
Exercise for Optimal control – Week 3

Choose 1.5 problems to solve.

Disclaimer
This is not a complete solution manual. For some of the exercises, we provide only partial answers,
especially those involving numerical problems. If one is willing to use the solution manual, one should
judge whether the solutions are correct or wrong by him/herself.

Exercise 1. Consider a harmonic oscillator ẍ + x = u whose control is constrained in the interval
[−1, 1]. Find an optimal controller u which drives the system at initial state (x(0), ẋ(0)) = (X1, X2)
to the origin in minimal time. Draw the phase plot.

Solution. Rewrite the system in standard form

ẋ1 = x2

ẋ2 = −x1 + u

The cost for this problem is

J =

∫ tf

0

1dt

where tf is free. The Hamiltonian for the system is

H = p1x2 + p2(−x1 + u) + p0

and the costate equation is

ṗ1 = p2

ṗ2 = −p1

Note that (p1, p2) is also a harmonic oscillator – d
dt (p

2
1 + p22) = 0 – we can solve them as

p1 = r sin(t+ ϕ)

p2 = r cos(t+ ϕ)

for some constants r > 0, ϕ ∈ (−π, π). The maximum principle says

u∗(t) = sign(p∗2(t)).

Thus the dwell time for each switch is exactly π seconds. Except at the switching point, u∗(t) is
constant, and we can find the trajectory of (x∗

1(t), x
∗
2(t)): when u∗ = 1,

(x2 − 1)2 + x2
1 = const

since
d

dt
[(x1 − 1)2 + x2

2] = 2(x1 − 1)x2 + 2x2(−x1 + 1) = 0

Consequently x2(t) = 1 + r sin(t + θ0), x1 = r cos(t + θ0), and the system moves clockwisely on the
circle. Similarly, when u∗ = −1,

(x2 + 1)2 + x2
1 = const

Thus we can draw the phase plot of the system.
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Figure 1: The phase plot for u = ±1.

The red color circles have center at (1, 0) and the greens at (−1, 0). Let us trace the system
trajectory backward from t = tf . At the final stage, in order to reach the origin, only two arcs are
possible – note that on each circle, the system can travel at most π seconds.) see Figure 2.

𝑢𝑢 = 1

𝑢𝑢 = −1

𝑥𝑥1

𝑥𝑥2

1−1

Figure 2: The phase plot at the final stage.

To find the previous arc, choose a point A as in Figure 3, then draw a line passing through A and
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(−1, 0). The intersection of this dashed line with the circle determined by A and center (−1, 0) is
denoted A′, which lies on the circle (x1+3)2+x2

2 = C2. Thus for all initial states on the arch between
A′ and A, they should flow along the arch and then reach point A and goes to zero following the final
stage arc. To find the trajectory before A′, one goes backward along the red circles. More precisely,
draw a line passing A′ and (1, 0), which will intersect the half circle {(x1, x2) : (x1 − 5)2 + x2

2 = 1} at
some point A′′, then the trajectory before A′ should lie on the arc

>
A′A′′. Continuing this procedure,

we can find the optimal trajectory for all for arbitrary initial condition. However, an analytic solution
is not obvious. Theoretically, fixing A, one can compute the complete trajectory starting from starting
from t = −∞. These trajectories will span the whole state space. Thus it suffices to determine which
trajectory it lies on.
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Figure 3: The phase plot of the last two stages.

Exercise 2. Consider a rocket, modeled as a particle of constant mass m moving in zero gravity empty
space. Let u ≥ 0 be the mass flow, assumed to be a known function of time, let c be the constant
thrust velocity and v an angle that can be controlled. See Figure 4. The equations of motion are

ẋ1 = x3

ẋ2 = x4

ẋ3 =
c

m
u(t) cos(v(t))

ẋ4 =
c

m
u(t) sin(v(t))

1) Show that cost functionals of the class

min
v(·)

∫ tf

0

dt or min
v(·)

ϕ(x(tf ))

gives the optimal control

tan v∗(t) =
c1 + c2t

c3 + c4t
.

2) Assume that the rocket starts at rest at the origin and that we want to drive it to a given height
x2(tf ) in a given time tf such that the final velocity in the horizontal direction x3(tf ) is maximized
while x4(tf ) = 0. Show that the optimal control is reduced to a linear tangent law

tan v∗(t) = c1 + c2t.
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Figure 4: A rocket model.

3) Let the rocket in represent a missile whose target is at rest. Minimize the transfer time tf from the
state [0, 0, x3(0), x4(0)] to the state [x1(tf ), x2(tf ), free, free]. Solve the problem under the assumption
that u is constant.

4) To increase the realism now assume that the motion is under a constant gravitational force. The
only equation that needs to be modified is the one for x4 (the acceleration in the vertical direction):

ẋ4 =
c

m
u(t) sin(v(t))− g.

Show that the optimal law is still optimal for the cost functional

min
v(·)

ϕ(x(tf )) +

∫ tf

0

dt.

5) Now we take into consideration of the mass loss of the rocket. Let x5 denote the mass of the
rocket. The overall equations of motion now read

ẋ1 = x3

ẋ2 = x4

ẋ3 =
c

m
u(t) cos(v(t))

ẋ4 =
c

m
u(t) sin(v(t))− g

ẋ5 = −u(t)

where u ∈ [0, umax]. Show that the optimal solution to transferring the rocket from a state of given
position, velocity and mass to a given altitude x2(tf ) using a given amount of fuel, such that the
distance x1(tf )− x1(0) is maximized, is

v∗(t) = constant, u∗(t) = {umax, 0}.

Solution. 1) First, for the time optimal case, the Hamiltonian is H = p1x3 + p2x4 + p3
c
mu(t) cos v +

p4
c
mu(t) sin(v) + p0. The costate equation is

ṗ1 = 0

ṗ2 = 0

ṗ3 = −p1

ṗ4 = −p2
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from which we see

p∗1 = c1,

p∗2 = c2,

p∗3(t) = −c1t+ c3

p∗4(t) = −c2t+ c4

First, we shall notice that p3 and p4 cannot be zero at the same time, otherwise, p1 = p2 = p0 = 0, a
contradiction. To maximize H w.r.t. v, we write H as

H =
c

m
u(t)

√
p23 + p24 sin(v + α) + ∗

for some
tanα(t) =

p∗3(t)

p∗4(t)
∈ [−π, π)

where ∗ represent some terms not dependent on v. Hence v should be taken as

v∗(t) = −α(t) +
π

2

where α depends on the costate (p3, p4). Now

tan v∗(t) = tan(−α(t) +
π

2
) =

p∗4(t)

p∗3(t)
=

−c2t+ c4
−c1t+ c3

. (1)

For the second case, the Hamiltonian differs with the time optimal one only by a constant p0, thus
the maximum principle is the same. Therefore, the form of the optimal controller doesn’t change.

2) First we need to formulate the problem:

min
v

−x3(tf )

subject to
x2(tf ) = x2f , x4(tf ) = 0.

The Hamiltonian is the same as in the second case of 1) and thus the optimal controller should satisfy

tan v∗(t) =
−c2t+ c4
−c1t+ c3

.

But now we have some extra constraints and we may possibly solve for some constants. Since x2(tf )
and x4(tf ) = 0 is fixed, we must have

p∗1(tf )
p∗2(tf )
p∗3(tf )
p∗4(tf )

+


0
0
−1
0

 ⊥


v1
0
v2
0


where v1, v2 are free in R. Thus p∗1(tf ) = 0, p∗3(tf ) = 1. From p∗1(tf ) = 0 we immediately get c1 = 0.

3) The problem is

min

∫ tf

0

1dt

subject to

x(0) = [0, 0, x3f , x4f ]
⊤

x(tf ) = [x1f , x2f , free, free]⊤

The Hamiltonian is the same as in the first case of 1), thus the controller is of the form (1). As in 2),
we can get p∗3(tf ) = p∗4(tf ) = 0. Thus p3(t) = −c1(t − tf ), p4(t) = −c2(t − tf ) from which it follows
that

tan v∗(t) =
c2
c1

.
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In other words, v∗(t) is constant. Now that u is constant, we can solve the system equation

x3(t) =
c

m
ut cos(v∗) + x3i

x4(t) =
c

m
ut sin(v∗) + x4i

x1(t) =
1

2

c

m
ut2 cos(v∗) + +x3it

x2(t) =
1

2

c

m
ut2 sin(v∗) + x4it

Putting t = tf in the last two lines, we get

1

2

c

m
ut2f cos(v

∗) + x3itf = x1f

1

2

c

m
ut2f sin(v

∗) + x4itf = x2f

from which we can find tf and v∗.
4) The new Hamiltonian is H = p1x3 + p2x4 + p3

c
mu(t) cos v+ p4(

c
mu(t) sin(v)− g) + p0. Since the

new term p4g does not depend on u, the MP is the same.
5) The problem is

min−x1(tf )

subject to
x(tf ) = [free, x2f , free, free, x5f ]

⊤.

And here u is also a control input. The Hamiltonian is

H = p1x3 + p2x4 + p3
c

x5
u(t) cos v + p4(

c

x5
u(t) sin(v)− g)− p5u(t)

= (p3
c

x5
cos(v) + p4

c

x5
sin(v)− p5)u(t) + ∗

Since u(t) ≥ 0, we may have two different cases. Note that x5 > 0.
Case 1. u = 0: In this case, controller has no effect on the cost, then v can be taken arbitrarily.
Case 2. If u > 0: For this case, the maximum principle is the same as the second case of 1).

Hence the optimal controller is in the form (1). However, we have an extra component in the costate
equation,

ṗ5 = p3
c

x2
5

u(t) cos v + p4
c

x2
5

u(t) sin v (2)

The terminal constraint tells us that 
p∗1(tf )
p∗2(tf )
p∗3(tf )
p∗4(tf )
p∗5(tf )

+


−1
0
0
0
0

 ⊥


v1
0
v3
v4
0


for v1, v3, v4 free. Thus

p∗1(tf ) = 1,

p∗3(tf ) = 0,

p∗4(tf ) = 0.

Thus p∗1 = c1 = 1, and p∗3(t) = −(t− tf ), p∗4(t) = −c2(t− tf ) and

tan v∗(t) = c2 = const.

The input u is yet to be determined. To maximize H,

u∗(t) =


0 σ(t) < 0

umax σ(t) > 0

? σ(t) = 0.
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where
σ(t) = p3

c

x5
cos(v) + p4

c

x5
sin(v)− p5.

One can then show that

σ̇(t) = ṗ3(t)
c

x5
cos(v)− p3

cẋ5

x2
5

cos v + ṗ4
c

x5
sin(v)− p4

cẋ5

x2
5

sin(v)− ṗ5

= ṗ3(t)
c

x5
cos(v) + ṗ4

c

x5
sin(v) + p3

cu

x2
5

cos v + p4
cu

x2
5

sin(v)− ṗ5

= ṗ3(t)
c

x5
cos(v) + ṗ4

c

x5
sin(v) (see (2))

=
c

x5
(ṗ3(t) cos(v) + ṗ4 sin(v))

=
c

x5
(− cos(v)− c2 sin(v))

Now recall that tan v = c2, or sin(v) = c2 cos(v), the above can be further written as

σ̇(t) =
c

x5
(− cos(v)− c22 cos(v)) = −c(1 + c22)

x5(t)
cos(v) < 0

Thus σ is decreasing and there is at most one switch.

Exercise 3. Try to solve the Rayleigh problem: consider minimizing

J =

∫ tf

0

(u2 + x2
1)dt

subject to (the controlled van de Pol oscillator):

ẋ1 = x2,

ẋ2 = −x1 + x2(1.4− 0.14x2
2) + 4u

with initial condition (x1(0), x2(0)) = (−5,−5), tf = 4.5 and a mixed input and state constraint:

−1 ≤ u(t) +
x1(t)

6
≤ 0.

Draw the optimal controller and the state trajectory. You may use numerical methods, e.g., discretiza-
tion.

Solution. (Courtesy by Manu) The Hamiltonian is

H = p1x2 + p2(−x1 + x2(1.4− 0.14x2
2) + 4u)− (u2 + x2

1)

and the costate equation is

ṗ1 = p2 + 2x1

ṗ2 = −p1 − p2(1.4− 0.42x2
2)

with boundary condition p1(tf ) = p2(tf ) = 0. The maximum principle gives

u∗(t) =


2p∗2(t), −6 ≤ 12p∗2(t) + x∗

1(t) ≤ 0

−x∗
1(t)/6, 0 < 12p∗2(t) + x∗

1(t)

−1− x∗
1(t)/6, 12p∗2(t) + x∗

1(t) < −6.

The problem of solving for the optimal state trajectory and the costates is a two-point boundary value
problem. The code below numerically solves the problem.
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import numpy as np
from scipy.integrate import solve_bvp
import matplotlib.pyplot as plt
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_bvp.html
def u_star(x_1,p_2):
if 0 < 12*p_2 + x_1:
return -x_1/6

elif 12*p_2 + x_1 < -6:
return -1-x_1/6

else:
return 2*p_2

def fun(t, xp):
x_1 = xp[0]
x_2 = xp[1]
p_1 = xp[2]
p_2 = xp[3]
u = np.array(list(map(u_star,x_1,p_2)))
x_1_dot = x_2
x_2_dot = -x_1+x_2*(1.4-0.14*x_2**2)+4*u
p_1_dot = p_2 + 2*x_1
p_2_dot = -p_1-p_2*(1.4-0.42*x_2**2)
return np.vstack((x_1_dot, x_2_dot, p_1_dot, p_2_dot))

def bc(xp_0, xp_tf):
x_1_0 = xp_0[0]
x_2_0 = xp_0[1]
p_1_0 = xp_0[2]
p_2_0 = xp_0[3]
x_1_tf = xp_tf[0]
x_2_tf = xp_tf[1]
p_1_tf = xp_tf[2]
p_2_tf = xp_tf[3]
return np.array([x_1_0+5,x_2_0+5,p_1_tf,p_2_tf])

t_f = 4.5
N = 100
ts = np.linspace(0, t_f, N+1) # Initial mesh
xp_init = np.zeros((4, ts.size)) # Initial guess
sol = solve_bvp(fun, bc, ts, xp_init, tol = 1e-9, verbose = 2)

ts = np.linspace(0, t_f, 1000)
xp = sol.sol(ts)
x_1 = xp[0]
x_2 = xp[1]
p_1 = xp[2]
p_2 = xp[3]
plt.figure(0)
plt.plot(x_1,x_2,label="$(x_1,x_2)$")
plt.legend()
plt.xlabel(r"$x_1$")
plt.ylabel(r"$x_2$")
plt.savefig(’states.png’, dpi=400)

u = np.array(list(map(u_star,x_1,p_2)))
plt.figure(1)
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plt.plot(ts,u,label="$u^{\star}$")
plt.legend()
plt.xlabel(r"$t$")
plt.ylabel(r"$u^{\star}$")
plt.savefig(’control.png’, dpi=400)

The results is shown below:

Figure 5: Optimal solution.
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