
Exercise for Optimal control – Week 1

Choose two problems to solve.

Exercise 1 (Fundamental lemma of CoV). Let f be a real valued function defined on open interval
(a, b) and f satisfies ∫ b

a

f(x)h(x)dx = 0

for all h ∈ Cc(a, b), i.e., h is continuous on (a, b) and its support, i.e., the closure of

{x : h(x) ̸= 0}

is contained in (a, b).
1) Show that f is identically zero if f is continuous. If f is only piecewise continuous, then f

has only finite non-zero values. Hint: consider for example that f(x1) > 0, since f is continuous, f
should be positive near x1, say (x1−δ, x1+δ). Next, construct a non-negative continuous function h ∈
Cc(x1− ϵ, x1+ ϵ) which has some positive values on this interval. You’ll then arrive at a contradiction

since
∫ b

a
fhdx > 0.

2) Extend to multivariate case: i.e., if f is continuous on an open set Ω and∫
Ω

f(x)h(x)dx = 0

for all h ∈ Cc(Ω), then f ≡ 0 for all x ∈ Ω. Hint: as before, if f(x1) > 0 at some x1, then there exists
a neighborhood of x1 on which f is positive. Construct a non-negative function which vanishes outside
this neighborhood. And you get a contradiction.

Exercise 2 (Naive derivation of the 1st variations). Derive the first order variations of the optimal
control problem

ẋ = f(x, u)

min
u

J(u(·)) := φ(x(T )) +

∫ T

0

L(x, u)dt

using variation/perturbation
uϵ(t) = u∗(t) + ϵv(t)

for an arbitrary v(·). Assume f, L and φ are C2 and the initial state is fixed. Compare with the
computation using δ operator. Hint: write xϵ(t) as the solution to the following integral equation
ẋϵ(t) = f(xϵ, uϵ). Define H(x, u, p) = p⊤f(x, u) − L(x, u) (the Hamiltonian!), and fix a C1 curve
t 7→ p(t), then

J(uϵ) = φ(xϵ(T )) +

∫ T

0

L(xϵ, uϵ)dt

= φ(xϵ(T )) +

∫ T

0

p⊤(t)ẋϵ −H(xϵ, uϵ, p)dt

Apply integration by parts to get rid of ẋϵ. Then compute ∂J
∂ϵ |ϵ=0.

Exercise 3 (Dido’s problem). Formulate Dido’s problem as optimal control with only finite dimen-

sional constraints. Hint: define a new variable η(t) :=
∫ t

0
|γ′(s)|ds and let γ′(t) := u(t).
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Exercise 4 (Minimum surface problem). Let D be an open set on the plane R2. Consider a surface
D ∋ (x, y) 7→ (x, y, u(x, y)) ∈ R3. The area of the graph of this surface can be calculated as

A(u) =

∫
D

√
1 + u2

x + u2
ydxdy

where ux, uy stands for partial derivatives, with boundary condition u|∂D = g for some function g on
∂D. Consider the problem of minimizing A(·). Derive the Euler-Lagragian equation of this problem.
Hint: let v be an arbitrary function whose support lies in D. Assume u∗ is a minimizer, and consider
the variation

uϵ = u+ ϵv.

Calculate ∂A(uϵ)
∂ϵ |ϵ=0 to get ∫

D

uxvx + uyvy√
1 + u2

x + u2
y

dxdy = 0

They apply integration by parts formula for φ ∈ C∞
c (D) (no boundary terms )∫

D

vxφdxdy = −
∫
D

vφxdxdy.

After eliminating vx, vy, apply Exercise 1.

Exercise 5 (Boundary value problem). Consider the following boundary value problem

q̈ + f(q, q̇) = 0 (1)

where q ∈ Rn with boundary condition

q(0) = a, q(1) = b. (2)

Two classical methods exist for numerically solving the BVP: 1) Finite difference method; 2)
Shooting.

1) The first order derivative may be discretized as

q̇(ti) ≈
q(ti+1)− q(ti)

ti+1 − ti

In particular, for fixed step size h = ti+1 − ti,

q̇i =
qi+1 − qi

h
.

Propose a discretization scheme for second order derivative and write the discretized version of (1),
(2) in matrix form. Use this to find the geodesic on the ellipsoid

x2 + y2 +
z2

4
= 1.

Try different boundary values and observe the non-uniqueness geodesic phenomenon.
2) The shooting method works like this. Write the second order ODE as a first order one by defining

x1 = q, x2 = q̇ [
ẋ1

ẋ2

]
=

[
x2

−f(x1, x2)

]
Then we know x1(0) = a, x1(1) = b. Suppose that x2(0) = λ. Then with the initial condition
x(0) = (a, λ), the value x1(1) should be uniquely determined, which is a function of λ, denoted as
x1(1, λ). Let

F (λ) := x1(1, λ)− b.

The idea is to alter λ so that F (λ) converges to 0. This is equivalent to finding the root of F (or
|F (·)|2). Solve the problem in 1) using shooting method. You may use gradient descent or Newton’s
method. Is the scheme stable? Or, when does the algorithm converge?
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Exercise 6 (Hamiltonian equation). Recall the Hamiltonian equation:

q̇ =
∂H

∂p
(q, p)

ṗ = −∂H

∂q
(q, p)

where q, p ∈ Rn. Let ϕt be the flow of the system. That is, (q(t), p(t)) = ϕt(q0, p0) for the initial
condition (q0, p0).

1) For functions H1, H2 : Rn × Rn → R, define the Poisson bracket between H1 and H2 as

{H1, H2} =

n∑
i=1

∂H1

∂qi

∂H2

∂pi
− ∂H1

∂pi

∂H2

∂qi
.

Show that for any real function f on Rn × Rn, f satisfies the ordinary differential equation along the
Hamiltonian system:

ḟ = {f,H}.

2) Given a bounded set U ⊆ Rn × Rn, define

Ut = ϕt(U)

Show that the volume of Ut is constant. Hint: use the transport equation: consider a system ẋ = f(x),
and let ϕt : Rn → Rn be its flow, then for any bounded set D ⊆ Rn,

d

dt
vol(ϕt(D)) =

∫
ϕt(D)

divfdx.

3) Assume that there exists a bounded forward invariant set D ⊆ Rn × Rn of the Hamiltonian
system. Then for any open set U ⊆ D, and any s > 0, there exists at least one point x ∈ U which
returns to U after some time t ≥ s.

4) The Hamiltonian equation has time-dependent version

q̇ =
∂H

∂p
(q, p, t)

ṗ = −∂H

∂q
(q, p, t)

Show that the energy is not preserved.
5) The Hamiltonian equation can be generalized to[

q̇
ṗ

]
=

[
0 I
−I R(q)

] [∂H
∂q
∂H
∂p

]
+

[
0

G(q)u

]
where u is an input and R, G are matrices. Assume that H ≥ 0 . Show that the matrix R(q) plays
the role of energy damping/injection – depending on sign. Show that the system is dissipative if R is
semi-positive definite, in the sense that there exists an output y such that

−
∫ ∞

∞
y⊤(t)u(t)dt ≤ H(q(0), p(0)).

That is, the energy that can be extracted from the system via the input output pair (u, y) is less than
the total energy of the system.
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