens of marks.

DES Firing rules

1. A transition t is enabled if each input place contains at
least one token.

2. An enabled transition may or may not fire.
3. Firing an enabled transition t means removing one token

from each input place of t and adding one token to each
output place of t.

The firing of a transition has zero duration.

The firing of a sink transition (only input places) only consumes 
tokens.

The firing of a source transition (only output places) only 
produces tokens.



DES

P3 P4

P5

P1

T1

P2

T2

P6

T3 T4

T5

T6

P7

DES

P3 P4

P5

P1

T1

P2

T2

P6

T3 T4

T5

T6

P7

DES

P3 P4

P5

P1

T1

P2

T2

P6

T3 T4

T5

T6

P7

DES

P3 P4

P5

P1

T1

P2

T2

P6

T3 T4

T5

T6

P7



DES

P3 P4

P5

P1

T1

P2

T2

P6

T3 T4

T5

T6

P7

DES

P3 P4

P5

P1

T1

P2

T2

P6

T3 T4

T5

T6

P7

DES
Characteristics

Concurrency

Conflict (decision, 
choice)

and−divergence

and−convergence

or−divergence
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DES

State

The state of a marked Petri net is its marking

M = [m(p1),m(p2), ⋅ ⋅ ⋅ , m(pn)].

The marking can be finite or infinite.

A Petri net can model an infinite system with a finite number of 
places.



DES
Modeling with Petri Nets

Tradeoff between
Modeling power  Formal Analysis Power

Petri net specializations:

• restrictions on the allowed net structures
• more powerful analytical results and/or simpler algorithms

Petri net abbreviations:

• classes of Petri nets which always can be transformed to 
ordinary Petri nets

• PN properties are maintained
• “syntactic sugar”

Petri net extensions (generalizations):

• classes of Petri nets with additional transition firing rules
• cannot be transformed back to ordinary PNs
• PN properties are not always maintained
• often Turing machine equivalent

Non-autonomous Petri nets:

• transition firing synchronized and/or timed
• Synchronized Petri Nets

– events associated with transitions
• Timed Petri Nets

– time delays associated with places or transitions
• Interpreted Petri Nets

– Synchronized and timed PN + actions
– Grafcet

• Controlled Petri Nets
– transitions can be enabled and disabled by special control

places
– Supervisory Control Theory for PN

DES
PN Specializations

State Graphs (state machines):

• an unmarked PN is a state graph iff every transition has 
one input place and one output place

• a marked state graph is equivalent to a automaton state 
machine iff it only contains one token



DES PN Specializations

Other specializations:

• event graphs

• conflict-free PNs, free-choice PNs, simple PNs,

• pure PNs (have no self-loops)

DES PN abbreviations

• Generalized Petri nets
• Finite Capacity Petri nets
• High-Level Petri nets

DES Generalized Petri Nets

P1 P2

2

T1
2

P3

Firing rules:
1. A transition t is enabled if each input place p of t contains 

at least w(p,t) tokens
2. Firing a transition t means removing w(p,t) tokens from 

each input place p and adding w(t,q) tokens to each 
output place q.

DES Generalized Petri Nets

P1 P2

2

T1
2

P3

Firing rules:
1. A transition t is enabled if each input place p of t contains 

at least w(p,t) tokens
2. Firing a transition t means removing w(p,t) tokens from 

each input place p and adding w(t,q) tokens to each 
output place q.



DES Finite-Capacity PN

Capacities (strictly positive integers) associated with
places.

Transition firing rule:
• For a transition t to be enabled it is additionally required 

that the number of tokens in each output place p of t will 
not exceed its capacity K (p) after firing t.

DES

24

High-Level (Coloured) Petri Nets

Abstract data types (or objects) + Petri nets 

A token has a type

DES Petri Net extensions
• FIFO nets

– each place represents a FIFO queue where the tokens 
are queued

• Inhibitor arc Petri nets (zero-test PNs)
– an inhibitor arc connects a place to a transition

– the inhibitor arc disables the transition when the place 
contains tokens and enables the transition when the 
place is empty

• Priority Petri nets
– PN + a partial order relation on the transitions

DES
Petri net properties

What can we do with the nets?

What properties and problems can be analyzed? 

Properties can be divided into

• structural properties – marking independent

• behavioral properties – marking dependent



DES
Reachability

A marking M is reachable from a marking M0 if there exists 
a sequence of firings that transforms M0 to M . Denoted 
M0[T1T2 ⋅ ⋅ ⋅ Tn > M

DES Properties

Boundedness:

• A place pi is bounded for an initial marking M0 if for all
markings reachable from M0, m(pi) ≤ k (positive integer)

DES Properties

Liveness:
• A transition ti is live for an initial marking M0 if for every 

reachable marking Mi ∈∗ M0, a firing sequence S from Mi 
exists, which contains transition ti.

• A PN is live for M0 if all its transitions are live for M0.
• Interpretation: No matter what marking has been reached 

from M0, it is possible to ultimately fire any transition of the 
net.

30

DES Analysis Methods

How determine if a PN has a certain property?

Three types of methods:

• reachability (coverability) methods

• exhaustive enumeration of all possible markings.

• linear algebra methods

• describe the dynamic behaviour as matrix equations

• reduction methods

• transformation rules that reduce the net to a simpler net while 
preserving the properties of interest



Reachability Methods DES Analysis Methods

How determine if a PN has a certain property?

Three types of methods:

• reachability (coverability) methods

• exhaustive enumeration of all possible markings.

• linear algebra methods

• describe the dynamic behaviour as matrix equations

• reduction methods

• transformation rules that reduce the net to a simpler net while 
preserving the properties of interest

Linear Algebra Methods

• Methods exist for calculating
different invariants of the net

• P-invariants
• T-invariants

DES Analysis Methods

How determine if a PN has a certain property?

Three types of methods:

• reachability (coverability) methods

• exhaustive enumeration of all possible markings.

• linear algebra methods

• describe the dynamic behaviour as matrix equations

• reduction methods

• transformation rules that reduce the net to a simpler net while 
preserving the properties of interest



Reduction Methods
• Semi-automatic methods

DES Nonautonomous PNs

• Synchronized Petri Nets
– events associated with transitions

• Timed Petri Nets
– time delays associated with places or transitions

• Interpreted Petri Nets
– Synchronized and timed PN +
– data processing part for computation of variables 

(actions) and transition conditions
– very similar to Grafcet

• Controlled Petri Nets
– transitions can be enabled and disabled by special 

control places
– Supervisory Control Theory for PN 56

Industry

Electro-Mechanical Relays
The basic device invented for control of discrete production processes

is the automatic switch and interconnected sequences of automatic
switches.

Today, the automatic switches are replaced by computer programs. 
This technological innovation took place in the 1960s, since then
discrete systems have become more automated.
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Control Relay – Not Activated

142

Control Relay - Activated
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Logic Control

144

AND

OR

Single Cylinder Stroke #1
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Single Cylinder Stroke #2
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Single Cylinder Stroke #3

147

Single Cylinder Stroke #4
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Single Cylinder Stroke #5
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Single Cylinder Stroke #6
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Single Cylinder Stroke #7
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Single Cylinder Stroke #8
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Single Cylinder Stroke #9
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Single Cylinder Stroke #10
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Batch Reactor Example revisited
Using ladder diagrams for simple interlocks

Alarm for a batchreactor:
Give an alarm if the temperature in the 
tank is too high, T, and the cooling is 
closed, not-Q, or if the temperature is 
too high, T,  and the inlet valve is open, 
V1.  

Logic:

T

Q

VQ

Alarm (y)

155

𝑦𝑦 = 𝑇𝑇 �𝑄𝑄 �𝑉𝑉 + 𝑇𝑇 �𝑄𝑄𝑉𝑉 + 𝑇𝑇𝑄𝑄𝑉𝑉
𝑦𝑦 = 𝑇𝑇 �𝑄𝑄 �𝑉𝑉 + 𝑉𝑉 + 𝑇𝑇𝑄𝑄𝑉𝑉

𝑦𝑦 = 𝑇𝑇 �𝑄𝑄 + 𝑇𝑇𝑄𝑄𝑉𝑉
𝑦𝑦 = 𝑇𝑇( �𝑄𝑄 + 𝑄𝑄𝑉𝑉)

Example: Clamp/Work Layout
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Relay Diagram (Ladder diagram) with counter

Each relay represents a state variable

Very user unfriendly way of programming logic

Still very common in discrete production processes
E.g. Tetra Pak

IEC 61131
• IEC standard for programmable controllers (PLCs)
• Several parts, e.g.

• 61131-3 Programming languages
• 61131-5 Communications
• 61131-6 Functional safety

• Adopted by essentially all PLC vendors
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IEC 61131-3

• Defines 5 PLC programming languages
• Function block diagrams (FBD)
• Ladder Diagrams (LD)
• Structrured text (ST)
• Instruction list (IL)
• Sequential function chart (SFC), i.e. Grafcet

+ how they may interact
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Function block diagrams (FBD)

• Graphical data-flow
language

• Interconnects
function blocks

• Cp. Simulink

159

Ladder Diagrams

• Ladder logic extended with
function blocks

160

Structured Text

• Block-structured high-level
programming language
inspired by Pascal or C

• Iteration loops (WHILE, 
REPEAT)

• Conditional branches (IF, 
CASE)

• Functions

161



Instruction List 

• Low-level textual assembly-like
language

• Stack-machine oriented

162

Sequential Function Charts

• Grafcet

163


