Exercise for Optimal control — Week 1

Choose two problems to solve.

Exercise 1 (Fundamental lemma of CoV). Let f be a real valued function defined on open interval
(a,b) and f satisfies

b
/ f(z)h(z)dz =0
for all h € C.(a,b), i.e., h is continuous on (a,b) and its support, i.e., the closure of

{z: h(z) # 0}

is contained in (a,b).

1) Show that f is identically zero if f is continuous. If f is only piecewise continuous, then f
has only finite non-zero values. Hint: consider for example that f(x1) > 0, since f is continuous, f
should be positive near x1, say (x1 —9,x1+9). Next, construct a non-negative continuous function h €
Co(x1 — €, 21 +€) which has some positive values on this interval. You’ll then arrive at a contradiction
since fab fhdx > 0.

2) Extend to multivariate case: i.e., if f is continuous on an open set { and

/ f(z)h(z)dz =0
Q

for all h € C.(Q2), then f =0 for all z € Q. Hint: as before, if f(x1) > 0 at some x1, then there exists
a neighborhood of x1 on which f is positive. Construct a non-negative function which vanishes outside
this neighborhood. And you get a contradiction.

Exercise 2 (Naive derivation of the 1st variations). Derive the first order variations of the optimal
control problem

using variation/perturbation
uc(t) = ux(t) + ev(t)

for an arbitrary v(-). Assume f,L and ¢ are C? and the initial state is fixed. Compare with the
computation using ¢ operator. Hint: write x(t) as the solution to the following integral equation
ic(t) = f(we,uc). Define H(z,u,p) = p' f(x,u) — L(x,u) (the Hamiltonian!), and fix a C' curve
t — p(t), then

T
J(ue) = plae(T)) + / L(reu)dt

T
= o(z.(T)) + /0 pT (e — H(ze,ue, p)dt

Apply integration by parts to get rid of @.. Then compute %k:o.

Exercise 3 (Dido’s problem). Formulate Dido’s problem as optimal control with only finite dimen-
sional constraints. Hint: define a new variable n(t) := fg |7/ (s)|ds and let v'(t) := u(t).



Exercise 4 (Minimum surface problem). Let D be an open set on the plane R?. Consider a surface
D 3> (z,y) = (z,y,u(z,y)) € R3. The area of the graph of this surface can be calculated as

A(u):/[)1/1+u§.+u§da:dy

where u,, u, stands for partial derivatives, with boundary condition u|sp = g for some function g on
0D. Consider the problem of minimizing A(-). Derive the Euler-Lagragian equation of this problem.
Hint: let v be an arbitrary function whose support lies in D. Assume u, is a minimizer, and consider
the variation

Ue = U + €.

Calculate % =0 to get

/dedyzo
D1+ u2 +ul

They apply integration by parts formula for ¢ € C°(D) (no boundary terms )

/vzgodxdy:—/ v dzdy.
D D

After eliminating vy, vy, apply Ezercise 1.
Exercise 5 (Boundary value problem). Consider the following boundary value problem
G+ flg,q9) =0 (1)
where g € R™ with boundary condition
q(0) =a, q(1)=b. (2)

Two classical methods exist for numerically solving the BVP: 1) Finite difference method; 2)
Shooting.
1) The first order derivative may be discretized as

q(tiv1) —q(ts)

i(t:) ~
(t:) tiy1 — 1
In particular, for fixed step size h = t;41 — t,
. qi+1 — q;
Qi = %

Propose a discretization scheme for second order derivative and write the discretized version of (1),
(2) in matrix form. Use this to find the geodesic on the ellipsoid

2 2, 2
— =1.
oty + 1
Try different boundary values and observe the non-uniqueness geodesic phenomenon.
2) The shooting method works like this. Write the second order ODE as a first order one by defining

T =(q, T2 = q .
1| x2
[562] N {—f(mhivz)]

Then we know z1(0) = a, z1(1) = b. Suppose that z2(0) = A. Then with the initial condition
z(0) = (a, A), the value z1(1) should be uniquely determined, which is a function of A, denoted as
xz1(1,\). Let

F(\) :=z1(1,A) —b.
The idea is to alter A so that F(\) converges to 0. This is equivalent to finding the root of F (or

|F(:)|?). Solve the problem in 1) using shooting method. You may use gradient descent or Newton’s
method. Is the scheme stable? Or, when does the algorithm converge?



Exercise 6 (Hamiltonian equation). Recall the Hamiltonian equation:

0H

q= 87((1729)
. OH
p= —%(q,p)

where ¢,p € R". Let ¢; be the flow of the system. That is, (q(t),p(t)) = ¢¢(qo,po) for the initial
condition (go, po)-
1) For functions Hq, Hy : R™ x R” — R, define the Poisson bracket between H; and Hs as

"\ 9H, OH, 0H, 0H,
Hi,Hy} = — .
{ ! 2} ; dq; Op; Op; 0g;

Show that for any real function f on R™ x R", f satisfies the ordinary differential equation along the
Hamiltonian system:

f=1{f.H}.
2) Given a bounded set U C R™ x R, define

Uy = ¢t(U)

Show that the volume of U, is constant. Hint: use the transport equation: consider a system & = f(x),
and let ¢; : R™ — R™ be its flow, then for any bounded set D C R™,

d .
ﬁvol(qﬁt(D)) = /¢t(D) div fdz.

3) Assume that there exists a bounded forward invariant set D C R™ x R™ of the Hamiltonian
system. Then for any open set U C D, and any s > 0, there exists at least one point x € U which
returns to U after some time t > s.

4) The Hamiltonian equation has time-dependent version

1= 2 )
q= ap q,D,

=~ (g.p)
p= g q,p,

Show that the energy is not preserved.
5) The Hamiltonian equation can be generalized to

ﬂ:Pf&A *k&J

where u is an input and R, G are matrices. Assume that H > 0 . Show that the matrix R(q) plays
the role of energy damping/injection — depending on sign. Show that the system is dissipative if R is
semi-positive definite, in the sense that there exists an output y such that

OH
d

ol
op

_ / T yT(Bu(t)dt < H(g(0), p(0)).

oo

That is, the energy that can be extracted from the system via the input output pair (u,y) is less than
the total energy of the system.



