
Discrete Systems
Karl-Erik Årzén

Material

• The material comes from
• PhD course “Discrete Event Systems”, 1998
• PhD course “Discrete & Hybrid Systems”, 2004
• Lecture on Discrete Event Systems from the Market-Driven Systems course
• Lecture on Discrete Event Systems from Real-Time Systems Course

• Disclaimer:
• A lot of material comes from old pdf slides for which I do not have the source any

more
• Exported to PowerPoint slides
• Some notation might have been lost on the way

• And even more have been lost in my head

Outline
• Introduction
• Boolean Logic
• Automata
• Timed Automata
• Extended State Machine Formalisms

• Statecharts
• Grafcet
• JGrafchart

• Petri Nets
• Industry

• IEC 61131-3

DES
Examples

Many of the systems that we deal with are discrete event
systems or hybrid systems (combinations of discrete event
systems and continuous systems):

• manufacturing processes

• communication networks

• computers

• transportation systems

• ...

Discrete Production Processes

5

DES Academia

Large interest for DES and hybrid systems:

• Conferences, e.g., WODES - IFAC Workshop on Discrete
Event Systems

• PhD projects at Swedish control departments over
the years (e.g., Linköping and Chalmers)

Unfortunately, DES spread out in many different courses:

• digital systems, telecommunication systems, automatic
control, industrial automation, mathematics, ...

Discrete Event Systems - Definitions

Definition:
A Discrete Event System (DES) is a discrete-state, event-driven system, that is, its
state evolution depends entirely on the occurrence of asynchronous discrete
events over time.

Sometimes the name Discrete Event Dynamic System (DEDS) is used to
emphasize the dynamic nature of DES.

7

Discrete Event Systems

1. The state space is a discrete set
2. The state transition mechanism is event-driven
3. The events can be synchronized by a clock, but they do not have to

be (i.e., the system can be asynchronous)

8

Continuous-Time Systems

9

Discrete-Event Systems

10

DES Untimed Models of DES
Only consider the order of the events (state changes) –
untimed, or logical, languages

t

1 2 3 4 5X = (s , s , s , s , s , s6)
x(t)

s6
s5
s4
s3
s2

s1

t1 t2 t3 t4 t5 t6 t7

e1 e2 e3 e4e5 e6 e7

(e1, e2, e3, e4, e5, e6, e7) or (s5, s4, s1, s3, s4, s6, s1) 14

DES Timed Models of DES
Also consider when the events occur – timed languages

t

1 2 3 4 5X = (s , s , s , s , s , s6)
x(t)

s6
s5
s4
s3
s2

s1

t1 t2 t3 t4 t5 t6 t7

e1 e2 e3 e4e5 e6 e7

(s2, 0)(s5, t1)(s4, t2)(s1, t3) ⋅ ⋅ ⋅ or (e1, t1)(e2, t2)(e3, t3)(e4, t4) ⋅ ⋅ ⋅

Examples: Timed automata, Timed Petri nets, ... 15

DES
Stochastic Timed Models of DES

A timed language (set of timed sequences of events) together
with a probability distribution over this set.

Contain:

• event information (occurrences, orderings)

• timing information (exact times when the event occurs)

• statistical information (probabilities of different sample
paths)

Examples: Stochastic timed Petri nets, Stochastic timed
automata, Markov chains, Queuing theory, ...

Uses of Formal Methods

Specification: Define a complete
ans unambiguous syntax and
semantics for describing the desired
and actual system/program
behaviour
Verification: Determine whether a
given system/program satisfies given
properties (specifications)
Analysis: Determine the behavioral
characteristics (input/output state
traj.) of a given dynamic system
Synthesis: Given a model of a sys-
temand a specification of the desired
controlled behaviour, synthesize a
controller to achieve the specification

spec

specsys
?
=

sys = ?

sys

?

= spec

2

DES

Modeling Approaches

Several modeling approaches exist for DES:

Two of the more common approaches are:

• language-based modeling

• algebraic-based modeling

DES
Language-Based Modeling

A DES is modeled as a generator of a formal language.

The event set of the DES is thought of as the alphabet of the
language.

Event sequences are thought of as words in the language.

An automaton generates a language by manipulating the
alphabet (events) according to a specified set of rules.

State-transition based approach.

DES

Linköping: (Germundsson, Gunnarsson)

Algebraic-Based Modeling
Modeling using polynomial over finite fields (ändliga kroppar).

Polynomial model = a set of polynomial equations:

p1(x,u, x+) = 0, ⋅ ⋅ ⋅ , pk(x,u, x+) = 0

where pi are polynomial in the state x, input u, and next state
x+.
Underlying field is {0, 1} -> Boolean polynomials

Closely related to Boolean algebra

Boolean expression x1 ∧ x2:

1 − (1 − x1)(1 − x2) = x1 + x2 − x1x2 ∈ F2[x1, x2]

DES Generic Setting & Generic Problems

The events Σ are divided in two mutually exclusive groups

Σ = Σc ∪ Σu

Σc : Controllable events. Can be prevented from occurring by
the controller

Σu : Uncontrollable events. Cannot be prevented. Can, e.g.
represent faults that occur.

Generic Problems:
• Safety (Forbidden state) problem
• Liveness (Goal state) problem

DES The Forbidden State Problem

The safety problem.

A certain set of dangerous states must be avoided.

Forbidden
state

ec

Initial
state

ec
ec

ec

ec
ec

ec

ec

ec

eu

eu

eu

DES The Forbidden State Problem

The safety problem.

A certain set of dangerous states must be avoided.

Forbidden
state

ec

Initial
state

ec
ec

ec

ec
ec

ec

ec

ec

eu

eu

eu

DES
The Goal State Problem

The liveness problem.

Find a controller that ensures that the system reaches a set
of goal states (+ in minimum time) (+ for all possible initial
states)

Idea:

• avoid going to states from which an uncontrollable event
may take you into a state from which the goal state cannot
be reached.

Boolean Logic

How do we control a machine?

Automation of the discrete operations (on-off) is largely a matter
of a series of carefully timed on-off steps. The equipment
performing the operations operates in an on-off manner.

Discrete signals
• Control parameters: true or false
• Actuators: on or off

Interlocks (”förreglingar”)
• Output = function(input)
• Boolean algebra

23

George Boole (1815-1864)
Boole approached logic in a new

way reducing it to a simple
algebra, incorporating logic
into mathematics.

He also worked on differential
equations, the calculus of finite
differences and general
methods in probability.

An investigation into the Laws of
Thought, on Which are
founded the Mathematical
Theories of Logic and
Probabilities (1854)

24

Logic:
Operations and symbols

25

Logic: Rules

Boolean Algebra:

Logical Rules

26

Example: 1 + 𝑎𝑎 = 1 and 0 + 𝑎𝑎 = 𝑎𝑎
Example: 𝑎𝑎 + �𝑎𝑎 = 1 and 𝑎𝑎 � �𝑎𝑎 = 0
Example: 𝑎𝑎 + 𝑎𝑎 = 𝑎𝑎 and 𝑎𝑎 � 𝑎𝑎 = 𝑎𝑎

Logics: Example

Discrete logics can also be used for other types of applications,
e.g., alarms.

Alarm for a batch reactor:
Raise an alarm if the temperature in
the tank is too high, T, and the cooling
is closed, not-Q, or if the temperature
is high and the inlet valve is open, V1.

Truth table:

Logic (Disjunctive normal form):

27

𝑦𝑦 = 𝑇𝑇 �𝑄𝑄 �𝑉𝑉 + 𝑇𝑇 �𝑄𝑄𝑉𝑉 + 𝑇𝑇𝑄𝑄𝑉𝑉
𝑦𝑦 = 𝑇𝑇 �𝑄𝑄 �𝑉𝑉 + 𝑉𝑉 + 𝑇𝑇𝑄𝑄𝑉𝑉

𝑦𝑦 = 𝑇𝑇 �𝑄𝑄 + 𝑇𝑇𝑄𝑄𝑉𝑉
𝑦𝑦 = 𝑇𝑇(�𝑄𝑄 + 𝑄𝑄𝑉𝑉)

Logic nets

Automata

Automata Models

• Automata

• Regular expressions & languages

• Other language classes

Lots of definitions – not particularly difficult

1

Objectives
Assume that a discrete event system is described by an
automaton.
Given an event sequence, we want to determine if each
admissible sequence (trajectory) has some desired property.
Typical properties:
• stability (e.g., state convergence)
• correct use of resources (e.g., mutual exclusion)
• correct event ordering (e.g., database consistency)
• desirable dynamic behavior (e.g., no deadlocks)
• ...

In a control context, one asks if it is possible modify (by a
control action) the set of admissible trajectories so that each
trajectory has the desired property.

3

Definitions

• Σ : set of events, “alphabet”

• A string (trace, word) is a finite sequence of events from Σ.

• |s| : length of a string

• ε : empty string

• s1 concatenated with s2 => s1s2

DES

• Σ∗ : Kleene closure = the set of all finite strings of ele-
ments of Σ

Example:

Σ = {a, b} => Σ∗ = {ε , a, b, aa, ab, ba, bb, aaa, ⋅ ⋅ ⋅ }

• A language L = a subset of Σ∗

Example: 0 , Σ, Σ∗

DES

• 𝑠𝑠′ 𝑖𝑖𝑠𝑠 a prefix of s if 𝑠𝑠 ′𝑡𝑡= s with 𝑠𝑠 , 𝑠𝑠 ′ , 𝑡𝑡= Σ∗ (Note: ε and s
are prefixes of s)

• Languages are sets:

– union
– intersection
– complement
– difference
– concatenation : Let L1, L2 ⊆ Σ∗, then

L1 L2 = {s ∈ Σ∗ : (s = s1s2) ∧(s1 ∈ L1) ∧(s2 ∈ L2)}

DES

• Prefix closure: The prefix-closure L̄ of L is the language
consisting of all the prefixes of all strings in L.

Example: If L = {abc, cde} then
L̄ = {ε , a, ab, abc, c, cd, cde}

In general, L ⊆ L̄. L is prefix-closed if L = L̄.

DES
Regular Expressions

A compact way of defining complex languages with a possibly
infinite number of words.

1. ⊘ is a regular expression denoting the empty set. ε is a
regular expression denoting the set {ε } , and e is a regular
expression denoting the set {e } for all e ∈ Σ.

2. If r and s are regular expressions, then rs, (r + s), r∗, and
s∗ are regular expressions.

3. There are no other regular expressions than those con-
structed by applying rules 1 and 2 a finite number of times.

DES
Example: Let Σ = {α , β,γ } be an alphabet. The regular
expression (α + β)γ ∗ denotes the language

L = {α , β,αγ , βγ ,αγ γ , βγ γ ,αγγγ , βγγγ , ⋅ ⋅ ⋅ }

Example: The regular expression (αβ)∗ + γ denotes the
language

L = {ε ,γ ,αβ ,αβαβ ,αβα βαβ , ⋅ ⋅ ⋅ }

• Any language that can be denoted by a regular expression
is a regular language.

DES Automata and Regular Expressions

Kleene’s Theorem:
Regular expressions and finite-state automata are equivalent,
in the sense that there always exists a finite-state automaton
that marks a given regular language, and, given a finite-state
automaton, the language that it generates can be denoted by a
regular expression.

Regular expression (α + β)∗α

L = {α ,αα , βα ,ααα ,αβα , βαα , ββα , ⋅ ⋅ ⋅ } α
αβ

β

DES
Automata

A Deterministic Automaton, denoted G is a 6-tuple

G = (X , Σ, f , ΣG , x0, Xm)

where

• X is the set of states

DES
Automata

A Deterministic Automaton, denoted G is a 6-tuple

G = (X , Σ, f , ΣG , x0, Xm)

where

• X is the set of states
• Σ is the set of events associated with the transitions in G

DES
Automata

A Deterministic Automaton, denoted G is a 6-tuple

G = (X , Σ, f , ΣG , x0, Xm)

where

• X is the set of states
• Σ is the set of events associated with the transitions in G
• f : X x Σ → X is the partial transition function, f (x, e) = x1

DES
Automata

A Deterministic Automaton, denoted G is a 6-tuple

G = (X , Σ, f , ΣG , x0, Xm)

where

• X is the set of states
• Σ is the set of events associated with the transitions in G
• f : X x Σ → X is the partial transition function, f (x, e) = 𝑥𝑥′

• ΣG (x) is the active event function of G at x, i.e., the set of
all events e for which f (x, e) is defined

DES
Automata

A Deterministic Automaton, denoted G is a 6-tuple

G = (X , Σ, f , ΣG , x0, Xm)

where

• X is the set of states
• Σ is the set of events associated with the transitions in G
• f : X x Σ → X is the partial transition function, f (x, e) = x1

• ΣG (x) is the active event function of G at x, i.e., the set of
all events e for which f (x, e) is defined

• x0 is the initial state

DES
Automata

A Deterministic Automaton, denoted G is a 6-tuple

G = (X , Σ, f , ΣG , x0, Xm)

where

• X is the set of states
• Σ is the set of events associated with the transitions in G
• f : X x Σ → X is the partial transition function, f (x, e) = x1

• ΣG (x) is the active event function of G at x, i.e., the set of
all events e for which f (x, e) is defined

• x0 is the initial state
• Xm ⊆ X is the set of marked states of X , completion

states

DES

• Also called

– Generator
– State Machine

• X finite => deterministic finite automaton (DFA)

Generated and Marked Languages

Think of G as a directed graph and consider 1) all paths that
can be followed from the initial state and 2) among these paths
all the paths that end in a marked state.

• The language generated by G is

L(G) = {s ∈ Σ∗ : f (x0, s) is defined}

• The language marked by G is

Lm(G) = {s ∈ L(G) : f (x0, s) ∈ Xm }

DES

• Two automata are equivalent if they generate and mark
the same languages.

• Blocking – the automaton reaches a state x where
ΣG (x) = ⊘ but x ∈/ Xm. Commonly called a deadlock.

• Another cause of blocking is livelock. G enters a cycle of
unmarked states with no transitions leading out.

DES
• Regular languages (denoted R) are of practical interest

– finite memory
– Computer Science
– Compilers/Parsers

• Not all languages are regular, e.g., anbn : n ≥ 0.

DES Automata as String Acceptors

So far, an automaton has been viewed as a generator of
events, i.e. the events can be seen as outputs that are gen-
erated by a state-transition.

Alternatively one can view an automaton as an acceptor
(recognizer) of strings (words) from some language, i.e., the
events can be viewed as inputs that trigger state transitions.

The latter view is often used in computer science.

Automata Composition

Automata can be composed in different ways

• Product composition

• Parallel composition

• Shuffle composition

DES

Example: Product Composition

G1 G2 G1 x G2

x2 x3 x5 x6

(x1 , x4)

(x3 , x5)

e1

x1

e2 e2e2

x4

e3

Automata Composition

Automata can be composed in different ways

• Product composition

• Parallel composition

• Shuffle composition

Example: Parallel Composition
G2G1

x2 x3 x5 x6

1 4(x , x)

(x2 , x4)

(x1 , x6)

(x2 , x6)
(x3 , x5)

e1e1

e1

x1

e2

e2

e2

x4

e3

e3

𝐺𝐺1 ∥ 𝐺𝐺2

A common event can only be
executed if the two automata
both execute it simultaneously

The two automata are
“synchronized” on the common
events

The other events are not
subject to such constraints and
can be executed whenever
possible.

𝑒𝑒3

Automata Composition

Automata can be composed in different ways

• Product composition

• Parallel composition

• Shuffle composition

G2G1

Shuffle G1∥G2

x2 x3 x5 x6

(x1 , x4)

(x3 , x4)

(x3 , x5)

(x2 , x6)
(x3 , x6)

e1

e1

e1

x1
e2

e1

(x1 , x6)

e2

(x1 , x5)

e2e3

e2
(x2 , x4)

e3

e3

(x2 , x5)

e

e3

x4

e4

e4

e4

31

Example: Shuffle Composition

Shuffle composition: If Σ ∩ Σ2 = ⊘,
then there are no synchronized
transitions and G1∥G2 is the
concurrent behavior of G1 and G2.

Applications of Finite Automata

• Modeling of DES, often in the context of Supervisory
Control Theory

• Lexical analyzers

– lexical-analyzer generators take as input regular
expressions describing some tokens (e.g., C
identifiers) and produces a finite automaton that
recognizes any token

– used as a module in a compiler

• Text editors

– substitution of strings matching a regular expression

Other automata

• A Regular Language can be recognized by a Finite Automaton
• A Context-Free Language can be recognized by a Push-Down Automaton
• Push-down automaton: ≈

• Finite automaton +
• External memory consisting of a LIFO stack

• Context-free Languages and Grammars are of great practical importance
• Defining programming languages (Backus-Naur form)
• Formalizing the notion of parsing
• …..

• Can describe
• Arithmetic expressions with arbitrary nesting of balanced parenthesis
• Block structures in programming languages

Other Classes of Languages

Chomsky’s language hierarchy

Type Language Grammar Machine
3 Regular Language Regular Grammar Finite Automaton
2 Context-Free Language Context-Free Grammar Push-Down Automaton
1 Context-Sensitive Language Context-Sensitive Grammar Linear-bounded Automaton
0 Recursively Enumerable Language Unrestricted Grammar Turing machine

DES
Litterature

A large number of textbooks on automata theory are available.

Most of them are geared towards computer science applica-
tions of automata.

• Hopcroft, J.E. and J. D. Ullman (1979): Introduction to
Automata Theory, Languages and Computation,
Addison- Wesley

Geared towards control and Supervisory Control Theory

• Cassandras, G. C. and S. Lafortune (2010):
Introduction to Discrete Event Systems, Springer-Verlag

Supervisory Control Theory (SCT)

• Ramadge–Wonham framework
• Peter J. Ramadge & Murray Wonham, Univ of Toronto, 1982

• Method for automatically synthesizing supervisors that restrict the behavior of a
plant such that as much as possible of the given specifications are fulfilled.

• The plant is assumed to spontaneously generate events.
• The events are either controllable or uncontrollable.
• The supervisor observes the string of events generated by the plant and might

prevent the plant from generating a subset of the controllable events. However,
the supervisor has no means of forcing the plant to generate an event.

• In its original formulation the SCT considered the plant and the specification to be
modeled by formal languages, not necessarily regular languages generated by
finite automata as was done in most subsequent work.

Supervisory Control Theory
(SCT)

• In Sweden
• Reglerteknik @ Chalmers
• Bengt Lennartsson, Martin Fabian, Knut Åkesson
• Supremica toolbox

• Wonham, M. and K. Cai: “Supervisory Control of
Discrete-Event Systems”, Springer Verlag

DES State automata with output

State automata can also model discrete event systems with
output.

The marked state set is usually omitted.

The definition of the automaton is expanded to also include

• Y – the set of output events (output set)
• the output function g : X x Σ → Y

{ ⋅ ⋅ ⋅ , e, ⋅ ⋅ ⋅ }
𝑥𝑥′ =f (x, e)

y = g(x, e) e
y

DES Mealy machines

A synchronized (clocked) network is known as a Mealy-
machine.

x(t + 1) = f (x(t), e(t))
y(t) = g(x(t), e(t))

e(t)

x(t + 1) = f (x(t), e(t))x(t)

y(t) = g(x(t), e(t))

Delay

DES Moore machines
The output only depends on the current state (no direct term).

x(t + 1) = f (x(t), e(t))
y(t) = g(x(t))

e(t)

x(t + 1) = f (x(t), e(t))

x(t)

y(t) = g(x(t))
Delay

DES

• Every Mealy machine can be simulated by a Moore
machine, but the Moore machine may require more states

• It is possible to convert a Moore machine to a Mealy
machine

• It is possible to convert a Mealy machine to a Moore
machine

DES
Mealy => Moore

e /y0 0
e0/y0 e0/y0

e0/y0

e1/y0

e1/y0

e /y1 1

x0

e1/y0

x1

x2x3

x0/y0 x1/y0

x2/y0

x4/y0e0

e0

x3/y1

e0

e0 e0

e0

e1
e1

e1

e1

Timed Automata

DES

6
8

Timed Automata

R. Alur and D.L. Dill, “A Theory of Timed Automata”, Theoreti-
cal Computer Science, 126: 183–235, 1994

The framework is most often used in the computer science
area for program verification, model checking, etc.

The basis for much of the discrete-based work on hybrid
systems, e.g., linear hybrid automata, hybrid automata,

DES

6
9

Timed Automata

Deterministic finite automaton augmented with a finite set of
(real-valued) clocks.

The states of the automaton are called vertices
(locations) and the transitions (arcs, edges) are called
switches.

Switches are instantaneous.

Time can elapse in locations.

A clock can be reset to zero simultaneously with any switch.

The reading of a clock equals the time elapsed since the last
time it was reset (time is global).

DES
With each switch one may associate a clock constraint, and
require that the switch may occur only if the current values of
the clocks satisfy this constraint.

With each location we associate a clock constraint called its
invariant, and require that time can elapse in a location only as
long as its invariant stays true.

s

7
0

a, x := 0

x ≥ 1, b

sI

x ≤ 2

DES
Multiple Clocks

Multiple clocks allow multiple concurrent delays.

s0

7
1

s3
a, x := 0 b, y := 0

c
cs2

x < 1
s1

x < 1

d, y > 2

DES

7
2

Definition

A timed automaton A is a tuple 〈L, L0, Σ, X , I, E〉, where

• L is a finite set of locations

• L0 ⊆ L is a set of initial locations
• Σ is a finite set of labels (events)
• X is a finite set of clocks
• I is a mapping that labels each location s ∈ L with some

clock constraint in Φ(X)

• E ⊆ L x Σ x 2X x Φ(X) x L is the set of switches. A switch
〈s, a, λ,φ , sI〉 represents a transition from s to sI on symbol
a. φ is a clock constraint over X that specifies when the
switch is enabled, and the set λ ⊆ X gives the clocks to
be reset with this switch.

System Description
Timed Automata:Α

Specification:φ
Requirements Α Satisfies φ

Yes!

No!

Model Checking

• Requirements often
specified using some
variant of temporal
logic

• Linear Temporal Logic
• Signal Temporal Logic
• ……

Gautham Nayak Seetanadi’s PhD thesis

State Machine Extensions
1- Statecharts

DES Extended State Machines

• Statecharts
• Grafcet
• JGrafchart

1

DES

7
6

Statecharts

Statecharts: A Visual Formalism for
Complex Systems, David Harel, The
Weitzmann Institute, Israel, Science of
Computer Programming 8 (1987)

Currently very popular

• Stateflow toolbox for Matlab
• UML tools (Rational Rose, Rational

Rhapsody, MS Visio, ……)
• StateGraph in Modelica

DES

7
7

Statecharts

Statecharts =

• state-transition graphs +

• depth (hierarchical states) +

• orthogonality (concurrency, parallel states) +

• broadcast communication (communication between
concurrent components)

DES
Syntax

XOR Superstate

D

A

B
c (P)

C

a / e

b

d

Input event
Output event

State
Condition
"guard"

7
8

DES
Syntax

Default state (initial state)

D

A

B
c (P)

C

a / e

b

d

7
9

DES
Syntax

History arrows:

Alarm

Off

On

d d

H

a

8
0

On event ‘a’ the last visited state within D becomes active.

DES Syntax
AND Superstates:

Y

A D

B

C

E

G

Fa b (in G) c
d

a

g

Y is the orthogonal product of A and D
When in state (B,F) and event a occurs, the system transfers
simultaneously to (C,G).
Compare with automata composition.

DES Syntax
Interfaces for AND Superstates:

A D

B

C

E

G

F

J H

K L

H

ν δ η(in B)

εβθαω

DES

• δ exit from J ⇒ (B, E)

• α exit from K ⇒ (C, F)

• ν exit from J ⇒ (B, F)

• β exit from L ⇒ (C,most recently visited state in D)

• ω exit from (B, G) ⇒ K

• η exit from (B, F) ⇒ H

• θ exit from (C, D) ⇒ K

• ε exit from (A, D) ⇒ L

DES
Statecharts Semantics

In Harel’s first paper the formal semantics was not defined, i.e.
Statecharts was an unofficial language.

In “The STATEMATE Semantics of Statecharts”, Harel and
Naamad, ACM Trans. Soft. Eng. Method. 5:4, (1996)” Harel
defines “his” semantics.

By then around 20 competing semantics were around.

State Machine Extensions
2 - Grafcet

DES Grafcet

Defined in France 1977 by AFCET (Association Francaise pour
la Cybernétique Economique et Technique) as a:

• formal specification and realization method for logical
controllers

Standardized in IEC 848, IEC 61131-3 (Sequential Function
Charts (SFC))

Has its roots in Petri nets and automata theory

DES
Basic elements

Steps:

• active or inactive

S1

S1.x = 1 when active

S1.T = number of time units since the
step last became active

Initial step

Transitions ("övergång"):

condition true and/or event occurred +
previous step active

DES Control structures
Alternative paths:
• branches

a a

mutually exclusive

• repetition

DES
Parallel paths:

join
(synchronization)

split

DES Simplified Evolution Rules

1. The initial step(s) is active when the function chart is
initiated.

2. A transition is fireable if:
• all steps preceding the the transition are active (en-

abled).
• the receptivity (transition condition and/or event) of the

transition is true
A fireable transition must be fired.

3. All the steps preceding the transition are deactivated and
all the steps following the transition are activated when a
transition is fired

20

DES

a = 1 or 0 a = 0

a = 1

a) Not enabled b) Enabled but not firable

c) Firable d) After the change from c)

DES
Actions

Action block

Action types:

• standard action (level action)

S1 V

S1

V

S1 V

V

V

S1

S2
S2

DES

• stored action (impulse action)
logical assignment

S1

S2

1 Unstable situation
(stored actions performed)

S V = 1

S V = 0

DES
S1

t

V
Standard
action

S1

t

V

Conditional
action S1

t

condition

S1

cond.

t

V

S1

S2

t1

t2

S1

t1

V

S2

t2

Stored
action

C V

S V = 1

S V = 0

DES

S1

t

S1

t

V

S1

t

S1

t

V

Time−limited
action L V 8 s.

8

Time−delayed
action D V 5s.

5

Hierarchy with Macro Steps

Grafcet editors
• Several Grafcet editors available
• Generate PLC code, C or even Java.
• In industry, Grafcet is known as Sequential Function Charts (SFC)

• Slightly different semantics

Reference

• René David & Hassane Alla: “Petri Nets
& Grafcet: Tools for modelling discrete
event systems”, Addison Wesley

• GIPSA-Lab, Grenoble

State Machine Extensions
3- JGrafchart

JGrafchart
• Graphical editor + runtime system (interprets the function charts) for

extended Grafcet
• Combines concepts from ordinary programming languages with

Grafcet
• Features

• Exception handling
• Procedures
• Concurrent threads
• …..

• Used in Lab 2 of Real-Time Systems course

Background
• IT4 (NUTEK) project 1988 – 1991: “Knowledge-

Based Real-Time Control Systems”
• ABB, Alfa-Laval Automation, Telelogic

• Digital twin technology
• Multiple digital models and views of the plant
• E.g., R. Rengaswamy, Dinkar Mylaraswamy, K.-E.

Årzén, V. Venkatasubramanian: (2001) A
comparison of model-based and neural network-
based diagnostic methods, Engineering
Applications of Artificial Intelligence, Volume 14,
Issue 6,

• Used the Steritherm process from Alfa-Laval as
test case

• UHT treatment of dairy products
• Sequence control important, i.e., Grafcet

• G2 from Gensym Corp
• Real-time expert system framework
• Ideally suited for implementing graphical

languages
• Implemented Grafchart in G2

Background

• 1996-1998
• Migrated Grafchart to Java
• JGo Graphics library

• JGrafchart
• PhD Theses by Charlotta Johnsson, Rasmus Olsson and Alfred Theorin
• <Demo>

Petri Nets

DES

1
0
5

Petri Nets

C.A Petri, TU Darmstadt, 1962

A mathematical and graphical modeling method.

Describe systems that are:

• concurrent

• asynchronous

• distributed

• nondeterministic

DES

1
0
6

Petri Nets

Can be used at all stages of system development:

• modeling

• analysis

• simulation/visualization (“playing the token game”)

• synthesis (Petri net versions of SCT)

• implementation (Grafcet)

DES

1
0
7

Application areas

• communication protocols

• distributed systems

• distributed database systems

• flexible manufacturing systems

• logical controller design

• multiprocessor memory systems

• data-flow computing systems

• fault tolerant systems

• ...

DES

1
0
8

Introduction

A Petri net is a directed bipartite graph consisting of places P
and transitions T.

Places are represented by circles.

Transitions are represented by bars (or rectangles)

Places and transitions are connected by arcs.

In a marked Petri net each place contains a cardinal (zero or
positive integer) number of tokens of marks.

DES Firing rules

1. A transition t is enabled if each input place contains at
least one token.

2. An enabled transition may or may not fire.
3. Firing an enabled transition t means removing one token

from each input place of t and adding one token to each
output place of t.

The firing of a transition has zero duration.

The firing of a sink transition (only input places) only consumes
tokens.

The firing of a source transition (only output places) only
produces tokens.

DES

P3 P4

P5

P1

T1

P2

T2

P6

T3 T4

T5

T6

P7

DES

P3 P4

P5

P1

T1

P2

T2

P6

T3 T4

T5

T6

P7

DES

P3 P4

P5

P1

T1

P2

T2

P6

T3 T4

T5

T6

P7

DES

P3 P4

P5

P1

T1

P2

T2

P6

T3 T4

T5

T6

P7

DES

P3 P4

P5

P1

T1

P2

T2

P6

T3 T4

T5

T6

P7

DES

P3 P4

P5

P1

T1

P2

T2

P6

T3 T4

T5

T6

P7

DES
Characteristics

Concurrency

Conflict (decision,
choice)

and−divergence

and−convergence

or−divergence

116

DES

State

The state of a marked Petri net is its marking

M = [m(p1),m(p2), ⋅ ⋅ ⋅ , m(pn)].

The marking can be finite or infinite.

A Petri net can model an infinite system with a finite number of
places.

DES
Modeling with Petri Nets

Tradeoff between
Modeling power Formal Analysis Power

Petri net specializations:

• restrictions on the allowed net structures
• more powerful analytical results and/or simpler algorithms

Petri net abbreviations:

• classes of Petri nets which always can be transformed to
ordinary Petri nets

• PN properties are maintained
• “syntactic sugar”

Petri net extensions (generalizations):

• classes of Petri nets with additional transition firing rules
• cannot be transformed back to ordinary PNs
• PN properties are not always maintained
• often Turing machine equivalent

Non-autonomous Petri nets:

• transition firing synchronized and/or timed
• Synchronized Petri Nets

– events associated with transitions
• Timed Petri Nets

– time delays associated with places or transitions
• Interpreted Petri Nets

– Synchronized and timed PN + actions
– Grafcet

• Controlled Petri Nets
– transitions can be enabled and disabled by special control

places
– Supervisory Control Theory for PN

DES
PN Specializations

State Graphs (state machines):

• an unmarked PN is a state graph iff every transition has
one input place and one output place

• a marked state graph is equivalent to a automaton state
machine iff it only contains one token

DES PN Specializations

Other specializations:

• event graphs

• conflict-free PNs, free-choice PNs, simple PNs,

• pure PNs (have no self-loops)

DES PN abbreviations

• Generalized Petri nets
• Finite Capacity Petri nets
• High-Level Petri nets

DES Generalized Petri Nets

P1 P2

2

T1
2

P3

Firing rules:
1. A transition t is enabled if each input place p of t contains

at least w(p,t) tokens
2. Firing a transition t means removing w(p,t) tokens from

each input place p and adding w(t,q) tokens to each
output place q.

DES Generalized Petri Nets

P1 P2

2

T1
2

P3

Firing rules:
1. A transition t is enabled if each input place p of t contains

at least w(p,t) tokens
2. Firing a transition t means removing w(p,t) tokens from

each input place p and adding w(t,q) tokens to each
output place q.

DES Finite-Capacity PN

Capacities (strictly positive integers) associated with
places.

Transition firing rule:
• For a transition t to be enabled it is additionally required

that the number of tokens in each output place p of t will
not exceed its capacity K (p) after firing t.

DES

24

High-Level (Coloured) Petri Nets

Abstract data types (or objects) + Petri nets

A token has a type

DES Petri Net extensions
• FIFO nets

– each place represents a FIFO queue where the tokens
are queued

• Inhibitor arc Petri nets (zero-test PNs)
– an inhibitor arc connects a place to a transition

– the inhibitor arc disables the transition when the place
contains tokens and enables the transition when the
place is empty

• Priority Petri nets
– PN + a partial order relation on the transitions

DES
Petri net properties

What can we do with the nets?

What properties and problems can be analyzed?

Properties can be divided into

• structural properties – marking independent

• behavioral properties – marking dependent

DES
Reachability

A marking M is reachable from a marking M0 if there exists
a sequence of firings that transforms M0 to M . Denoted
M0[T1T2 ⋅ ⋅ ⋅ Tn > M

DES Properties

Boundedness:

• A place pi is bounded for an initial marking M0 if for all
markings reachable from M0, m(pi) ≤ k (positive integer)

DES Properties

Liveness:
• A transition ti is live for an initial marking M0 if for every

reachable marking Mi ∈∗ M0, a firing sequence S from Mi
exists, which contains transition ti.

• A PN is live for M0 if all its transitions are live for M0.
• Interpretation: No matter what marking has been reached

from M0, it is possible to ultimately fire any transition of the
net.

30

DES Analysis Methods

How determine if a PN has a certain property?

Three types of methods:

• reachability (coverability) methods

• exhaustive enumeration of all possible markings.

• linear algebra methods

• describe the dynamic behaviour as matrix equations

• reduction methods

• transformation rules that reduce the net to a simpler net while
preserving the properties of interest

Reachability Methods DES Analysis Methods

How determine if a PN has a certain property?

Three types of methods:

• reachability (coverability) methods

• exhaustive enumeration of all possible markings.

• linear algebra methods

• describe the dynamic behaviour as matrix equations

• reduction methods

• transformation rules that reduce the net to a simpler net while
preserving the properties of interest

Linear Algebra Methods

• Methods exist for calculating
different invariants of the net

• P-invariants
• T-invariants

DES Analysis Methods

How determine if a PN has a certain property?

Three types of methods:

• reachability (coverability) methods

• exhaustive enumeration of all possible markings.

• linear algebra methods

• describe the dynamic behaviour as matrix equations

• reduction methods

• transformation rules that reduce the net to a simpler net while
preserving the properties of interest

Reduction Methods
• Semi-automatic methods

DES Nonautonomous PNs

• Synchronized Petri Nets
– events associated with transitions

• Timed Petri Nets
– time delays associated with places or transitions

• Interpreted Petri Nets
– Synchronized and timed PN +
– data processing part for computation of variables

(actions) and transition conditions
– very similar to Grafcet

• Controlled Petri Nets
– transitions can be enabled and disabled by special

control places
– Supervisory Control Theory for PN 56

Industry

Electro-Mechanical Relays
The basic device invented for control of discrete production processes

is the automatic switch and interconnected sequences of automatic
switches.

Today, the automatic switches are replaced by computer programs.
This technological innovation took place in the 1960s, since then
discrete systems have become more automated.

141

Control Relay – Not Activated

142

Control Relay - Activated

143

Logic Control

144

AND

OR

Single Cylinder Stroke #1

145

Single Cylinder Stroke #2

146

Single Cylinder Stroke #3

147

Single Cylinder Stroke #4

148

Single Cylinder Stroke #5

149

Single Cylinder Stroke #6

150

Single Cylinder Stroke #7

151

Single Cylinder Stroke #8

152

Single Cylinder Stroke #9

153

Single Cylinder Stroke #10

154

Batch Reactor Example revisited
Using ladder diagrams for simple interlocks

Alarm for a batchreactor:
Give an alarm if the temperature in the
tank is too high, T, and the cooling is
closed, not-Q, or if the temperature is
too high, T, and the inlet valve is open,
V1.

Logic:

T

Q

VQ

Alarm (y)

155

𝑦𝑦 = 𝑇𝑇 �𝑄𝑄 �𝑉𝑉 + 𝑇𝑇 �𝑄𝑄𝑉𝑉 + 𝑇𝑇𝑄𝑄𝑉𝑉
𝑦𝑦 = 𝑇𝑇 �𝑄𝑄 �𝑉𝑉 + 𝑉𝑉 + 𝑇𝑇𝑄𝑄𝑉𝑉

𝑦𝑦 = 𝑇𝑇 �𝑄𝑄 + 𝑇𝑇𝑄𝑄𝑉𝑉
𝑦𝑦 = 𝑇𝑇(�𝑄𝑄 + 𝑄𝑄𝑉𝑉)

Example: Clamp/Work Layout

156

Relay Diagram (Ladder diagram) with counter

Each relay represents a state variable

Very user unfriendly way of programming logic

Still very common in discrete production processes
E.g. Tetra Pak

IEC 61131
• IEC standard for programmable controllers (PLCs)
• Several parts, e.g.

• 61131-3 Programming languages
• 61131-5 Communications
• 61131-6 Functional safety

• Adopted by essentially all PLC vendors

157

IEC 61131-3

• Defines 5 PLC programming languages
• Function block diagrams (FBD)
• Ladder Diagrams (LD)
• Structrured text (ST)
• Instruction list (IL)
• Sequential function chart (SFC), i.e. Grafcet

+ how they may interact

158

Function block diagrams (FBD)

• Graphical data-flow
language

• Interconnects
function blocks

• Cp. Simulink

159

Ladder Diagrams

• Ladder logic extended with
function blocks

160

Structured Text

• Block-structured high-level
programming language
inspired by Pascal or C

• Iteration loops (WHILE,
REPEAT)

• Conditional branches (IF,
CASE)

• Functions

161

Instruction List

• Low-level textual assembly-like
language

• Stack-machine oriented

162

Sequential Function Charts

• Grafcet

163

