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Disclaimer

The present notes are a ongoing work in which there exist many errors and non-rigorous statements —
especially about references. I recommend you to double check all the statements while reading. I believe

this is also a good way of learning.



CHAPTER

DYNAMIC PROGRAMMING

1.1 Discrete time systems

1.1.1 Shortest path problem

To understand dynamic programming, perhaps it is best to start with the shortest path problem. The
following digraph (Figure[1.I) shows some possible paths connecting the starting point F to the target T.
The number on each arrow indicates the cost walking from one node to the other, and the total cost is the
sum of the costs of all moves. The objective is to find the path connecting F to T which has the minimal

cost.

Figure 1.1: Shortest path problem.

A naive solution to this problem is via enumeration. That is, find all the paths connecting F to T,
compute the cost of each path, and select the path with the minimal cost. For a problem with N layer
(stage) and m states, there are mN—2 possible paths, and on each path, one has to do addition operation
for N—1 times. Thatis, one has to do atleast (N—1) m" =2 addition operations, which grows exponentially
fast as the number of stages increases. Even for small m, this is not realistic since in practice, N is usually

very large.



Dynamic programming can be seen as an algorithm that can reduce the computational loads based

on the celebrated Bellman’s principle of optimality:

Bellman’s principle of optimality

An optimal policy has the property that no matter what the previous decision have been, the
remaining decisions must constitute an optimal policy with regard to the state resulting from
those previous decisions.

This principle appears to be obvious and that no proof is needed, although rigorous proofis not hard
to provide.
Before applying Bellman’s principle of optimality to the shortest path problem, let us first highlight a

basic methodology in optimal control that will be used throughout the lecture:

To derive an optimal solution, fix an optimal solution, then check the properties of this solution.

This philosophy, though naive, can sometimes provide rich information of the optimal solution which
largely reduces the search space. We justify this fact by applying Bellman’s principle of optimality to the
shortest path problem. Let us introduce some notations. Denote J;(x) the cost-fo-go function from state
X at stage i to stage N, & (x) the set of neighbours of x at the next stage and c(x, y) the cost going from
state x (at stage i) to y (at stage i + 1). The shortest path problem amounts to find

min J; (F).
paths F— T

Define the value function

Ji(x)= min Ji(x)
pathsx—T

which is the optimal cost going from x at stage i to T. Suppose that we have found an optimal path ¢,
then at any stage < N, for x € ¢, according to Bellman’s principle, there must hold

J; (%) yg/}r(lx){dx, N+T (N} (1.1)
fori=1,---,N—1. The boundary condition appears at i = N, in which case ]I’(,(y) = 0. In principle, one

may solve the above equation backward to finally get the value J; (F) and the desired shortest path. Let
us count the number of additions that we need to do. As before, the digraph has N stages and at each
stage, there are m states. Thus to obtain ]1’(,_1 (-), one only needs to do m comparisons and no addition is
needed. To obtain J,_,(-), at most m? additions are needed, the same for ];.“ () when2<i< N-2. For
J; (), only m additions are needed. Putting together these operations, we need (N - 3) m?+m=0(Nm?)
additions. This number is much smaller than (N —1)m”~~2 when N is large. The equation (I.I), derived
from Bellman’s principle, is called the Bellman equation of this problem. Thus the shortest path problem
is turned into solving a Bellman equation.

Although Bellman'’s equation is merely a necessary condition, it is clear that in the shortest path prob-
lem, it’s also sufficient for finding the optimal path.

We underscore a crucial property of the cost function that can be easily neglected when applying
Bellman’s principle. That is, the fact that the total cost is a sum of the costs at each step is essential.
We will come back to this point when we study continuous dynamic programming. For the moment,

establishing some intuitions is enough.



1.1.2 Optimal control on finite horizon

We now dive into optimal control of discrete time systems. We will see that optimal control can be for-
mulated as a shortest path problem, at least when the control space and state space are finite. Thus the
above reasoning still holds true.

Consider the nonlinear discrete time dynamical system

X1 = fe (X, ug), 1.2)

where xj € X (the system state at time instant k), uy € Uy (the input at time instant k). A control cost is
a function that takes the following form

N-1

J=@n) + Y Li(xg, up), (1.3)
k=1

with 1 = N € Z, and the initial state x; is assumed to fixed. Here ¢ and L are assumed to be some non-
negative functions. The control objective is to seek for a sequence of control input 7 = (uy,- -+, Un-1),
which is also called a policy, such that the cost J is minimized, while keeping the constraints x; € X}
and uy € Ug. The cost defined as encompasses most (if not all) optimal control costs (on finite time
horizon) in the control literature. This is intimately related to the fact that the cost of a problem in real
world is almost always additive in the sense we discussed in previous subsection.

Notice that the cost is only calculated on finite time intervals, i.e., from 1 to N. We call such an
optimal control problem on finite horizon. Sometimes we also consider infinite horizon optimal control

where the the cost function takes the form

J=)" Li(xk, ug). (1.4)
k=1

Although one may formulate the finite horizon optimal control problem as a infinite horizon one, for
example, by defining Ly = 0 for all k > N and Ly (xn, un) = ¢@(xy), this may sometimes complicate the
problem. As we will see later, in general, the infinite horizon problem is usually harder (at least theoreti-
cally) than the finite horizon one.
As mentioned before, when Uy and X are finite sets, the optimal control problem is equivalent to
a shortest path problem. Thus we can immediately derive the Bellman equation. However, it is often
the case that either the input space or the state space or both are continuous spaces, say for exam-
ple the constraint |uy| < 1. Although the problem is no longer a shortest path problem, we can ap-
ply Bellman’s principle in almost the same manner. As before, define the cost-to-go function J;(x) =
Z],y:_il Li(xg, ug)|x,=x + ¢(xn), and the value function ];‘ (x) =ming,,... uy_,) Ji(x). Then according to Bell-
man’s principle,
]f(x):lgleill}i{Li(x, wi) + Ji o (fi(x, u)}. (1.5)

The above equation meets the boundary at i = N—1, with ]I’Q(x) = ¢(x), for there is no control at the final
stage. Equation is the Bellman equation for the optimal control problem on finite horizon. Thus by
solving this equation, we can, at least obtain the information (necessary condition) of the optimal policy.
It is easy to notice that, this equation can be solved backward. For example, since Jy () is known, we
deduce

Uy_q(xn-1) = arggllvi_l}{LN—l (xn-1, un-1) + @(fn-1(xNn-1, Un-1))}



and so on. Finally, one terminates at u;‘ (x1) = argminy, {L; (x1, u1) + ]2* (f1(x1, u1))}.

The function J f (x1) is clearly the optimal cost and the corresponding policy (u;‘ (x1),---, u]*\,_1 (xn=1))
is optimal. That is, solving the Bellman equation is necessary and sufficient for finding the optimal
control.

Here we mention a difficulty in solving the Bellman equation. When no additional structures are
imposed on f and L, the minimization is often not numerically tractable. When U; and X; are finite
with low dimension, it is not a big problem. But taking into consideration that the control law has to
be digitalized at the implementation stage, the input space, as well as the state space, when continuous,
need to be discretized. We may still assume that U; and X; are finite, but with possibly large cardinalities.
For example, assume that U; = [}, Ir S R™ and X; = [I}_, Jx < R", with I, J; intervals in R. Partition
It and J into g and p intervals respectively, then there will be g" possible inputs and p” states at each
stage. In the worst case, there will be O(Np'" g"") addition operations to do, which is intractable when p
and q are large for n, m = 3. Such phenomenon is called curse of dimensionality noticed by Bellman in
the 1960s. Today, this term is widely used in various areas to indicate the intractability of the algorithm
in higher dimension.

There is, however, a special but extremely important case, that we can solve without much pain: the

linear quadratic regulator (LQR) problem.

1.1.3 Example: Discrete LQR on finite horizon
Consider the constraint free linear plant

Xi+1 = Axp +Buy
with cost function defined by ol

J= xI,SNxN+ Z (xl.TQx,- + uiTRul-)
i=1

withQ=0,Sy=0and R>0.
The optimal control problem is to find an optimal control policy such that J is minimized. Using

previous notations, the Bellman equation reads
JF () =nbiin{xTQx+ u] Ru; +J},, (Ax + Bu;)} (1.6)

with boundary condition J5,(x) = X" Syx. We assert that ]; (x) is of the form xTS;x for some S; = 0. To
see this, we calculate J3,_, (xy-1) and the rest is justified by induction. Indeed,

T (xn-1) = %ir}{xﬁ_loxw_l +uUp_ Run—1 + (Axn_1 + Bun-1) " Sn(Axn-1 + Bun-1)},

from which we see that
uy_, =—(B'SyB+R) BT SyAxn_

and it is evident that ]I";,_l (xny—1) contains no first order or scalar terms. Define
Kn_1:=(B'SyB+R)'BTSyA

which is called the Kalman gain, then ”;/—1 = —Kpn-1xn-1. Substituting u;‘\,_1 back, after direct but cum-

bersome calculations, we get

% T
Jn—1=XN_1SN-1XN-1



where
Sn-1=Q+(A-BKy_1)' SN(A—BKy_1) +Ky_ RKn-

or equivalently
SnN-1=Q+ATSyA—ATSyB(R"SyR+B) 'BTSyA.

By induction, one may derive the equation for u?, K; and S;, which we summarize in the following:

Ki =B'Si:1B+R)'BTS; 1 1A
ul* =—-K;x;
]l* = xl.TS,-xi

Si =Q+(A-BK)'Si+1(A- BK;) + K] RK;

(1.7)

with boundary condition Sy a known matrix. The optimal value of the problem is provided by J (x1) =

xlTSlxl. The algorithm runs as
Sy — (Kn-1,Up_1) = Sn-1— (Kn-2, Up_,) = -+ — So — (K1, uy) — S1

Although the linear plant we consider here is time-invariant, the extension to time-varying linear

systems is rather straightforward: it suffices to replace A by A; and B by B; in the formula (L.7).

1.1.4 Infinite horizon problem

Unlike in the finite horizon case, where the time-dependence of the system is of little importance (for
example, even though the system is time-invariant, the optimal policy is clearly time-dependent), the
optimal control of time-invariant systems on infinite horizon is quite different from that of time-varying
systems. In particular, the theory for time-invariant system is much richer than that of time-varying

system. For this reason, we will focus on time-invariant system

X1 = f(xg, ug) (1.8)

where x € X and uy € U for all k = 1. The admissible control input space may be time-dependent, say
uy € U(xy) € U, a constraint. The cost function is of the form

J= i L(xp, tg). (1.9)
k=1
Claim. For any stationary policy u, i.e., uy = u(xy) for all k = 1, the cost function under policy u has
the property that
Ju(x) = L(x, u(x)) + Ju(f (x, u(x)))
In fact, J(x) = L(x, u(x)) + X322, LOxk, u(xg)) = L(x, u(x) + Ju(f (x, u(x)), as claimed.

Recall that the cost-to-go function J;(x) = X827 ; L(xk, Ur)|x;=x- The value function J; is the same for

all i since

o0 o0
JH(x) = min ) L(x, up)lx;=x = min Y L(xg, ug)lx,=x = J7 (%)
(Miv‘“vk:i (ul’m’k:l

Due to this, we may denote J* (x) := J l* (x), and the Bellman equation takes a very special structure:

J*(x) = min {L(x,u) + J* (f(x, w)}. (1.10)
uel(x)



The difference of compared to the Bellman equation of finite horizon problem lies in the fact
that the function J* appears on both sides of the equation. Therefore, it seems not possible to solve equa-
tion via backward iteration as in the finite horizon case, after all, there is no boundary condition to
start with! However, one may guess that starting with J* = 0 and by iteration, /* converges to a solution.
We will discuss this in more detail in next subsection. Once J* has been found, the optimal policy is given
by

u*(x) =arg min {L(x,u)+J*(f(x, u)}.
uel(x)

As mentioned before, Bellman equation provides necessary and sufficient condition for finite horizon
optimal control problems. One may ask if this still holds for infinite horizon problem, i.e., when (I.10) is
satisfied for some function J, is J the optimal cost function? This is clearly untrue as one may always add

a constant to the solution which produces another solution. But at least we know the following.

Proposition 1.1. Let J* be the optimal cost function and J a solution to the Bellman equation (I.10), then
J=7"

Proof. By assumption, there exists #i(:) satisfying Jx) = Lix, 0(x) + J( f(x,1(x)). Then under the policy
4(+), for any x; € X, we have

k
JOe) = Jx) + Y. L(xg, a(xy),
i=1
which holds for all k = 1. Thus J(x1) = ¥, L(x;, @i(x;)) = J* (x1). O

On the other hand, if we know before hand that the solution to the Bellman equation is unique (at
least in a certain class), then we may conclude that solving Bellman equation is sufficient to find the

optimal cost function.

Contraction property

Define an operator T accordingly to

TJ(x)= min [L(x,u)+ J(f(x,u))].
uel(x)

It is not yet clear how to choose the living space for J(-). Let us consider a simple but illustrative case.
Assume that L(x, u) is uniformly bounded for all u € U(x), L and f are measurable, U(x) is measurable
for all x and the minimization is always achieved. Then T can be seen as a mapping on L*°(X). We show

that T is non-expansive on the Banach space L*°(X). In fact, for any other J € 1°°(X), there holds
TJ(x) = min [L(x,u) + J(f (e w) + U (f(x,w) = J(f (x, w)]
< min [L(x,u) + J(f (x,u)] + 1] = Jlleo
uel(x)

= TJ) + 1] = Tlloo,

changing the role of J and J, we immediately get
NTT =T loo < 1] = Jlloos

as claimed. However, non-expansiveness does not necessarily imply the existence of a fixed point.

10



To get stronger conclusions, further assumptions on the system or cost function shall be needed. For

example, this can be achieved by adding a discount factor a € (0,1) to the cost function:

J) =Y a¥Lxg, ug)

k=0 Xo=x

In this case, it is readily checked that J7, , (x) = aJ; (x). Hence the Bellman’s equation (??) becomes
J*(x) = Jmin [Lx, u) + aJ*(f (x, ).
Now define TJ(x) = minyeye [L(x, u) + aJ(f (x, u))], similarly, we deduce that
T -TLll<allji-Lll, Yh,J2€L®X)
Hence T is a Banach contraction mapping, and hence there exists a unique J* € L% (X) such that
Ty =J*
For any initial function Jy € L*°(X), denoting J, = T" Jy, we will get
=T 1< a” |l Jo=T"II
Thus J, converges to the optimal cost exponentially as n — co.

It has to be noted however that, the assumption of uniform boundedness of L(x,u) is very strong.

@ For example, it is often the case that L(x,u) — oo as |x| — oo, e.g., L(x, u) = |x|*> + |ul?, obviating
the assumption. Thus, in the present context, the non-expansiveness and contraction properties
of the Bellman equation will not be used.

Quadratic cost function for affine nonlinear systems

There is an important class of systems, called control affine systems,

Xir1 = f(xp) + gxp) ug

with quadratic cost function L(x, 1) = x " Qx+u" Ru. Assume that f is C! and that u can be chosen freely.
If the Bellman equation (1.10) admits a C 1 solution (strong assumption!), then one can “solve” for the

optimal policy

oJ* i
i (f(x)+gx)u™(x). (1.1D)

Plugging u* (x) into the Bellman equation, we obtain

u*(x) = %R’lg(X)T

T(x) = x"Qx + J* (f(x) + g0 u* (x))

.
J (fx)+gx)u*(x) g(x)R_lg(x)T

1
+_
4\ ox

oJ* .
o (f(x) + gx)u*(x) (1.12)

which is a partial differential equation.

11



In general, the equations (1.11) and (1.12) cannot be solved explicitly (except in the LQR case as we
will see later), thus one needs to apply numerical methods to approximate the solution. One may initial-
ize with an arbitrary policy uy(-) and a value function J(-), then iterate according to equations (I.II) and
(1.12):

1 aJ
()= R lg(x)Ta—;( F(x) +g(x)up(x))

J1(x0) = x"Qx + Jo(f(x) + g(x0) 1 (x))

Tafo

L s g ) gr-TgeoTL
0x & ! & 8 0x

1 (f(x)+ gx)uy (x)

This naive iteration scheme has no guarantee of convergence for general nonlinear affine systems. How-
ever, by slightly modifying the above iteration procedure, convergence can be guaranteed for large class
of systems. The idea is, we iterate either the policy u or the value function J while the other one is calcu-
lated according to the Bellman equation. Intuitively, this has better convergence property than iterating
u and J at the same time, since it may happen that both u and J are away from u* and J*. We study this
in the next subsection.

Policy iteration and value iteratior{ |

There are two basic iteration approaches for solving the Bellman equation (I.10) approximately, namely,
policy iteration and value iteration.

Value iteration: start from some non-negative function Jy : X — R and iterate according to
Jr+1(x) = min {L(x, u) + J(f (x, 1))} (1.13)
uel(x)
The approximate optimal policy can be taken as
U1 (x) =arg min {L(x, w) + Jn(f(x, W)}
uelU(x)

when Jy reaches a reasonable level of accuracy.
There is an important property of value iteration, called the monotonicity property. Being J* the
optimal cost function, if we start from Jy = J*, then J;. = J* for all k= 0. In fact,

J1(x) = min {L(x, u)+ Jo(f(x, u))}
uel(x)

> min {L(x,u)+ ] (f(x, u)}
uel(x)
=J"(x).

Interestingly, we can get stronger result for the case Jy < J*. That is, the sequence {Ji} is monotone

increasing:

1 This part is mainly taken from the paper [2].

12



since
J1(x) = min L(x,u) = Jo(x)
uel(x)
Jo(x) = min {L(x,u)+ J1(f(x, u)}
uel(x)
= min {L(x,u) + Jo(f(x, u))
uelU(x)

=i(x)

Thus, there exists a function J < J*, such that J; — J pointwisely, but there may exist a gap between ]

and J*. The following classical result provides a sufficient condition that J = J*.

Proposition 1.2 (Convergence of value iteration I). IfU is a metric space and the sets
Ur(x,A) ={ue U(x): L(x, u) + Ji (f (x, w)) < A}

is compact for all x € X, A € R and k, then the value iteration Ji 1 J* pointwisely for any Jy = 0 satisfying
Jo(x) < minyeyy Lx, u) + Jo(f(x,w)) forallxe X, e.g., Jo =0.

The proof of this proposition is a bit technical, the interesting reader is referred to [I.
We now switch to the other case: Jy = J*, for which we need more structures and assumptions. As-
sume that the set defined by

Xs:={xeX:JueU(x),s.t.L(x,u) =0, x = f(x,u)}

is non-empty. Then, if x € X;, we have J*(x) = 0. We call X; the stopping set, which is a desirable set of
termination states that we try to reach or approach with minimum total cost.

For an initial state x, a policy 7 is said to terminate starting from x if the trajectory of system starting
from x reaches the set X; in finite time. Denote

I =(=0:J(x)=0,Vxe X} (1.14)

We assume that for every x € X, there is a policy which terminates and which can approximate the opti-
mal policy as closely as possible. More precisely, we assume:

Assumption 1. The stopping set X; is non-empty. Moreover, for every x € X, with J*(x) < oo, and
every € > 0, there exists a policy 7 that terminates starting from x and satisfies J;(x) < J*(x) +e€.

This is a reasonable assumption which is satisfied in many important examples. Normally, the most
technical part to verify is the existence of 7 satisfying J; (x) < J* (x) + €. Check the paper [2] for sufficient

conditions that guarantee Assumption 1.

Proposition 1.3 (Uniqueness of solution of Bellman equation). Let Assumption 1 hold. The optimal cost
function J* is the unique solution of the Bellman equation (L.10) in the set ¢ .

Note that Proposition (1.3) is NOT saying that the optimal policy terminates! It says that the optimal
cost must vanish on X;. For example, as we will see later, in the linear quadratic regulator problem, the
optimal policy is a static feedback u = —Kx, which normally does not vanish unless one starts from x = 0.

One should be able to derive the proof of this proposition after finishing this section.
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Proposition 1.4 (Convergence of value iteration II). Let Assumption 1 hold. Then the value iteration

Jx converges pointwisely to J* for initial Jy having the following properties:
* Jo: X — Ry is non-negative;
e Jo(x)=0forall xe X§;
e Joz=J".

Proof. By monotonicity property, we know Ji = J* for all k = 0. Moreover, it is obvious that for x € Xj,
Ji(x) =0forall k.

We now take a different viewpoint of the value iteration: it can be seen as solving for a finite horizon
optimal control problem with terminal cost Jy. Thus for every policy 7 = (3, uy,-) and every initial

state x; € X, we have
k-1

J* (1) < Jee(x) < Jo(xg) + Y L(xj, i)

i=1
where {x,-}’lC is the state trajectory generated by the policy 7 with initial condition x;. Note that the first
inequality is due to Ji = J*. If J*(x;) = oo, there is nothing to prove, hence assume J*(x1) < co. Now, for
any policy 7 that terminates from x;, by definition we have x; € X for k large enough, and consequently
Jo(xz) = 0. Thus

J*(x1) <lim sup Ji(x1)
k—oo

k—o0 i=1

k-1
<lim sup {]O(xk) + ) L(x;, ui)}
=) L(xj,u;) = J(x1)
i=1
Now take the infimum on 7, we should get

J¥(x1) <lim sup Ji(x1) < J* (x1)

k—o0

for J* (x1) < oo, since J; can approximate J* arbitrarily well. O

Let’s carry on to the policy iteration scheme.
Policy iteration: start from a policy u; (-), then solve

Jup () = L0x, uge (%)) + oy (f (x, uge (%)) (1.15)
for Jy, (-). Next, iterate uy () according to
Up1(x) €arg min {L(x, u) + Jy, (f (x, 1))} (1.16)
ueU(x)

We mention that J,, (-) is only implicitly defined by (I.I5), and that J,, vanishes on Xj.
The main result of policy iteration that we are going to prove is the following.

Proposition 1.5. Ler Assumption 1 hold. A sequence {],,} generated by the policy iteration algorithm
(L.15), satisfies Jy, (x) | J*(x) for every x € X.
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Proof. In equation (1.16), two stationary policies, 1y and 1 are involved. Let us replace them with two

arbitrary stationary policies, say p and v, and that v is defined through the minimization
v earg min {L(x,u) + J,(f(x, u))} (1.17)
ueU(x)
from which it follows that
Ju(x) = Lx, (X)) + Ju (f (x, u(x))) = Lx, v(20) + T (f (x,v(x)))

For notation ease, denote J; (x) = Ju(x) and J2(x) = L(x,v(x)) + Ju(f (x,v(x))). Continuing the above pro-
cedure inductively (viewing f(x,v(x)) as x»), we obtain a monotone decreasing sequence

Ju@) =1 (x) = o(x) = Ji(x) = -

where
i-1

Ji(x) = JuCxi) + ) L(xj, v(x)

j=1

in which the sequence {x;} is generated by policy v from x. Thus

Ju(x) = Jo(x)
= min {L(x, u) + J,(f (x,u)} (see (I.I7))
uel(x)

> ilirg)f,-(x) > Jiluxj,v(xj))
=Jy(x)
Now substituting p = ug, v = ug,1 into the above inequality, we get
Ju, (x) = uren(}g){L(x, u) + Ju, (f (x, )} = Ty, ()
forall x€ X, and all k= 1. Thus J, | Jo for some J = 0. Taking the limit on both sides, we obtairﬁ

Joo(x) = min {L(x, u) + Joo (f (x, u))}.
uel(x)

Thatis, J is a solution to the Bellman equation (1.10). Note that J,,, € ¢, hence J € _Z . Now, invoking
the uniqueness of the Bellman equation (Proposition (L.3)), the conclusion follows. O
Stability issue

One of the most important problems in control theory is the problem of stabilization. Optimal control
provides a way for fulfilling this purpose. For that, a cost function shall be proposed first. A widely

2More rigorously, the limiting procedure is divided into two parts. First, note that

min {L(x, w) + Joo (f(x, u))} = min {L(x, w) + Ju (f (x, u))} < Joo (X)
ueU(x) uel(x)

on the other hand,
L(x, 1) + Juy (f (%, ) 2 Joo (%)

for all u. Now taking the limit, we discover

Lx, ) + Joo (f(x, 1) = Joo(x), VueU(x).
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used function is the quadratic cost function that we have already mentioned previously, i.e., L(x, u) =
x"Qx+u"RuforQ>0and R=0.
Now if for the nonlinear system (1.8) xi.; = f(xk, #x), a solution J* to the Bellman equation satisfies

allxll? < J*(x) s calIxl|P, VxeX

for some positive constants ¢, ¢; and p = 1, then we assert that the stationary optimal policy u* (x) =

argmin,{L(x, u) + J* (x, u)} is exponentially stabilizing. Indeed, under the optimal policy,

J* (Xgs1) = T (%) = Lxg, u™ (xg))

=1-0J" (xx)

where we have used the fact that L(x, u) = ¢J* (x) for some positive constant ¢ > 0. It follows that J* (xj) <

(1-¢)*J*(x1) — 0 as k — co. Hence x; — 0 exponentially as expected.

Infinite horizon LQR

The most well studied optimal control problem on infinite horizon is the linear quadratic regulator prob-
lem. This is mainly because of its wide range applicability and simplicity. For us, the LQR problem will
serve as a concrete example to help us enhance the understandings of the materials of this section, e.g.,
the solution to the Bellman equation, policy and value iteration, and stability issue etc. But we also high-
light that, due to the nice structure of the LQR problem, it has some interesting features that cannot be
derived from the machinery that we have introduced so far. For example, we will see that observability
will now play a role in determining the global convergence of the value iteration in for a certain class of
initial functions.

Consider the linear time-invariant discrete time system
Xi+1 = AXp +Buy (1.18)

with quadratic cost

18

J=Y x{Qxp+ul Ruy (1.19)

o~
Il

1
where Q = 0 and R > 0. Assume that u € R™ is constraint free. In order that J < oo, it is sufficient to
assume that the system is stabilizable (verify!). Now the Bellman equation (I.10) reads

J*(x) =mgn{xTQx+ u'Ru+J*(Ax + Bu)}. (1.20)

The central question becomes how to solve the Bellman equation (1.20). At this stage, it is not clear
how should J* look like. Fortunately, we know that under some mild conditions, the value iteration

starting from J; = 0 converge to J*, see Proposition (I.2). Let’s calculate J;(x). For i = 1, it is obvious that

Ji(x)= muin{xTQx+ uTRu} = xTQx.

Denote J; (x) as J;(x) =: x" P;x, or P; = Q. To get J»(x), we calculate

Jo(x) = mgn{xTQx+ u' Ru+ (Ax+ Bu)TPl(Ax+ Bu)}.
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Let us pause for a moment. It seems that we have done similar calculations in the finite horizon LQR
problem. If wee look at the Bellman equation (1.6), we notice that the only difference there is that we
solved in backward time with a boundary condition at £ = N. Here, the value iteration starts with an
“initial” value function, like solving the Bellman equation in forward time, but it’s obvious that these two
are the same, only with different boundary conditions. Thus we can copy most of the calculations from
there, say equation (L.7), to write J;(x) = x' P; x where

Pii1=Q+A"P;A-A"P;,B(R+B'P;B)"'B"P;A (1.21)
with boundary condition Py = 0. To employ Proposition (I.2), it remains to check if the set
U, ) ={ueR™: x"Qx+u' Ru+x" Prx <A}
is compact, but this is obvious since R is positive definite. Thus we conclude that

lim P; =P

1—00
for some P = 0. In particular, the optimal cost function is a purely quadratic function. With this informa-
tion in mind, now if we are to solve the Bellman equation (1.20) directly instead of by value iteration, we

may substitute J* (x) = x" Px into (I.20), to get the discrete time algebraic Riccati equation (abbr. DARE):
P=Q+A"PA-ATPB(R+B"PB)'BTPA. (1.22)

which can also be written as (see (1.7))
P=Q+(A-BK)"P(A- BK)+KRK. (1.23)

From the above reasoning we see that the existence of solution of the DARE is guaranteed when the
system is stabilizable. The uniqueness is however a bit more tricky. The only tool available for us is Propo-
sition[1.3} which requires Assumption 1. The reader can check that Assumption 1 is satisfied whenever
Q >0 (see [2]), which is a stronger requirement than needed. After all, linear systems theory tells us that
the DARE admits a unique solution P = 0 whenever the pair (A, C) is detectable where C (full row rank)
factors Q through Q=C'C.

One should distinguish between the uniqueness of the solution of the DARE (1.22) and the unique-
g% ness of the solution of the Bellman equation (L.20); the former restricts implicitly on the space of
purely quadratic functions.

Proposition 1.6. Consider the LTI system (1.18) with cost function defined by (1.19). Assume that Q =0,
R >0 and Q can be factored as Q = C' C for some matrix C with full row rank. Assume further that (A, B)
is stabilizable and (A, C) is detectable. Then the following properties hold:

1. There exists P > 0 such that for every P; =0, we have
lim Pk =P
k—o0

where Py is obtained by the value iteration (1.21).
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2. Pisthe unique solution to the DARE (1.22) with the set of positive semi-positive definite matrices.

3. The optimal policy is given by the static state feedback
u(xp) = —Kxp (1.24)

where
K=-(B"PB+R'BTPA.

4. The closed-loop system is exponentially stable, i.e., A— BK is Schur stable (the spectrum of which

lies in the open unit circle of the complex plane).

Before proving this proposition, we mention that the second argument is a direct consequence of the
first: suppose P = 0 is another solution, then by the first claim, the value iteration starting with P will
converge to P. But P is a fixed point of the DARE, hence P;. = P for all k = 1, which forces P = P,

Another thing to mention is that since we are working implicitly under the space of purely quadratic
functions rather than the space ¢ (see (L.14)), we will adopt a new proof approach.

Proof. Step I: show that P obtained by value iteration from P; = 0 is positive definite, and hence is
exponentially stabilizing; see the subsection Stability issue.
Notice that under the control (1.24), the closed loop system reads xj; = (A—BK)xg. Then from (1.23)
we see
xg Pxp— X0, Pxpe1 = xL (Q+ K RK)x, Vk=1.

If P is not positive definite, then 3x; # 0, such that xlTle =0, but this enforces that x]IHkaH = xz(Q +
KTRK)x; =0forall k>1since P =0, Q+K'RK =0. Consequently,

ka =0, ka =0, Vk=1.

In this case, the closed loop system (along this trajectory!) is simply xi;.; = Axy. Now that (A,C) is
observable, it follows that x; = 0 for all k = 1, a contradiction. Thus P > 0.
Step 2: show that the value iteration from any P; = 0 also converges to the P above.
Denote by Py (P;) the value iteration from P; at the k-th step. By monotonicity of the value iteration,
we know that P (P;) = Py (0) for all k = 1. Recall that xlTPk(Pl)xl is the minimal cost of
k-1

T T T
xp Prxe+ ) (x; Qx;+u; Ru;)
i=1

then it must be smaller than the cost generated by the control law (1.24), i.e.,
X Pe(P)xy < x) {((A -BK)* TP (A- B 1+

k-1 . .
+Y (A-BK))H" M Q+KTRK)(A-BK)'™! } X1
i=1

Recall that A— BK is Schur stable, it follows that limsup._,, xlTPk(Pl)xl < xlTle. Combining this with
the fact that Py (P;) = P¢(0) — P as k — oo, we immediately get Py (P;) — P. O
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We now turn to policy iteration for the LQR problem.
To make the problem meaningful, choose an initial policy u; = —K; x such that A—BK; is Schur stable.
Then according to policy iteration, in the first step we solve

Ju, (x) = xTQx+ ulTRul + Ju, (Ax+ Buy)

for J,,. Arguably, we can choose J, to be purely quadratic, say J, (x) = x" P, x. Then the above proce-

dure is equivalent to solving the linear matrix equation
P;=Q+K{ RK; +(A-BK;)' P1(A-BK)). (1.25)
In the second step, one computes u, according to

Up = argmuin{xTQx +u' Ru+ (Ax+Bu) " P;(Ax+ Buw)}
=—(B"PiB+R)'BTP Ax
=: —sz.
Repeat this procedure, one would obtain a sequence of stationary policies {u}.
Notice that equation is not a Riccati equation. However, if we can show that Py converges to
some P, then obviously Ky — —(BT PB+R) "' BT PA and that equation now becomes the Riccati equation

(1.22). If in addition, P = 0, then P must be the same P obtained in the value iteration procedure. Indeed,
we have the following result. For a proof, see [10].

Proposition 1.7. Under the assumptions of Proposition[1.6, the matrix Py, obtained from the policy itera-

tion converges monotonically to the matrix P obtained from the value iteration, i.e., Py | P.

Remark 1.1. The policy iteration for LQR problem has better converge rate (quadratic) than value itera-

tion (linear), see [10].

1.1.5 Appendix: Multistage Optimization

We provide an alternative approach to optimal control of discrete times systems via multi-stage opti-

mization. It can be seen as the mathematical foundation of Bellman principle.

A Fundamental Lemma
Consider the minimization problem

inf ’
(x,IJI/}EDf(x y)

where D c X x X, and X is a metric space. Denote D, :={y€ X : (x,y) € D}, DY :={xe€ X : (x,y) € D}.

Lemma 1.1. The following equality holds

inf _f(x,) =inf inf f(x,y)=inf inf f(x,y).
wpep! BV =1t I Fop =int i, 700y)

In addition, the infimums can be replaced by minimum when either of the three infimum is achieved for

some (x«,ys) € D.
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Proof. Let I = inf(y y)ep f(x,¥), I = infyinfyep, f(x,y). It suffices to prove I} = I. By definition, there
exists a sequence {(xg, yi)i3-; < D, such that limg . f (X, yk) \ 11 lﬂ Then

L < inf f(xg, 1) < f(xe ye), V=1,
yerk

Letting k — oo, we get I, < I;. For the inverse direction, note that for any £ > 0, one can find a pair
(x",y") € D such that

inf f(x, )= fx",y")-¢ (1.26)
(x',y"eD

and f(x",y") = I;. On the other hand, there exists an integer K > 0, such that for all k = K, f(xg, yx) <
L+e< f(x",y") +¢. Tt follows from (1.26) that for any (x, y) € D,

f(x,y)Z( inf f(x',y) = flxp, yi) —2¢, Vk=K.

x',y")eD
Hence
L =inf inf f(x,y)= lim f(xg, yx) —2e =1 —2¢.
X yeDy k—o0
Since ¢ is arbitrary, we get I, = I, which implies that I) = I. O

This lemma is extremely simple but powerful as we will see next. We underscore that the interchange-
ability of two inf are essential. On the other hand, it is usually illegal to interchange inf and sup as in
general

inf sgp ) # sx;p inf f(x, y).

which makes differential games different from classical optimal control.

Multistage optimization

For most of the time, we will consider “min” in lieu of “inf”, due to the consideration that the difference
between the two are not essential for our discussions.
Consider the function

J(x,3,2)=f(x,y) +8g(,2)

and the minimization problem

J*(x)= min f(x,y)+g(,2).
(y,2)€D
Invoking Lemmal[l.1} J can be rewritten as
J*(x) =minmin f(x,y)+ gy, 2)
y zEDy
=min(f(x,y) + min g(y, 2))
y zeDy

The minimization has been divided into two steps and that is why we call it a twostage minimization
problem. In the first step, y is fixed, and we minimize g(y, z) over D, to getafunction ¢(y) = min,¢ D, gy, 2).

The second step is to minimize the function f(x, y) + ¢(y).

3limy_.o ax \, @ means that a;, is decreasing and converges to a.
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For multistage minimization, we consider

N
J(xo) = ) gr(xpe—1, X) (1.27)
k=1

J*(x0) = min J(xp,X1, -, XN)
X1, XN)

This is a multistage minimization problem. Using Lemma|[I.1} we know

N

Ji(x) = ) gk (xg-1,Xk)
k=i

Xi—-1=X

]f(x)=( min )]i(x), 1<isN

Xiy XN
rewrite J as

N

Ji(xo) =min min Y gi(xg_1,X)
X (xe,XN) (2

N

g1(xp,x1)+ min Y g1, Xp)
(x2,+,XN) j-—o

= min
X1

= min [g1(x0, x1) +J3 (x1)]
Similarly,
I, (x) = n},inn[gm(x,xm) + ()], 1smsN-1
NS n)}livngzv(x, xN)

The above algorithm is nothing but the Bellman equation that we derived earlier using Bellman’s
principle of optimality. Hence in the discrete time case, everything that we have done so far can be ap-
proached alternatively via multi-stage optimization. In case you feel a bit uncomfortable with Bellman’s
principle, which we didn'’t prove rigorously, then the multi-stage optimization provides you a rigorous
framework that should dispel all your doubts.

1.2 Continuous time systems

1.2.1 Bellman principle and the HJB equation
Bellman principle
In this section, we begin to study dynamic programming in the setting of continuous time systems:

x=f(xu),

(1.28)
x(tp) = xo

where x(t) € X < R”", u(t) € Uy < R™ and u(:) € %, and % is called the space of admissible control input.
To avoid pathological cases, we assume that the solution to this equation exists and is unique for each
u(-) € % . When the initial condition is clear from the context or is not important to us, we simply write
x(t) as the solution to system. If however we want to highlight the initial condition, we may write x(z, xo)
(when the initial time instant is unimportant) or x(f; ty, Xo). If, further more, we want to include the input,

we can write x(t; to, xo, u) for ue %.
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Recall that in the discrete time setting, the cost function for finite horizon problem is defined as
Q(xn) + 211272—11 L(xy, ug), i.e., a sum of the cost at each stage plus a boundary cost. Naturally, we can con-
sider a similar cost in the continuous time setting by changing the sum to integration. More precisely, we

will consider cost functions in Bolza form

T
J(() =(,0(x(T))+f L(x(s), u(s))ds (1.29)
0
where ¢ and L are both non-negative functions. Likewise, we can consider infinite horizon cost
o0
](u(-))=fO L(x(s), u(s))ds

As before, the objective of optimal control is to seek for an admissible control u* (-) such that

u* () € argmin J (u(-)). (1.30)
ueu

Remark 1.2. The discrete cost can be seen as a special case of the Bolza form cost since the sum is simply

an integration w.r.t. the counting measure.

To apply Bellman'’s principle, as before, we should define cost-to-go and value functions. Again, these
are done by simply changing the summation to integration in the discrete time setting. In words, the

cost-to-go function from ¢ = s with x(s) = y to T is

T
J(s,y;u(®) := @(x(1)) +f L(x(n), u(p), n)dt,
N

and the value function is defined as the optimal value of the cost-to-go under admissible control on the
interval [s, T]:

(s, ) = i Ly u(s). 1.31
T (s,y) u(.)renqllr‘l[m](syu()) ( )

Here, the set % |[s, 1) is the set of admissible controls that can be implemented on the interval [s, T']. More
rigorously, % |(s,1) = {uls,1) : u € %}, where 1, 1) stands for the characteristic function of the set [s, T'].

Recall that the Bellman principle says: an optimal policy has the property that no matter what the
previous decision have been, the remaining decisions must constitute an optimal policy with regard to
the state resulting from those previous decisions. Thus for any time instant r, there must hold

J*(s,y)= min {f L(x(t, s, y,w), u(e)de+ J*(r, x(r; s, y, u)}, VrelsT]. (1.32)
u(E#|s,r) s

As we have seen, in the discrete time setting, the correctness of the corresponding formula of (1.32)
can be justified rigorously via multi-stage optimization. In the continuous time setting, the following
lemma, which can be equally called Bellman’s principle of optimality, legitimates the formula (I.32).

Lemma 1.2. Let J(u(-)) be a cost function, with u(-) € %|(zy,s). Assume that

1. J(u(-)) is separable for any time ¢ € [fy, f;] in the sense that there exist functions J; : U xR — R,
Jo : U — R such that
Jw() = 1w (), J2(u2(4))

where u; = uly, and up = uly, ) for all £ € [#, £1], i.e., the truncations of u on the interval [#, 7)

and [f, 1] respectively;
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2. J; is nondecreasing with respect to the second argument.

Then Bellman’s principle of optimality holds for the cost function J(u(-)):

J*= min Jw())= min ]1(u1(-), min ]z(uz(-))), Ve (1, ]
u()E% | 19,1 u1 (Ve (19,0 Uz (VEX|(1,17)

Proof. For any u; (+), u2(-), we have
5 < N (), J2(uz(-)))

hence
J <h (ul('), min fz(uz(')))
U2 (V€U 1,1
and
J*< min fl(ul('), min fz(uz(')))-
u1 (Ve (19,0 Uz (V€% (1,11
On the other hand,
min ]1(u1(-), min fz(uz(')))
u1 (V% 1y, up (Ve (1,11
<= min J; (), J2(u2(})) (monotonicity)
u1 (V€ (14,1
< min min  J; (u10), J2(u2()))
U2 (V€U 11,1y) U1 (VEU |11,0)
= min min  J(u()
up (VEX | (t,e) w1 (VEX |1y,
= min Ju()=J".
u()E% 19,1
This completes the proof. O

To verify (L.32), let
t
Ji(uy,y) = y+f0 L(x(s), u(s))ds

T
J2(uz) =<p(x(T))+f L(x(s), u(s))ds
r
then obviously J(u()) = Ji(uy,J2(u42)) and J; is nondecreasing with respect to the second argument.
(Note that J, is nothing but the cost-to-go function!)
The Hamilton-Jacobi-Bellman equation

Let’s recall the central result from the previous subsection: if J* is the value function defined for the
optimal control problem defined by (1.28), (1.29) and (L.30), then it satisfies the following equation:

.
J(s,) = min {f Lx(t;s,y, w), u(D)dt+ J* (r, x(r; s, y, u)}, VrelsT]. (1.33)
u(E% |5, K

This equation looks too implicit and is hard to use in practice. The main task of this subsection is to
derive the celebrated Hamilton-Jacobi-Bellman equation based (1.33), a more tractable form than (1.33).
The key is to note that (1.33) is satisfied for all r = s and hence one can take derivatives when J* are

assumed to be smooth.
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On the one hand, for any give u € %, and r > s, we have

I (s - (nx(r;s,pw) 1
r—s r—s

;
f L(x(t;s,y,w),u()dt <0, Vue¥
S

Suppose that J* is continuously differentiable, and that L, u are continuous, then the above implies

oJ* oJ*

—E(s, - W(s' NFus)— Ly, uls) <0, Yu(s) e Us

resulting in

*

(1.34)

6]*(s,y))<0

) H y Uy —
(s,y) + sup (y u 3y

os ueUs

where
Hx,u,p)=p' f(x,u) - L(x,u) (1.35)

On the other hand, for any pair (r,€), with r > s, € > 0, there exists a control u , such that

.
T (s,y) = f L(x(t,8, Y, Ue,r (), ug,r (0)dt+ J* (r,x(r; 8, ¥, Ug, 1)) —€(r — s)
S

or

T (s, ) =T (r,x(1,8, ¥, Ue,r)
r—s
1 rroy* oJ*
[E(t,x(t, S, Y Uer) + E(t,x(t, SV uer) f(x(L,8,y, uer), ue,r(t))] dt

1 r
f L(x(t,S,y, ug,r);ug,r(t)y t)dt
r—=s8Js

r—sJs
;

1
- - L(x(t)S)J/) uE,r)y uE,l’(t)r t)dt
r—sJs

1 rooyr oJ*
=—f ——— (6, x(t, 8, Y, Ue,r) + H|x(L, 8, Y, e r), Ue r (1), ——— (£, (1,5, ¥, U, /) | | dt
s 0s 6y

r—=S§

Let r — s+ while keeping € fixed, we get

*

0s

(s )+H( Ug,r(S) —E(s ))
’y J’: &, ’ ay 7y

< —6] (s,y)+ sup H(y, u, —ai(s, y)) (1.36)
0s ueUs oy

Since ¢ is arbitrary, (1.36) and (1.34) together imply

*

o (s,y)+ su H( u—g(s ))—O Vsel0,T], Vye X
aS 7y p y; ) ay )y — Y ) ) y

ueU;

or equivalently

*

aJ*
0s

(s,y) + inf {a] (s,y)f(y,u)+L(y,u)}=0, Vsel[0,T], Vye X
uels | 0y

This is a partial differential equation with dependent variable (s, y). By the definition of value function
(see (1.31)), the PDE is accompanied with boundary condition

(T, =9y, VYyeX.
Summarizing, we have:
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Proposition 1.8. Suppose that J* (s, x) defined as (1.31) is continuously differentiable. Then J*(t,x) is a
solution to the following Hamilton-Jacobi-Bellman (HJB) PDE on [0, T] x X:

—Vi(t,x) + sup H (x,u,—Vy(t,x)) =0, (1.37)
ueU;
or its equivalent form
Vi(t,) + inf {Vi(t, %) f(x, ) + L(x,w)} =0, (1.38)
ueU;
with boundary condition
V(t,x) = @),

where H is defined in and we have adopted the notations %—‘t/ =V;and %—‘; = V.

Although the optimal control problem is a “minimization”, the HJB equation (1.37) may involve a
maximization, see (1.37).

Suppose that U; = U for all ¢ = 0. To obtain the optimal control law based on the solution of the HJB
equation (1.37), we can follow Algorithm|[1.1](called the verification rule).

Algorithm 1.1 The verification rule

1. Solve the optimization problem

u*(x, p) = argsup H(x, u,—p).
uelU

2. Find a continuously differentiable solution V(t, x) to

_Vt(ty x)+H(xr u* (xr Vx(t’ x))) _Vx(t»x)) = 0) (139)
V(T, x) =p(x),

for (¢,x) € (0,T] x X.
3. Solve for the solution x* (¢) =: x*(¢; s, x) to the Cauchy problem of the following ODE:

X*=f(x" (), u* (1, Vi (t, x* (1))
x*(s)=x

Then
u* (t, Vy(t, x* (1))

is an optimal control and x* (¢; £y, x) is the corresponding optimal process.

As the discrete time optimal control problem on finite horizon, solving the Bellman equation (1.37)
(when the solution has some regularities) is sufficient to obtain the optimal control. For continuous

problems, we have a similar result.

Proposition 1.9. If the verification rule Algorithm admits a C' solution V, then u* obtained from the

algorithm is an optimal control.
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Proof. Let V be a C! solution to the Bellman equation. Let u(-) be any admissible control and x(-) the

corresponding trajectory. Then for initial condition xo,

Ldvis,x(s) ds

V(t,x(2)) =V (0, xop) =f
0 ds

t
=f0 Vi(s, x(8)) + Vi (¢, x(8) f(x(s), u(s))ds

t
zf —L(x(s), u(s))ds (use(1.38))
0

from which it follows that ;
V (0, xp) = p(x(T)) +f L(x(s), u(s)ds.
0

Since u(-) is arbitrary, we conclude that V' (0, xo) is the optimal value function. On the other hand, it is

readily checked that u* is a control that achieves the optimal value. O

Apparently, the most challenging part of the algorithm is the second step, i.e., solving a PDE of the
form F(x, v, vx) = 0. But even numerically solving the HJB is quite difficult, which normally incurs curse

of dimensionality after discretization.

The above two main results both have a drawback: they require the value function to be con-

g% tinuously differentiable, which is almost never met in real applications. What's worse, the HJB
equation may not have continuously differentiable solutions! This problem turns out be non-
negligible and must be handled with care. We will come back to this issue later.

1.2.2 Example: Continuous LQR on finite horizon

We study the system
X=AMx+Bu

with x € R", u € R™ and cost function

T
J= x(T)TQfx(T) +f x(6)TQ(Ox(t) + u(t) " R(H)u(r)dt

To

where Qr Q=0 and R(¢) > 0 for all ¢ = 0. In addition, we assume A(-), B(-), Q(-) and R(-) are continu-
ous. The objective is to find an optimal control u* such that J is minimized.

The Hamiltonian function is
_ T T T
Hx,u,p,t)=p (AO)x+BHu)—-x QO)x—u RNu

We implement the first two steps of the verification rule:

Step 1: solve the minimization min, H(x, u, p, t), resulting in
1
u* = argmfo(x, u,p,t) = ER(I)_IB(t)Tp

and
Hx,u*,p,0=p  A(x—x' Q(H)x+ lepTB(t)R(t)_lB(t)Tp
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Step 2: solve the H]B
—V, = Vi A x—x" Q(O)x + iVxB(t)R(t)_lB(t)TVJ =0.
Consider a candidate V (¢, x) = x| P(£)x, in this case
ut = %R(t)*lB(t)TP(t)x
Substitute into the above HJB equation we get
—x"P(O)x—x"[P(OAW) + A TP(D)]x—x"Q(t)x+x P()B(OR(H) ' B(t) ' P()x=0
Since this equation must be satisfied for all x, it follows that
—P(1t) = Q(t) + P(H A1) + A TP -POBMORM® BT P(1). (1.40)

with boundary condition
P(T) = Qy.
The first order ODE is called differential Riccati equation (DRE). Thus the continuous LQR prob-
lem on finite horizon reduces to solving the DRE (1.40).

Proposition 1.10. Suppose that A(-), B(-), Q(-) and R(-) are continuous and Qf = 0, Q(¢) = 0, R(¢) > 0 for
all t € R. Then the differential Riccati equation has a unique semi-positive definite solution on any interval
(2o, T for all ty € R.

Proof. Notice that the right hand side of is quadratic in P (thus locally Lipschitz!) and that A(:),
B(), Q()) and R(:) are continuous, therefore local existence and uniqueness of solutions are guaranteed.
This also implies that the solution to is symmetric: if P() is a solution, so is P(1)", while both have
the same terminal condition, thus P(f) = P(¢) .

We show next that there is no finite escape time. Suppose that the solution exists on (#;, 71 for some
finite £; € R. Then by construction, for any # € (¢, T1, and x(#) € R",

x(1) " P(t2)x(t2) < x(T) " Qpx(T) +fo(t)TQ(t)x(t) +ut) " R(Ou(ndt, VYu().
2

(The inequality becomes equality for u = u™*, thus we also get P(f;) = 0.) In particular, this is true for
u = 0, implying that one can find a constant ¢ > 0 such that P(#) < cI for all t; € (;, T] (no blow-up!).
It is then routine to show that when £, is sufficiently close to #;, the solution can be extended outside
(1, T1. O

Remark 1.3. Note that the DRE (1.40) has a terminal condition instead of an initial condition. If one
wants to solve a true ODE in forward time, one can introduce a change of variables

1=T—t, P@)=P(T-1), Rt)=R(T-1)
A(T)=A(T-1), Bm)=B(T-1)

Then it becomes equivalent to solving

P(1) = Q) + B A(r) + Ar) T B(r) - P()B(MR(1) ' B(r) P(1),
P(0)=Qy.
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1.2.3 Method of characteristics and the Hamiltonian equation
Method of characteristics
A well-known approach to solving PDE of the form
F(x,v,vy) =0, xe QcR™ (1.41)
with boundary condition
v(x) =7(x), x€oQ,

is via the so-called method of characteristics. Here v is a real valued function and F is assumed to be
a continuous mapping from R” x R x R” to R. In addition, we assume Q to be compact with smooth
boundary.

The idea of the method of characteristics is to turn the first order PDE into a set of ODEs. Given

apoint ye 0Q and acurve x:[0,1] — Q, with x(0) = y. W examine the values of v(x) along this curve, see

Figure[T.2.3]

y

Figure 1.2: Method of characteristics.

Introduce the notation

(plr'” rpn) = (ler'” ) an)-
For convenience, denote
v(s) =: v(x(s))

p(s) =: p(x(s)) = vx(x(s)).

Differentiating v and p w.r.t. s, we find

n n
U= Z Uy; Xj = Z piX;
i=1 i=1

n
pi = Z Ux,-xjxi
j=1

where x; stands for the derivative of x; w.r.t. s. Further, differentiating (1.41) w.r.t. x;, we get

0F OF 1 OF

— 4+ — Uy + — Uy x: = 0.
0x; Ov i ;api i
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Now if the curve x(s) is chosen such that x; = dF/dp; (this time, we call x a characteristic curve), one can

easily obtain the following

. & OF
U= i—,
i:ziplapi
0F OF
=5~ i» 1=1, n
Pi ox; avpz
or in more compact form
x=F;
o=pT 2 (1.42)
_p ap .
p=-F -F,p

The above equation is a system of ordinary differential equations with boundary condition
x) =y, v@=0v(), p0)=uvxy)

for y € 0Q. Thus by varying the initial condition y, we can obtain local solutions near 6Q2 of the PDE
(L.41). In general, however, the solution cannot be extend globally to the entire region Q. For example,
when two characteristic curves meet in Q, singularity occurs.

To solve the HJB using method of characteristics, we first need to write the equation into the
standard form F(x,v,vy) = 0 for some F. For that, let x,+; = ¢t and ¥ = (x,x,+1). Then can be
written as —vy,,,, + H(x, u* (x, vx),—vx) =0, 01 —vy,,, + H(x, vy) = 0 for some scalar function H, in which

Dv stands for the gradient of v w.r.t. x (not &!). Let p = (p1,--*, Pn, Pn+1), then F takes the form
F(%,v,p) = —pn+1 + H(x, p).

Hence the first line of (1.42) reads

T AT
X = F,!J = Hp
. OF (1.43)
Xn+1 = =-

O0pn+1

Notice that F/dv = 0, the third line of reads

p=—Hx
0H (1.44)

Pn+1=— =
0Xp+1

and the second line of v = pTﬁp — Pn+1- In the above formulas, the only relevant ones are the first lines
of (I.43) and (1.44), i.e.,
x= H,
.t (1.45)
p=-H,
This equation is the celebrated Hamiltonian equation which plays a fundamental role in analytic me-
chanics and modern physics. In next subsection, we mention some well-know properties of the Hamil-

tonian equation.
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The Hamiltonian equation

For the moment, the tilde above H in equation (L.45) is superfluous. We consider instead

= H,
T (1.46)
p=—-H,
for x, p € R™. In the sequel, we introduce some well-know properties of the Hamiltonian equation (I1.46).

Energy conservation. In physics, for example in mechanics, the function H is often some form of

energy of the system. If we calculate the time evolution of the energy, we discover that

dH O0H'. 0H K . .t.
E:% p+ax:x p—-p x=0.
That is, along the trajectory of the system (1.46), the energy function keeps constant.
Volume preservation (Liouville theorem). Another remarkable property of the Hamiltonian equation
is volume preservation. Consider a bounded measurable set D on the phase space R?". Starting from
t =0, the set D is mapped to ¢(D) by the flow of Hamiltonian equation at time instant . Denote vol(Q2)

the volume of a measurable set Q. Then the transport equatiorE] tells us that

%VO](Q{)[(D))—[ dlv(gi;,—(;—f)dvol.
bt 0H 0H\ & &°H &
di"(%"a) - ; 0x;0p; l; plaxl
Thus

vol(¢p;(D)) = constant, V¢=0

as expected.

The Liouville theorem has many interesting consequences:

 Assume that D is a bounded forward invariant set of the system (1.46). Then the system does
not admit asymptotic stable point. Otherwise there exists an equilibrium point (x., p.) € D and a
compact set U < D, which contains both (x., p.) and ¢;(D) for ¢ sufficiently large. But in this case,
the volume of ¢ (D) would be strictly smaller than that of D, a contradiction.

e Poincaré recurrence theorem: Assume that there exists a bounded forward invariant set D < R?" of
the system (1.46). Then for any open set U < D, and any s > 0, there exists at least one point x € U
which returns to the set after some time ¢ = s. To prove this, assume that ¢;(U) N U = @, otherwise
there’s nothing to prove. Consider the sequence

G5, P2s(U), -+, rs(U), -+
Since ¢ ;s(U) has the same volume for all j = 1, there must exists some integers k > j, such that
¢js(U) Nors(U) # P

otherwise, the above sequence generates infinite volume inside the set D, which is impossible.
Thus Un Pk~ js(U) # @ since as claimed.

4The transport equation: consider a system % = f(x), and let ¢ : R” — R” be its flow, then for any bounded set D < R”,

2 ol (D)) = f divfdx.
dt bu(D)
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1.2.4 Viscosity solution of HJB equation

Our next aim is to show that the value function defined in (1.31) is a viscosity solution of the HJB equation

(1.37).
Define the set of super-differentials of a function g: Q cR"” — R at x as

D*g(x) =: {pE ®R")* : limsup S ~8W P =) _ 0}
y—x ly — x|

and the set of sub-differentials at x as

-gxX)-ply—x >0}

_ v 1 . .8
D =: R™*:1 f
g(x) {PE( ) lmJ}Ex =]

As shown in the following figures.

Figure 1.3: Super-differential.

Figure 1.4: Sub-differential.

The crucial characterization of super- and sub-differentials for us is the following.
Lemma1.3. Let g€ C(Q). Then

1. pe D*g(x)iff there exists a function ¢ € C'(Q) such that V¢(x) = p and g — ¢ has a local maximum

at x;
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2. p e D™ g(x) iff there exists a function ¢ € C' (Q) such that V¢ (x) = p and g — ¢ has alocal minimum

at x.

The proof of this lemma is easy and hence omitted. Notice that the mere regularity assumption on g is
only continuity! Now we are ready to give the definition of the celebrated viscosity solution. One should

keep in mind that there is no differentiability assumption on the solution.

Definition 1.1. Consider the first order PDE (1.41), in which F is continuous. A function g € C(Q) is a
viscosity sub-solution of the PDE if

F(x,8(x),p) <0, VxeQ, peD*g(x).
It is a viscosity super-solution if
F(x,8(x),p) =0, VxeQ, pe D g(x).
It is a viscosity solution if it is both a viscosity supersolution and a viscosity subsolution.

Due to Lemma g is a viscosity sub-solution if, for each ¢ € C'(Q) such that u — ¢ has a local
maximum at x, there holds
F(x,8(0),Vo(x)) <0

and it is a viscosity super-solution if, for each ¢ € C!(Q) such that u — ¢ has a local minimum at x, there
holds
F(x,g(x),Vp(x)) = 0.

Theorem 1.1. Consider the system x = f(x, u) with x € R" and u € U < R™ compact. Let V(s,y) be the
value function defined as (1.31). Suppose that there exists a constant C > 0, such that

|f (x, wl, |IL(x, W], lpx)| < C
If(x,uw) = f(y, W], lox) =), IL(x,u) — L(y, )| < Clx - yI

forallx e R" and ue U. Then V is the unique viscosity solution of the HJB equation

~Vy+sup H(x,u,—Vy) =0, (t,x)€(0,T) xR"
uelU

with boundary condition V (T, x) = ¢(x).

Proof. (We follow [6].) Let y € C'((0, T) x R"). We need to show
1) If V — y attains a local maximum at (¢, x9) € (0, T) x R", then

=y (%o, Xo) + sup{—Vy (%, xo) f (xo, u) — L(xp, )} <0
uelU

or

Y (o, X0) + LEIEllf]{VY(fo, x0) f(xp, u) + L(xg, )} = 0 (1.47)

2) If V —y attains a local minimum at (¢, x¢) € (0, T) x R", then

—v (%o, Xo) + sup{—Vy (%, xo) f (x0, u) — L(xo, w)} = 0
uelU
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or
Y (fo, X0) + Ziglf]{V}f(z‘O,xo)f(xg, u) + L(xp, u)} < 0. (1.48)

To prove 1), assume that V (f, x9) =y (%o, xo) and V (¢, x) < y(t, x) for all ¢, x. If (1.47) is not true, then there
exist w € U, 0 > 0 such that

Y(to, X0) + ’iglf]{V}/(to,xo)f(xo, u) + L(xg, u)} < —0.
By continuity, this inequality implies
Ye(t, x) +{Vy(t,x) f (x,w) + L(x,w)} < —60 — L(x, ) (1.49)

when
[t — 1ol <90, [x — xol <90,

for some § > 0. Call x(¢) := x(; ty, X0, w) the solution to
i=fx),w), x(to) = xo.
We then have

V(to+8,x(to+6)) — V(ty, x0) < y(fo + 0, x(to + ) —y (Lo, Xo0)

to+6 d
= —y(t, x(1)dt
fto dty(t x(1))

fh+6
:f fye(t, x(0) + Vy (L, x(0) f (x(1), w) } d t
fo

to+0
< —f L(x(1),w)dt—60. (due to (1.49)).
to
On the other hand, by the definition of value function,
fH+6
Vit +08,x(t +6))—V(t0,x0)2f L(x(t),w)dt

fo
which induces a contradiction. Thus V(t,y) is indeed a viscosity sub-solution. Part 2) can be proved
similarly.
To prove the uniqueness, one needs more effort. Interesting readers are referred to [6, Theorem 8.5.3].
O
Relation to stochastic optimal control
Let us consider two systems
Sy:dx(t) = f(x(t), u(r))dt
Sy :dx(t) = f(x(t), u(t))dt+V2edB;

where t — By is a standard Brownian motion. Note that S, is obtained by adding a stochastic term
v2edB;on S;.
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Consider the cost function for the two systems
T
N =f L(x(t), u(n)dt+@(x(T)), x(t)solves S;
0

T
]2=Ef L(t, x(0), u()dt+@x(T)) |, x(t)solves Sy
0

respectively.
The HJB for the two systems are

|4 )
O:Vt+inf(6 (X o2, w0+ Lt x, u)) (1.50)
u 0x
. [OW(t,x) ’W(x, 1)
0= W, +inf| 2= £t x,w) + Lt x, 0) | + £ 0 (1.51)
u 0x 0x?

We observe that the stochastic HJB can be obtained from the deterministic HJB by adding the term
eAW. Itis reasonable to expect that when £ — 0, W¥¢ (the solution to with a given €) converges to V
in certain sense (in fact, uniformly) since the term e AW? vanishes as € — 0. From parabolic PDE theory,
admits smooth solutions (while doesn't!). Thus the term eAW regularizes the HJB (1.50)).
Since the convergence of W¥¢ is uniform, V should be continuous. One can show that this V is indeed
the viscosity solution. On the other hand, the construction of the viscosity solution in this section has
nothing to do with the discussion here. It is indeed a more intrinsic way of construction.

1.2.5 Infinite horizon problems

Consider the time-invariant system
X=f(xuw
x(0) = xp

]=f L(x(t), u(r)dr
0

with cost

where L =0, u(t) € U <R™ for all £ = 0. It is easy to notice that the value function in this case is time

independent and thus can be written as J* (x). Further more, the HJB equation reads

supH(x,u,—-Vy) =0
uelU

where H(x,u, p) = p' f(x,u) — L(x, u), or equivalently

inf {V, f(x,w) + L(x,u)} =0. (1.52)
uelU
In the LQR setting, for the system
X=Ax+Bu (1.53)
and cost
o0
T :f x"Qx+u' Rudt (1.54)
0

the HJB equation (1.52) reads

inf (Vi (Ax+ Bu) + x"Qx+u'Ru}=0
ue
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As before, choose V = x T Px, then the above formula turns into inf,cy{2x " P(Ax+Bu) +x" Qx+ u' Ru} =

0. The minimum on the left hand side is achieved at
u*=-R'BTPx

with minimum zero if
A"P+PA+Q-PBR'B'P=0. (1.55)

This equation in P is called algebraic Riccati equation (ARE).
Proposition 1.11. Consider the LTI system (1.53) and cost function (1.54) with Q =0, R > 0. Assume (A, B)
is controllable, (A, C) is observable, where C is full row rank satisfying c'c= Q. Then the ARE has a unique

symmetric solution P which is positive definite. Further more, the optimal control is given by a static state
feedback u=—R™'BT Px and the optimal cost is x; Pxo.

Proof. The proof of this proposition is essentially the same as the discrete time case and is thus left as an

exercise. O
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CHAPTER

MAXIMUM PRINCIPLE

In Chapter 1, we studied optimal control via dynamic programming. The are some notable features of
this method.

e It is applicable to various types of problems, discrete time as well as continuous time, finite time

horizon or infinite time horizon, deterministic or stochastic.

 Although the optimal control problem formulations are somewhat different, the key element used
to derive the optimal controls is the same, i.e., Bellman’s principle of optimality, a principle which

is simple, intuitive but powerful.

* Dynamic programming provides not only necessary conditions, it also provides sufficient condi-

tions under some mild assumptions.

* On the other hand, there are also some issues which haven’t been well addressed. For example,
in dynamic programming, the task is finally reduced to solving the Bellman equation (for discrete
time systems), or the HJB equation (for continuous time systems). But solving these equations
often runs into a generic issue: the curse of dimensionality. Even worse, for HJB equations, the
existence of (classical) solutions is a subtle issue. One needs to resort to very advanced techniques
from PDE theory, e.g., viscosity solution, in order to have conclusions on the existence and regu-
larities of the solutions.

In this chapter, we are going to study a totally different approach of optimal control, which has its
origin in calculus of variation. A salient feature of this approach is that it does not involve solving partial
differential equations! It is hard to explain how powerful and this approach is at the current stage. We

will leave the discussions to the end of this chapter.
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2.1 Calculus of variation

Remember that in the beginning of this course, we mentioned one basic methodology in optimal control:
fix an optimal policy and then study the property of this optimal policy. The calculus of variation adopts
the same methodology, but it goes one step further. Consider an optimal control problem with input u

and cost functional J(u). The calculus of variation works as this:

1) fix an optimal policy u;

2) adjust slightly the optimal policy, representing by a scalar parameter €: u,, with the optimal
policy corresponding to € = 0;

3) by definition, the optimal policy should minimize the one-parameter cost functionals J(u).

Thus, if J¢ is differentiable w.r.t €, there must hold % 0> 0.
o=

At the beginning, one may think that a variation using only a scalar parameter is not very useful, after
all, in optimal control, the optimal policy lies in certain function space which is usually infinite dimen-
sional. Thus it seems that one can only obtain very limited information about the optimal policy. But
this conclusion is based on the fact that we use only generic variations. Later we will realize that this is
not the case. In fact, by cleverly choosing some special class of variations, one may obtain very rich infor-
mation of the optimal policy. It is even not rare to see that the information derived from variation is also
sufficient to guarantee optimality. In optimal control, such class of variations is the “needle variations”,

which lie in the heart of maximum principle.

2.1.1 Motivating example: principle of least action

Assume that L: R"” x R” — R is a non-negative continuously differentiable function. Here we call L the
Lagrangian, named after the mathematician Lagrange, who laid the foundation of analytic mechanics. It
is custom to write

L:L(qrq):L(qu'”)qnyq.lr'”)q.n)

in which ¢; is only an independent variable rather than the derivative of g. Let x, y be two points in R”

and define the action on the interval [0, T] as

T
A (q) = fo Lig(n), d(e)dt @.1)

(this time g is the time derivative of g! I have to admit that the notation is a bit misleading but it has been

widely adopted) where g : R — R" belongs to the set
Q={geC*([0, TR : g(0) = x, q(T) = y}.

The problem of least action is to find g € Q which minimizes the action </ (g).
We follow the three steps in the methodology of calculus of variation.
1) Assume q is the optimal solution.
2) Choose a class of variation. For any function y € C?([0, T1;R") with vanishing endpoints, i.e., y(0) =

y(T) =0, the one-parameter family of functions g + €y € Q, Ve € R constitute a variation of g.
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3) Since L is differentiable, we can take the derivatives:

de

T
fo L(g(t) +ey(8),q(t) +ey(r))dt
e=0

_fo’_L( 0, anyn + Eiq, g ynd
=), 5g 9D aWyY0+ S (@@, 4y

T

—f %( (), g)yndr+ 6_L( (), q(0)y(1) —fTi[a—L( (1) '(t))] (ndr
—anq,q y aqﬂlvq y Odtaqul y

0

T
—fT{a—L( ) '(t))—ila—L( () '(t))]} (ndt

where we have used integration by parts in the third line. The last line should vanish for all smooth y with

compact supportin (0, T). It is then readily checked that the term in the brace also vanishes (fundamental

lemma),i.e.,
1(6—L( (1) '(t)))—a—L( (0,4(1) =0, Vtelo,T] (2.2)
i \ag10d aq @4 =0, T, :
or briefly
doL oL _. 2.3)
dtdog oq '

g% The system of equations really mean (2.2).

Equation is called the Lagrangian equation. If one expand (2.3), then is easily seen to be a
second-order ordinary differential equations.
In mechanics, the Lagrangian L is defined as the difference between the total kinetic energy and
potential:
Lig, ) = %c’]TM(q)c'] ~ V().

The principle of least action in mechanics states that

The path taken by the system between times #; and £, and configurations g; and g is the one for
which the action is optimal.

Thus, the mechanical systems evolve according to the Lagrangian equation (2.3). If we expand (2.3),
then it will look like
M@ g§+Clg,9)g=-VV(g)

where C(q, q);; corresponds to Coriolis and centrifulal forces.
An important property of the Lagrangian equation for mechanical systems is energy conservation.
Indeed

dL 9L L. d oL dL

E‘@“a_qq:E@Jr@ﬁ’(by)
d (oL, d .+ .
:E(a—qq)=a(q M(@))
:i(zuzw
dt
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from which it follows that 4
—(L+2V)=0.
P t( )

That is, the quantity L+ 2V =: E, the sum of kinetic energy and potential energy, is constant during the
evolution of the system.

Consider a coordinate change p = g—s, called canonical transform and define the Hamiltonian

H(q,p)=p'4-L(q,
in which g is understood as a function of g and p. Differentiating H w.r.t. g and p, we get

OH 93 oL 9oL oL d oL |
dq 09q” 0q d9qoq oq dtoq ©

and
oH . O_q 0goL .

— =g+ =
ap 1" op” apag 1
Thus along the system, we obtain again the Hamiltonian equation (c.f. (1.46))

_oH
q= ap q,p

oH (2.4)
Pz—a(q,l’)

Notice that for mechanical systems, the Hamiltonian H is simply E = %c']TM (@9)g+V(q),i.e., the total
mechanical energy of the system, which we have shown to be a constant. The Hamiltonian equation (2.4)
is another justification of this fact.

The canonical transform p = g—f.] and the definition of Hamiltonian seem a bit mysterious. It has an
interesting interpretation by the so called Legendre transform. Given a function f : R"” — R, the Legendre

transform of f is a mapping f — f* defined by
f*(x*) =supix' x* - f(x)}.
X
Replace f(x) by L(g, g) by viewing ¢ as the independent variable while keeping g constant, we get

L*(q,p) =supip" 4-L(q,q)}.
q

The supremum in the above formula is achieved at the point such that p = g_tL'l’ which is the canonical
transform. Thus we see H = L*. Recall that the Legendre transform is involutive when f is convex. It

follows that L = H* if L is convex in ¢, which is true for mechanical systems.

2.1.2 Euler-Lagrangian equation

In this section, we use the Euler-Lagrangian equation to solve some classical problems in calculus of

variation.
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Brachistochrone problem

The most well-known example in calculus of variation is probably the problem of Brachistochrone (prob-
lem of minimal time) which is stated as follows. Consider a bead which slides down a frictionless wire
that connects two fixed points under the influence of gravity. The wire is kept in the vertical plane con-
taining the two endpoints. The objective is find the optimal shape of the wire such that the travel time is

minimal. Due to the conservation of energy
-mv-=mgy

V&Y

YD and the travel time is
+(y

a ! 2
f 1+(y'(x) dx
0 gyx)

Thus the the Lagrangian for this problem is L(y, y') =/ % and the Lagrangian equation reads

i( y/ )__l 1+(y/)2
dx \\/gyQ+ ()2 2\ gy}

2yy"+ () +1=0

thus x=v, =

or

after simplification.

Riemannian geodesic

Remember that in Euclidean spaces, the length of a piecewise smooth curve y : [0,1] — R" is the integral

1
A (y) =f0 ly'(s)|ds

and the distance between two fixed points is defined as the minimum of ¢(y) when y runs over all piece-
wise smooth curves. The curve that minimizes the length between the two points is called the geodesic
(may not be unique) between the them.

To measure distance on a curved space, e.g., sphere, torus, we follow the same spirit. More precisely,
the distance between two points is the minimum length of curves joining the two points. The only issue is
how to define |y'(s)|, i.e., the norm of the velocity vector of the curve. In Riemannian geometry, the norm

of the velocity is defined as the square root of an inner product |y'(s)| = \/<y’ (s),y' (s)). For example,
on a Euclidean space, define a smooth positive definite function G : R” — R™*", and claim that |y’(s)| =

\/ Y ()T G(y(s))Y'(s). The function G is called a Riemannian metric on the space R”. The very case G(x) =
I corresponds to the standard Euclidean metric. Let us derive the Euler-Lagrangian equation for the
geodesic.

Fix two points x, y € R” and a smooth (for simplicity, we remove the generality of piecewise smooth-
ness) curve y : [0,1] — R” joining x and y, i.e., Y(0) = x, y(1) = y. We are to minimize the action

1
o (y) =f0 L(y(s),y'(s))ds
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where L(q,q) = 1l = /47 G(q)g = X1 8ij(@)qiq). Let T(r) = Jo L(y(s),y'(s))ds, then % = L. This
transform will largely simplify our calculation. We calculate (using Einstein summation notation):

OL _ 1 98y dgi dq; _ L3gi; dg; dd;
dqr 2L dqy dt dt 2 dqp dt drt

and
oL 1 aq; aq;

dar ~ T8 ar 8 g
then

d oL _ d( dqi)_L(lagik@@Jrlagkj dgidq;  d°q;

droge ar\8%ar )T "\29q; dr dr " 20q; dr dr ¥ ar

Combining those equations, we get
dqr i 4q: 44;
+I.————=0
dt? Udr dr

in which

rk = Lokr (Ggir 98 98ij)
Yo2% \dq;  0qi  0q;
The coefficients Ffj are called the Christoffel symbols.
If G is constant everywhere, then Ffj = 0, thus geodesics are straight lines. Let us consider a non-

trivial example.

Example 2.1 (Poincaré half upper plane model ). Consider the upper half plane {(x, y) € R? : y > 0} with

the Riemannian metric

G=

o S~

‘<N|,_‘ o

There are only four non-zero Christoffel symbols, i.e., I'}, = I'3; = —%, ry = %, rs, = —%. Thus the

geodesic equation reads
. 2. 0
Xi-—xy=
y
. 1 .2 )
y+—=x=y)=0
y

2 (2
from which one can verify that X = ay? and #*+j? = by? for some constants a, b > 0. Then (%) = ()—yc) =
by -a’y' _ b

ZF T @y

> — 1. Therefore (x — ¢)? + y? = b/ a® for some c. That is, geodesics are parts of half circles.

Multi-dimension EL equation and minimal surface problem

Although we derived the Euler-Lagrangian equation under the assumption that the action is an integra-
tion over a scalar variable, it is straightforward to extend to multi-dimensional variable. In that case, the
Euler-Lagrangian equation will naturally become partial differential equations.

Instead of considering the general case, we study a specific problem, i.e., the well-known minimal

surface problem. Consider a surface D 3 (x, y) — (x, y, u(x,y)) € R3, whose surface is calculated as
o (u) :fD\/1+ uz + u?,dxdy
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with boundary condition u = g on dD.

For any smooth function ¢ € C°(D), u. = u+ ey forms a variation of u. Now

o (ue) = f \/1 + (uy + ey )% + (uy +ey,)?)dxdy
D

and N
u u
d(ue)e 0 _f At s ——————dxdy=0

‘/1+ux+uy

Integrating by parts and noticing that ¥ has compact support in D, we get

Uy d uy

u +u d
f xV/x ywyd dy:—fw d_ - - +d_ -y dxdy
1+ ud+ud b 1+ ud+u? Y \J1+ud+ud
tx (14 15) = 201ty Uy + 1y (1 + 115)
=- 3. 232 xdy =0
D (I+uy+ uy)
Invoking again the fundamental lemma, we arrive at the Euler-Lagrangian equation
U (14 145) = 201ty Uy + Uy (1 + 15) = 0. (2.5)

which is a second-order partial differential equation.

This equation (2.5) turns out to have many solutions.

Exercise. Derive the general Euler-Lagrangian equation in multi-dimension.

2.1.3 Other conditions
Legendre necessary condition

For a smooth function f: U € R" — R, where U is open, if f has a local minimum at a point x., then f
must satisfy two necessary conditions, i.e., the first order condition

Df(x.)=0 (2.6)

and the second order condition.
D?f(x.) =0 2.7)

The Euler-Lagrangian equation is a first order condition similar to (2.6). Here we introduce another
necessary condition, namely, Legendre necessary condition, which is a reminiscent of the second order
condition 2.7).

To derive this condition, let us first calculate the second-order variation along an optimal solution.
Consider again the action and suppose that g(-) is an optimal solution and y € Cg°(0, T). Then

2

T
3e2 f L(q() +ey (D), 4(1) +ey(n)dt

=070

T
:fo ¥ (DggL)y+3 (DggL)y+y (DgqD)y+ 3" (DggL)ydt

:fOT

y+3 (DggDy|dt

T d
Y \Paql =27 (DgqD)
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which should be non-negative. We assert that D4 L(q, ) must be semi-positive definite, i.e.,
D43L(q,4) =20 (2.8)

along the optimal solution (g, ). To see this, it is sufficient to note that there exist functions with small
magnitude but with rather large derivatives; the converse is false, thus it may happen that D4, L— % Dg4L

is non semi-positive definite (it is not even symmetric!).

Sufficient condition

When the optimal solution exists and is continuously differentiable, it necessarily satisfies the Euler-
Lagrangian equation. On the other hand, the solutions to the Euler-Lagrangian equation may be mini-
mizing, maximizing or neither. One good example to illustrate this is the geodesic problem on a sphere
$%? cR™. For any two points x # —y on the sphere, there exist exactly two geodesics joining them, both
satisfying the Euler-Lagrangian equation, but only one of them is minimizing — the one that does not
contain two antipodal points. When the two points are exactly antipodal, then there are infinitely many
geodesics joining them and all of them have the same length. In conclusion, a geodesic on the sphere is
strictly minimizing if and only if the geodesic does not contain two antipodal points. It turns out that this
is a general phenomenon and antipodal points on the sphere are a special case of a more general notion:
conjugate points.

Proposition 2.1. If[a,b] 3 t — (q(1), (1)) is a C solution to the Euler-Lagrangian equation and Dg4L >
0 along the solution, then q(-) is a strict minimum of the action restricted to [a, D] if [a, b] contains no
conjugate points of a.

We are not going to give the precise definition of conjugate points nor are we going to prove the above
result. After all, analyzing conjugate points is a daunting task and is out of the scope of this course. It is
enough to remember the sphere example to be aware of such phenomenon.

2.1.4 Optimal control via calculus of variation

In Chapter 1, we studied optimal control using dynamic programming. In this subsection, we use a
primary example to show how calculus of variation can be used to study optimal control. For that, we

consider the system

x=f(x,u)

with fixed initial condition xy and cost function

T
J = p(x(T)) +f0 Lo, u(n)dr.

We impose no constraints on the input u. Fix a control u.(-) and corresponding trajectory x.(-). Let us
construct a one-parameter family of variations of u. (-). Let v(-) be another control input and consider
Ue = U +€v. Then, we need to calculate J(u). Denote by x. the trajectory of the system under the control

U, i.e., X = f(xe, ue). Then

T
J(ue) = p(x(T)) +f0 L(xe (1), ue(n)dt
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To find the first-order necessary condition, we may differentiate /(i) directly by brutal force, see the

footnoteﬂ But here we use a little trick to reduce our computational work.

Define a function H(x, u, p) = p' f(x, u) — L(x, u) (the Hamiltonian!), and fixa C' curve ¢ — p(t), then

T
J(ue) =<p(xe(T))+f0 L(xe, uc)dt
T
=<p(xe(T))+f0 P (0 f(xe, te) — H(xe, e, p)dt

T
= p(x(T)) +f p() T dxe(£) — H(xe, te, p)dt
0

1Eor notational ease, write X () := X (xx (£), ux (£)) where X can be L, gi gﬁ and so on. Now since

0J(ue) | _ Ogp(x« (1)) axg(T)‘ +fT(6L(t) 0xe (1) OL(t) )dt
0 0

— (I
% o ax o€ ax e o ou VWY

we are led to calculate 6)65 e( il . Differentiate the relation X = f(x¢, uc) w.r.t. €, we get

0w _ofdx of
dt de ~ 0x ¢  du

Thus axe(t) satisfies the ODE: z = af z+ 6£ v with zero initial condition, from which it follows that axe(t)

which <I)(t, s) is the state transition matrix of zZ = % (t)z. Thus

0] (ue) T 0 (x+ (T)) of (1)
= (T,
de o fo 0x (5,5 ou vids
T
+f OL® [ gy, )Lf() @ds+ 222 ] ar
0 0x ou

0x ou ou

T T
:f {(7a‘p(x*(T))q>(T, t)+f 02;” D(s, H)ds )af 9, aLm}v(r)dt
0 t

where we have applied Fubini’s theorem to the last line:

T Ti(pT
f OL® Ty )af( ) v(s)dsdt:f w OLLS) s, s) 97(8)
o 0x Jo 0 r  0x ou

v(dt.

Invoking the fundamental lemma, we conclude that

(Btp(x*(T))
0x

of(n) oL@ _
ou ou

(D(T,l‘)+f J(I>( s, Hds )
t  0x

for all £ = 0. Denote

A¢p(x« (1)) T 8L(s)
—P(t) TCD(T 0+ f WCD(S, t)dS

then it is obvious that p (a row vector) satisfies the ODE

f() (t,9=5 af(s v(s)dsin

(2.9)

(2.10)

of OL
=- + —
Pax 0x Ox
. . ... __0px« (1) .
with terminal condition p(T) = - ==z The equation now reads
p2f oL _
au ou
along the system
x=f
of OL
=- + —
Pox 0x Ox
This equation is obviously the Hamiltonian equation if we define H(x, u, p) = pf(x, u) — L(x, u). The stationary condition
6H
reads =0.
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Denote 1. (f) := 6):3560) , then it is readily calculated

0J (ue)

T
e = Px(e(Tne(T) +f0 (p(t) "dne(t) — H ne(t) — H) v)dt

T
= P (X (T)Ne(T) + p(T) " e (T) —fo ()T + Hne(r) + Hy vdt. @.11)

Let p be such that p = —H, with terminal condition p(T) = —¢ (x(T)), the above evaluating at € = 0

results in

0J (ue)

T T
=— H, vdt
Oe fo u?

e=0

but then this implies H,} = 0 if %lg;ﬂ = 0 since v is arbitrary. To conclude, we have the following

proposition:

Proposition 2.2. Consider the system x = f(x, u), x(0) = xq fixed, with the cost ] = (p(x(T))+f0T L(x(1), u(1)dt,
where f, ¢ and L are c! functions and u € R™ is constraint free. Define H(x, u, p) = pr(x, u)— L(x,u).
Then along the optimal process (x. (), u« (), there hold

i= H;
T 2.12)
p=—M,

1) the Hamiltonian equation

with initial and terminal conditions x(0) = xo, p(T) = —@x(x.(T)) and
2) the stationary condition
H,=0. (2.13)

To derive a Legendre type second order necessary condition, we continue calculation based on (2.11):

0°J(u,
;6(2 D (D) Pae(T) + [ (e () + p(D) 10
T
r T t Hy H t
_[ (ﬁ(t)T+H;)né(t)dt—f N (1) xx  Hxu| [0e(0) dr
0 0 v Hux Huu v
evaluating at € = 0, we get
-

02 (ue) T fT no(?) Hyx  Hxu| [n0(0)

= T T) - dt

92 0 No(T) " @xxno(T) ) v Hye Hyy )

Using similar argument as in deriving the Legendre necessary condition, we can conclude that H,,;, <0

0%J (ue) . _of of
o 02 0. (Remember 79 = 3:-1¢ + 7, V, then v— 1y can be seen as a low pass
€=

filter. If we choose v as some spiking signals, then the output 1y will be kept relatively small. Thus the

in order to guarantee

integrand in the above equation is indeed dominated by v " H,,,v).

Now the first and second conditions H,, = 0 and H,,, < 0 together seem to imply that along the op-
timal solution at each time instant, u should maximize H(x(¢), u, p(t)). This conjecture turns out to be
correct; indeed it is the essential part of the celebrated maximum principle, whose proof is far from ob-

vious. Our main objective in the next section is to prove this result.
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Limitations of calculus of variation

In deriving the first and second order necessary condition. We have assumed that the variation can be
arbitrary. This is a very restricted assumption. In practice, the admissible control set is often constrained,
e.g., |lu| < 1. In this case, when u is at the boundary, say u = 1, the variation cannot be arbitrary.

Another assumption we have imposed is the smoothness of the function f and L. It is quite often
the case that L is not differentiable. Thus we cannot talk about Hy, Hy,;, etc. It turns out to prove the
maximum principle, it is indispensable to develop some non-smooth techniques. What lies in the heart
of these techniques is the so-called tent method.

2.2 The maximum principle

Consider the system model
x=f(x,u), (2.14)

with initial condition x(0) = x¢ and cost function

Iy
J(w) =<;t)(x(tf))+f0 L(x(1), u(n)dt (2.15)

where ¢, L are continuously continuously differentiable in x and ¢ = 0, L = 0. The terminal time instant
tr can be either free or fixed. The control input u(t) € U; = R™ for every ¢ > 0. The objective is to find u

which drives the initial state to a target set S < R" with the minimum cost.

2.2.1 Statements of the maximum principle

Proposition 2.3. Consider the system (2.14) with cost function 2.15). Let (x*(-),u*(-)) be the optimal
process and define the Hamiltonian function H(x,u, p,po) = p' f(x,u) — poL(x,u). Then there exists a
function p* : 0, tr] — R" and a constant p; <0, satisfying (py, p* (1)) # (0,0) such that

1) (x* (), p* () satisfies the canonical equation

with initial condition x* (0) = x9. The second equation is called the costate equation, and p is the costate.

2) The transversality condition holds:
prtp) +oi(x(t) LS
3) The maximum principle holds:
H(x" (1), u”™ (), p" (1), py) = Ibgzli])[(H(x*(t), u, p* (1), pg) = constant (2.16)

forallt €0, tf]. This constant is zero if t7 is free.

Although the optimal control problem seeks for a minimizing control, equation (2.16) says that the
optimal control should maximize the Hamiltonian function, thus the name maximum principle.
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The following observations are in order:

1) Unlike the dynamic programming method, there is no partial differential equation to solve. Only
ordinary differential equations, i.e., the Hamiltonian equation are present.

2) There is no smoothness assumption on f(x, u), L(x, u) as functions of u. This allows the maximum
principle extremely useful for applications.

3) The first-order and second-order necessary conditions are replaced by the elegant maximum prin-
ciple which is only a finite dimensional maximization of a scalar function.

4) For the transversality condition, when S = R", it reduces to p* (fy) = —(pl(x(tf)). When S is a sin-
gleton, i.e., x(tf) is fixed, then there is no information about p* (tf) (note also that in this case it suffices
to consider cost J = fotf L(x,u)dt). When S is described by constraint S = {x : (x) = 0} for some smooth,

constant rank (on S) mapping v, then the transverse condition can be expressed as
p*(t) + 5 (x(t7)) Lker Dy

or equivalently
p*(tp) + ¢y (x(t7)) € Im(Dy) .

To see how to apply the maximum principle, we study some examples in next subsection.

2.2.2 Some examples
Dido’s problem, 7/ free, x(tf) € S

Suppose we have a string with fixed length. One end of the string is fixed at the origin, the other end point
is to be placed somewhere on the x-axis. The task is to find the optimal shape which maximizes the area
encircled by the string and the x-axis. See figure[2.1}

YA

Figure 2.1: Dido’s problem

Assume that the curve lies in the upper half plance (otherwise reduce to this case by reflection and
translation). Let the curve be parameterized by c: [0, #7] — R2. Assume that the curve is continuously

differentiable with respect to the parametrization. The the length of the curve is

i
é(c)z[ds=[ \/ X2+ p2de.
c 0 ¥
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Let D be the set enclosed by c and the x-axis. Then the area of the set D is ®(c) = fD dx A dy. Define
a= %(xdy — ydx), then dx A dy = da. Notice that ¢ = 0 along the x-axis, thus by Stoke’s theorem

D(c) = f a.
Cc

Now we reformulate the problem a bit. Instead of maximize ®(c) while fixing ¢(c), we may consider
minimizing ¢(c) while fixing ®(c), since the form of ¢(c) seems more suitable for applying maximum
principle. Introduce the dynamics

X = uy
y=1uz
then the cost becomes .
f
40) :f u? + usde 2.17)
0

under the constraint ®(c) = constant. W.l.o.g., assume ®(c) = 1. To cope with this integration constraint,
we use a small trick. Introduce another state z, satisfying z = %(— yu1+xup) with initial condition z(0) = 0.
To see the reason behind this, we integrate the dynamics of z:

(t)—ftfl( ¢+ xy)de
zf—o 5 CyE+xy

1
:f —(—ydx+xdy)
0o 2

- [«

Thus the problem has been shifted into the following form

x:ul
y=up

1
z= 5(—yu1 + xXuUp)

with initial condition (x(0), y(0), z(0)) = (0,0,0) and terminal condition x(¢¢) > 0, y(tf) =0, z(ff) = 1. This
system is also known as the Heisenberg system. The objective is to find (11, u») that minimizes the cost
(2.17).

Assume pg # 0. The Hamiltonian is H = pyu; + pauz + %pg;(—yul +xup) —\/u? + u5. The costate
equation is

. 1 1
= —— U =——
p1 2P3 2 2P3J’

gy = 1 Uy = ! X

p2 = 5 psuy = 5 p3

p3=0
with p;(¢f) = 0 since S = {x(#f) > 0, y(tf) = 0, z(tf) = 1}. Integrating the costate equation, we get: ps is a
nonzero constant, p; (f) = — p3y(t) (recall that y(t) = 0), and p»(t) = p2(0) + 3 p3 x(1).
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To maximize H, it suffices to find %—g, which gives

1 _ uy
P1 2P3)’ =

2
u1+u2

1 Uz
p2+ SP3xX=

Note that this also implies
(0) 1
(ot P22 4 V==
P3 p3

p2(0)
p3

is 1, it follows that _p;_(s()) = \/; Thus p3 = +v/7 and p,(0) = F1.

Thus the optimal shape is a half circle with center (—

Exercise 2.1. Find the explicit form of u; and u, (may not unique).

Planar elastic rod

See [7], [14].
Swtiching system
(12].

Moon lander, ¢ free, x(¢f) fixed

Suppose that we are to land a lunar rover on the moon. The dynamics of this model is described by

y=—-g+u

,0) and radius — ”;—(sm. Since the area of the circle

where y is the height of the lander, g = 0 the gravitational acceleration, and u the trust, which can be up

or down and is bounded |u| < 1, and 0 < g < 1 Note that here we assume the mass of the lander is 1 (fuel

loss is neglected). The initial height of the lander is y(0) = h and initial velocity y(0) = v < 0. In order

the problem to be feasible, assume # is sufficiently large, otherwise the lander may never be able to land

with zero velocity.

Find an optimal control law which minimizes the fuel consumption

Iy
]:f |u|dt
0

with 77 free, and which drives the system to the final state y (1) = y () = 0.

Rewrite the system model as

XIZXZ

Xp=—-g+u

with initial and terminal conditions (x1(0), x2(0) = (h, v), (x1(ff), x2(ff)) = (0,0).

H(x,u,p) = p1x2 + p2(—g + u) + polul, and the costate equation

p1=0
P2=-p1

The Hamiltonian is
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Then p; () = ¢; and py(t) = —c) £+ ¢, for some constants ¢; and c;. Since there the terminal state is fixed,
for the moment we don’t know the terminal condition of the costate equation.

First we need to exclude abnormal extremal — left as an exercise. Henceforth let pg = —1. In this case,

-1, p2<_1
u (=40, -lspy<l1
1, p2=1

Note that when x; is near zero, # must be positive, i.e., it must be in the phase p, = —c;t+ ¢ = 1, for
all  near tf. This implies ¢; < 0 (check ¢; = 0 is not possible). On the other hand, since Iy is free,
H(x*(£), u* (1), p*(£)) = 0. In particular, (—c1 £ + ¢2)(-=g +1) — 1 = 0, from which we can solve for ¢7 =
YA=8-2 Thyse, < L

—C1 1-g-°
2 .
flse< ﬁ, then u* =1, then h = 2(1"—_@, a contradiction since #h is sufficiently large.
If ¢, < —1, then there will be two switches: #; = 1;02, L= CZCII , and
-1, 0<st=<n

u' (=40, n<t<t -

1, BL<t<tf

Using x»(#f) = 0, we can obtain the equality

v+(-g-Dh-glta— )+ (1 -g)tr— 1) =0,

from which we can solve for ¢, = C} Z;l > —1 since v < 0 as assumed, a contradiction.
Thus —1 < ¢; < 1, and there is only one switch at #; = CZCII . The corresponding optimal control is
. 0, O0<t<t,
u ()= .
1, te<t<ty

To find g, use the terminal condition x; (0) = x,(0) = 0:

v—gts+(1-8)(tr—1)=0

1 1
vt — 5gr§+ SA-g)tr - t)>=h

from which we find solve for £, 7 and then cy, c; (exercise). See Figure
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A height

freefall: u =10

velocity < 0

Figure 2.2: Moon lander

Insect control, ¢ fixed, x(¢y) free

Let w(t) and r(¢) denote, respectively, the worker and reproductive population levels in a colony of in-
sects, e.g. wasps. At any time £, 0 < ¢ < T in the season the colony can devote a fraction u(#) of its effort
to enlarging the worker force and the remaining fraction u(t) to producing reproductives. The per capita
mortality rate of workers is p and the per capita natality rate is b when full effort is put on the worker
population. Assume pu < b. The two populations are governed by the equations

w=(bu—-pw

Fr=cl—-uw
with (w(0), r(0) = (1,0), where u satisfies the constraint 0 < u(t) < 1. The objective is to maximize r(T) or
minimize

J=-r(D).

Since L = 0, the Hamiltonian for this problem is H = p; (bu— ) w+ p2c(1 —u) w. The costate equation
p1=p1(bu—p) + pac(l—u)
p2=0
with terminal condition p;(T) =0, p2(T) = 1. Thus p2(#) =1 and
H=((pib-cowu+(c-p1pw.
Since w > 0 for all ¢ = 0, the optimal control law is
1, mb=c
u(t) = .
0, mHb<c

Since p;(T) = 0, then near T, u should be taken as 0. Moving backward, assume f; is the first time
instance that p; (t;)b = c. Then on [¢;, T,

p1=-ppi+c
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which results in
c c c
pl(t) = efﬂ(t*ts) pl(ts) + _(1 _ e/l(ts*t)) - _eil't(tit‘s) + _(1 — eﬂ(tx*t))
Iz b %

attr=T,

1 1
0 — Ee_u(T_tx) + p(l — e_,u(T_ts))

from which it follows that

ts = T—iln(l—%).

Continuing moving backward, the costate equation becomes
pr=p1(b—p)

with terminal condition p; (£5) = % > 0. Thus p; increases as t decreases. Hence

. 1, 0<t<its
u (t)= .
0, t;<t=<T

2.2.3 Time optimal control

Time optimal control is an important problem in engineering, which seeks for the optimal control that

renders the system from current state to the target in minimal time under given constraints. The cost

Iy
J= th[) 1dt.

Thus this is an optimal control problem with free 7y and x(¢r) € S. In this subsection, we focus on the

function for time optimal control is

case when S is a singleton. The general case is essentially similar.

It is clear that the problem described above is closely related to the problem of stabilization. Loosely
speaking, the system is stabilizable (to the target) if and only if min J < co.

In this subsection, we focus on affine control systems:

X=fx)+gxu
where u € R™. The constraint for u is |u;| < 1 forall i = 1,--- m. The Hamiltonian for the system is
H=p"(f(x)+gx)u) + po
and the costate equation is
m
p=—(f{ + Y wigl)p.
i=1
Recall that |u;| < 1, then the optimal control should has the following form:
1, plngix*(®)>0
ui(=4-1, pT(Hgi(x*(1)<0.
? pTgx* (1)) =0

Thus typically, the optimal control switches between 1 and —1, except at those time instants such that

pT(t) gi(x* (1)) = 0. Such control is named bang-bang control (a control whose components are either 1
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singular control

L \ /u*(t) 1 \ x ~ u (t)

- -

v(@®) v(@®)

(a) (b)

Figure 2.3: Normal control and singular control

or —1). If the function y(#) = p ' (¢)g;(x* (¢)) has only finite zeros, we say that the system is normal. If y is
zero on some interval [#;, #2], then the optimal control on [#3, ] is called singular, and the corresponding

trajectory x* (4,1, is called a singular arc.

Example 2.2 (Double integrator, normal system). Consider a double integrator
X1 = X2
Xo=u

with unknown initial condition (¢,7). The objective is to drive the initial condition to the origin x(0) =
(0,0) in minimal time under the constraint |u| < 1. The Hamiltonian is H = p; x» + pou + po. The costate
equation reads

p1=0
P2=-p1

Thus p; = c1, p2 = —c1t + ¢, for some constants c¢; and c;. Thus the input u switches at most once at £,
when —c) ts + ¢, = 0. Singular control exists only if ¢; = ¢, = 0, which is not possible. Thus the optimal

control with switch should have the following form

. -1, —ct+c2<0
u (=
1, —Cci1t+c>0
If ¢; <0, then c; <0and u*|j;) =—1and u* |(ts,rf) = 1. Under this control, we can calculate
Xo(t)=1t— tr
(0= L- 12
x1()==(t-
1 5 f
for r € (s, tr] and
X2(f)=n—t

1
xl(t):g‘+nt—§t2
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for t € [0, £5]. By continuity of the state trajectory, we know

nN-ts=ts—tf

1 1
5+77ts—§t§:§(l‘s—tf)2

from which we can solve for £ = n+1/& + 372, tf =n+2/& + 31? provided that £ + 37° > 0,1+ /& + 112 >

0, or
1, .
E+§17 >0,ifn>0
1
5—5n2>0,ifn50
and
-1
= co=—|1+ 0

(here pg # 0 otherwise ¢ = ¢, = 0). The situation for ¢; > 0 can be discussed in the same fashion.

X2

X1

Figure 2.4: Minimal time double integrator

Exercise 2.2. Finish the case for ¢; > 0.

Example 2.3 (Singular control). Consider the time optimal control of the system
X = x§ -1
562 =Uu

with initial condition x = (1,0) and target x(tr) = (0,0), u € [-1,1]. We argue that the unique optimal
control is u* (¢) = 0. Indeed, when u* =0, x; decreases to 0 in time 1, while keeping x,(¢) = 0. If u is not
zero, then the decay of x; should be slower and the time to go to 0 is longer. Thus we have a singular
control #* =0on [0,1].
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Singular optimal controls are generally hard to compute. It is natural to ask when can we exclude the

existence of singular controls beforehand. To that end, let’s reexamine the singularity condition
Yil)=p (DG (1) =0, Vieln,b). (2.18)
For simplicity, consider single input system, i.e., m = 1 and g; = g. Differentiate y;(¢) again,
7i=p'g+p'g
=—p' (fetug)g+p' gu(f+ug

= PT(gxf_fxg)
=p'if, gl

Denote ad’(f)(g) := [ad’ ' (f), gl and ad' (f)(g) = [f, g], then it is easily seen that

dei

T =l e

Now, the singularity condition for single input system would imply
p Lspanfad!(f)g,ad’(f)g,---,}, Vtelt, bl
Thus a sufficient condition which guarantees no existence of singular control is that the
rank{spanfad'(f)g,ad*(f)g,---,}}=n, Vx (2.19)

since this implies p = 0, a contradiction.
For single input linear system, the rank condition (2.19) reads

rank{b, Ab,---}=n
which is the controllability condition.

Although for single input LTI systems, controllability is sufficient to exclude singular controls, this

is not true for multi-input LTI systems as we will see in next subsection.

2.2.4 LQR with constraints

In Chapter 1, we studied LQR under several circumstances, all of which didn’t consider input constraints.
In this subsection, we study optimal LQR controller under input constraints.

Stabilization via time optimal control

Consider the LTI system
xX=Ax+Bu (2.20)

with initial condition xy. The objective is to find an optimal control u which drives x to the origin under

the constraint |u;| < 1 for all i in minimum time. The system is assumed to be controllable.
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Proposition 2.4. Let B = [by,--, by] be full rank and assume that the system has no abnormal extremals.

Then the time optimal control problem of the system (2.20) admits no singular arcs if and only if
rank{b;, Ab;,---, A" 'bi}=n, Vi=1,--,m. (2.21)

Proof. The Hamiltonian is H = p' (Ax+ Bu) — 1, which is zero along the optimal solution. From previous

subsection, we know that singularity appears when
Yi=p (Db =0, Vieln,n]

for some interval [1;, £]. Notice that the costate equation for the LTT system is

p=-ATp

k.,
thus % = (—l)k Ak b;. Thus singular control exists if and only if

p(t) Lspan{b;,---, A" 1b;}

which is equivalent to saying that either p(#) = 0 or the rank condition (2.21) holds. But p(#) = 0 can never

happen since p ' (Ax + Bu) = 0 along the optimal process and p satisfies a linear system. O

We say that the linear system is normal if it satisfies the rank condition (2.21). Note that this
requirement is stronger than controllability.

Note that the above results does not imply that non-normal system has no bang-bang optimal con-
troller. In fact, we have the following theoretical result:

Proposition 2.5. Consider the system [2.20) with control |u;| < 1, Vi. If xo € R" is reachable from the
origin, and T > 0 a real number, then there exists a bang-bang control that steers xy to 0 at time T

Example 2.4 (Harmonic oscillator). Consider a harmonic oscillator ¥ + x = u whose control is con-
strained in the interval [—1,1]. It is desired to find a control u which drives the system to the origin in
minimal time. Write the system in standard form

X1=Xg

Xo=—X1+ U.
The Hamiltonian is H = p; x2 + p2(—xX1 + 1) + po and the costate equation is
p1=p2
P2=-p1

which is again a harmonic oscillator. Thus py = rcos(t + ag) for some constants r > 0 and g € (-, )
and the control input switches exactly once for every n elapsed time. Since u is piece-wise constant,
along the optimal process, % [(x1 —w)? +x3] = 2(x1 — u) X1 +2x2% = 0, thus (x; — u)* + x5 is also piece-wise
constant. These constitute arcs on a circle, whose radius are determined by the initial condition. We can

draw these circles on the plane as in Figure[2.5]
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X3

Figure 2.5: The phase plot for u = +1.

X1

Write x; = u+cos# and x, = sinf and substitute in to the system dynamics, we get § = —1. Hence the

system trajectories travel clockwise with velocity 1. But to due switches, the state cannot be kept on the

same circle for angle more than  rad.

Let us trace back from ¢ = #7. At the final stage, in order to reach the origin, only two arcs are possible,

see Figure[2.6]
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X2

Figure 2.6: The phase plot at the final stage.

To find the previous arc, choose a point A as in Figure then draw a line passing through A and
(—1,0). The intersection of this dashed line with the circle determined by A and center (—1,0) is denoted
A’, which lies on the circle (x; +3)% + x5 = C2. Thus for all initial states on the arch between A’ and A,
they should flow along the arch and then reach point A and goes to zero following the final stage arc.

Continuing this procedure, we can find the optimal trajectory for all for arbitrary initial condition.

Singular control

Singular optimal control of linear system (2.20) considers minimizing the cost of the following form

t
]=x(tf)TQfx(tf)+f " x0T Qx(ndr (2.22)
0

where Q and Qy are symmetric non-negative definite matrices. The control is constrained by |u;| < 1, for
alli=1,---m.

Note that the cost function is different from the standard one in LQR control, where the inte-
grand in the cost is of the form x" Qx + u' Ru with Q semi-positive definite and R positive definite. In
other words, in the standard LQR problem, the control u is penalized through the term u" Ru whereas
in singular control, the control u is penalized by direct constraint |u;| < 1. Note also that here Q is not
required to be semi-positive definite.

For this problem, the Hamiltonian is

H=p " (Ax+Bu)—x' Qx
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X2

X1

Figure 2.7: The phase plot of the last two stages.

and the costate equation is
p=—A"p+Qx
Similar to time optimal control, the optimal control should satisfy
-1, pT(Ob;<0
u; (=41, p'Ob;>0.
2,  p'(®b;=0
thus the optimal policy may be singular. However, different from time optimal control, for singular con-

trol, it is generally more difficult to exclude the existence of singular controls.

Example 2.5. Consider the system

with initial condition x(0) = 1 and cost function

J—lfz (0)%dt
_2 X X

Find an optimal control u which drives the system to x(2) = 0 under the constraint |u| < 1.
The Hamiltonianis H = pu+ %po x%. The costate equation is p = pox. If py = 0, then p must a nonzero
constant. Thus u is either 1 or —1 on the interval [0, 2], but in either case the control cannot bring x(0) to

the origin. Thus assume pg = —1. Applying maximum principle yields

1, p@)>0
u (=4-1, p(t)<o0
3 pH=0
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Thus when at the time instant when p(¢) = 0, the maximum principle provides no information about the

optimal control u* (¢).

x(t)
p(t)

0.5

u(t)

Figure 2.8: Singular control

When p(f) <0, x =—1, then

Suppose that the first switch happens at 5. There are two possible cases.
Case 1: p(t) <0 on [0, t;] with p(t) =0. Then

x(H)=1-t
1,
p@®)=p0)-t+ Et

for £ € [0, £s]. Suppose that [£;, ;] is a singular arch, i.e., p(f) =0 for t € [£;, f¢]. Thusx=-p=0and u* =0

on [, tr]. In particular, 1 — #; =0 and p(0) — #5 + %tsz =0, which yields #; =1, p(0) = %, and x(1) =0.

Case 2: p(t) >0 on [0, t;] with p(fs) = 0. One can they verify that ¢, = —1, a contradiction.

To conclude, the first switch happens at ¢, = 1, and p(¢) <0 on [0, 1] while p(1) = 0. Obviously, for the
rest of the time £ € (1,2], no control should be added, i.e., u*(#) = 0 for t € (1,2]. Thus x*|(,2) is a singular
arc with singular control u*|(1,2) = 0. See Figure[2.8]

For singular control problem, it may happen that the bang-bang control law switches infinitely many
times and that the law fails to be piece-wise constant. Such phenomenon is called Fuller’s phenomenon.

Example 2.6 (Fuller’s problem). Consider the double integrator

xlzxz

ngu

with constraint |u| < 1 and cost function

Iy 2
]:f x2(r)dt
0
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where ?y is free. The objective is to drive the system to the origin with minimal cost. The Hamiltonian is

H=pixo+pou+ poxf and the costate equation is

P1=—2pox1

p2=-p1
One can check easily that there is no singular arcs. Therefore, the control is bang-bang. It remains to
compute the switching condition. A. T. Fuller showed that 1) the switching curve for this problem is

X1 +yx2|x2| = 0 for some constant y > 0; 2) there are infinitely many switches for along this curve; 3) the
time intervals between two consecutive switches decrease geometrically. For details, see [9].

2.2.5 State constraints

State constraints appear quite naturally in many practical applications, such as in obstacle avoidance
problems and medical/biological systems (many biological states are required to be positive).

There are two main classes of state constraints that arise frequently applications:

A. pure state constraints: s(x(#)) <0, V¢ = 0 for some function s : R"” — RP.

B. mixed state-control constraints: s(x(z), u(t)) <0, V¢ = 0 for some function s: R"” x R™ — RP.

We state the maximum principle under smooth pure state constraints.

Theorem 2.1 (MP under pure state constraints). Consider the system x = f(x, u), where u(t) € U and the
state is constrained according to s(x(t)) < 0 for some smooth function s : R — RP. If u* is an optimal
control that minimize the cost function | = P(x(tp) + fotf L(x, u)dt, then
1) There exists a costate function p* (-) and a function A : [0, il — RP such that
p=-H -sIA
where H=p' f(x,u) — poL(x, 1), po € {0,~1} and (py, p(t)) £ 0.
2) The maximum principle holds: H(x* (t), u* (), p* (¢)) = maxyey H(x* (£), u, p* (1)).

Optimal control problems with state constraints are generally quite difficult to solve. In most cases,
one should not expect to derive analytic solutions and should resort to numerical methods instead.
The following academic example shows how to use the maximum principle under constraints.

Example 2.7. Consider the system X = x* — u with initial condition x(0) = 1 and cost function
2
J= f x% + ulde.
0
The control has not constraint. The objective is to find an optimal control u such that x(2) = 1 while
keeping x(¢) = a with minimal cost. Here a is some real constant.

The state constraint can be equally described by s(x) := a— x < 0. The Hamiltonian is H = p(x2 —u)+

po(x* + u?) and the costate equation is
p=-2(p+po)x+A.

If pg =0, then |u| = +oo, which is impossible; thus pg = —1 and u*(¢) = —%p(t). When the system stays
on the boundary a = x, then § must also vanishes, in which case x2—u=0,or u=x?=da? It follows that
p(t) = —2a? on the boundary. Hence A = —2a(2a® +1). Now the costate equation can be rewritten as

p=-2(p-Dx-2aRa*+1)
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To determine the initial condition of p, substitute the relation p = 2i — 2x? into the costate equation
which yields a second order ODE
¥=@2x*+x—ala®+1)

with boundary condition x(0) = x(2) = 1. Thus the problem reduces to solving a boundary value problem,

which can be done via numerical methods.

2.2.6 Infinite horizon problem

2.2.7 Appendix: reachability and controllability

(This subsection is largely taken from [5].) Reachability and controllability are closely to Lie algebra of
vector fields, which we recall briefly. Let Q < R” be an open set, & (Q) the space of smooth real value
functions on Q and & (Q) the space of smooth vector fields on Q. For two vector fields f, g € Z (), the
Lie bracket [f, g is defined as (Dg) f — (Df)g, where Df represents the Jacobian of f. Some immediate
observations of the Lie bracket: 1) [f, f1=0;2) [f,g] = —[g, f1]; 3) [Af + ug, hl = Alf, hl + pulg, hl.

Note that both & (Q2) and & (Q2) are (infinite dimensional) real vector spaces. The following definition
plays a fundamental role in nonlinear controllability theory.

Definition 2.1. A Lie algebra of vector fields on Q is a linear subspace « < % (Q) which is closed under
Lie bracket operation, i.e., [f,g] € o if f,g € /. For any set S € Z (Q), the Lie algebra generated by S is
the smallest Lie algebra containing S, denoted by Lie(S). We say that S is Lie bracket generating at point
x if the dimension of Lie,(S) = {f(x) | f € Lie(S)} is n.

The dimension of Lie(S) is in general infinite, but Lie,(S) is a linear subspace of the tangent space
at x, which is finite dimensional.

It is routine to verify that Lie(S) can be constructed through the following procedure. Let «f; =

spangS, then construct «; recursively via
A1 =1f,8gl: fest,geS, k=1,---.
Then

Lie(S) = | .
k=1

For example, if S={f1,---, fin], then S is spanned by all brackets of the form

[['”[ﬁrﬁ]rfk]r'”)f[]

for fisin S.

Consider a forward complete system defined by vector field f:
X=fx)

We use a more suggestive notation to denote the flow of the system: '/ (x) := ¢(t, x). It is then immediate

to note
o Ut —otf o elS Vi seR;
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* ¢!/ is a diffeomorphism whose inverse is e/, V1 € R;
o Lell(x)=f(ex), VieR.

Definition 2.2 (Reachability). Consider the system & = f(x, u), u € U. Define
1) the reachable set from xg at time t =0 is

(1, x0) := {p(t, xo; ) : u: [0, 1] — Ul
2) the reachable set from xo withintime ¢t =0 is

d(=t,x):= | T, x0);

7€[0,1]

3) the reachable set from x is
o (x0) = | (£, x0).
=0
We say that the system is completely controllable if o7 (xy) = R” for all xy € R".
The following lemma shows how Lie bracket is related to reachability.

Lemma 2.1. For any two vector fields f and g,

e!l/8x = V18 VI Vi8oVI8 x 4 o(1)

for|t| sufficiently small.

This lemma can be proved easily by Taylor expansion and is left as an exercise. The lemma can be
understand through the driftless control system

X=uf(x)+ugx)

Then the lemma suggests that it is possible, by switching the input u#; and uy, to reach points that is
reachable by the system & = [f, g].

From now on, we will focus our attention on affine control systems

m
x=fox)+ ) uifi(x), (2.23)
i=1
where f; are smooth vector fields and u = (uy,- -, Us) : Rz — U < R™. We assume that U contains an

open neighbourhood of the origin. Define

m

T:=Lie{fo+ ) uifi:ueU}

i=1

then it is easy to show that
2 =Lie{fo, f1, " fm}.

We call X the Lie algebra associated with the system (2.23).
Exercise 2.3. Consider the single input LTI system X = Ax + bu, x € R". Show that the Lie algebra associ-

ated with the system is
Lie{Ax, b} = span{Ax, b, Ab,---, A" 1 b}.
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Proposition 2.6 (Krener). If the Lie algebra associated with the system (2.23) is Lie bracket generating at
Xo, then for every t > 0, xo belongs to the closure of the interior of </ (< t, X).

Krener Theorem says that «f (< t, xp) contains an open set O having xj in its closure.
Definition 2.3. A family of vector fields S is said to be symmetricif f € S implies — f € S.

For example, for driftless system X = }_ u; f;, if both © and —u are admissible controls, then the system
is symmetric.

The following is the fundamental theorem regarding nonlinear controllability.

Theorem 2.2 (Chow-Rashevskii). For the system (2.23), if{fo, f1,- -, fm} is Lie bracket generating and sym-

metric, then the system is completely controllable, i.e., for every xy € R", of (x9) = R".

Example 2.8 (Dubins car). Consider a model for a two wheel cart on the plane

X = up cosO
¥ =u;sinf
0= U

where (x, y) represents the position of the cart and 6 the heading angle. There are two controls, u; the
driving speed, and u» the turning rate. Suppose that the cart can be driven either back and forward and
the turning rate can be either negative or positive. Thus the system is symmetric. Let f; = [cos8, sin0, 0]
and f> = [0, 0, 1]. Then [f1, f2] = —[sinf, —cos#, 0]. It follows that rank{fi, f>, [f1, f21} = 3 for all (x, y,0).
Thus the system is completely controllable.

Exercise 2.4 (Nelson’s car). Consider a front-wheel drive car shown in Figure[2.9] The control input are:
1) the front wheel turning rate; 2) the driving speed. Derive the motion dynamics of this model and check
its controllability.

X2

X1

Figure 2.9: Nelson’s car
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2.3 Proof of the maximum principle

In this section, we prove the maximum principle following Boltyanskii [4].

2.3.1 Nonlinear optimization
Motivating example

The methodology that we are going to use to prove the maximum principle can be illustrated through
static nonlinear optimization problem:
min go(x)

(LM)
subjectto g;(x) <0, i=1,---,m

in which {gi}l’.’io € C1(R™;R). Assume rank(Dg(x)) = monthesetS={x:g;(x)=0,i=1,---,m},where g =
(g1, gm]T. Suppose that the problem is feasible, i.e., there exists an admissible x, which minimizes
8o(x).

To solve this optimization problem, it is standard practice to use the so called Lagrangian multiplier
method. Other than that, one may use calculus of variation that we have introduced previously to derive

first order necessary conditions.
Exercise 2.5. Derive the first order necessary condition of the (LM) problem using calculus of variation.

Here, we adopt a completely new approach, which bears the name method of tent introduced by
Boltyanskii and his colleagues when proving the maximum principle.
Define the following sets:
Qi ={xeR":g;(x)<0}, i=1,--,m

and for x; € R, let

Qp =1{x: go(x) < go(x1)}U{x}.

Take the intersection of all these sets
Z2:=Q0nQ1N---NQy,

We claim that x; is a minimizer if and only if £ = {x;}. To see this, suppose x; is a minimizer, then
gi(x1) =0for i =1 and go(x1) < go(x) for all x € S. Thus x; € Z. If there is another point x; € Z, then
x, is feasible and go(x2) < go(x1), a contradiction, thus if x; is a minimizer, there must hold X = {x;}.
Conversely, suppose that X = {x;}, if x; is not a minimizer, then either x; is not feasible or there exists
X2 # x1, both feasible such that go(x2) < go(x1). For the first case, x; ¢ Q1 N---NQy, thus x; ¢ X, a
contradiction. For the second case, {x1, x2} € X, a contradiction.

As an example, let m = 1 and Figure[2.12]is a sketch of the sets Qg and Q;. In this figure, Q; and Qo
intersects on the curve y. In order that Qg N Q; = {x;}, then the two sets must separate in the sense that
they intersect only at point x;. To go one step further, let us recall the definition of a tangent cone.

Given a set Q < R” (may be non-convex), the tangent cone at x € Q is defined as

TxQ::{velR{”

3x1°, €Q, e} SRy, st }

ti10,x;—x,and (x; —x)/t; —> v
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see Figure[2.10}

Figure 2.10: Tangent of convex and non-convex sets Q.

A convex cone K < T,Q with apex x is called a tent. Note that although a tangent cone may be non-
convey, a tent is required to be convex. In Figure Ky represents the tangent cones while K; some
tents.

Figure 2.11: Tents.

Intuitively, to be able to “separate” Qg and Q;, the tangent cone of the two sets should be separable
in the sense that they intersect only at the apex. Or equivalently, there is a hyperplane passing through
x1 which separates Ty, Qo and T, Q, see Figure[2.13]
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Figure 2.12: The sets ¢y and Q;.

In Figure let us choose two arbitrary nonzero vectors ap and a; perpendicular to the separating
hyperplane such that ag + a; =0, and it is easy to see that such vectors always exist. Furthermore, we see
that

aj (x-x1)=0, Yxek; i=0,1. (2.24)
K
K, 0
a;
xl aO
separating hyperplane

Figure 2.13: Separating 2-dim tents.

Thus if we can find out Ky and Kj, we can obtain a necessary condition based on the relation (2.24).
For problem (LM), this is easy since go and g; are smooth:

Ki={x:Vgi(x1)(x—x1)<0}, i=0,1

That s, K; are half spaces, see Figure[2.14]
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Vgi(xy)

Figure 2.14: The tents are half spaces.

Therefore, a; must be of the form

a; =A;iVgi(x)
for 1; <0. Since A; cannot be zero at the same time, A; <0 for i =0, 1. Thus the relation (2.24) becomes
Vgo(x1) +AVgi(x1) =0
for some A > 0. This is a special case of the famous KKT (Karush-Kuhn-Tucker) condition which we will
be able to prove once we have generalize the above reasoning.
The separability of tents
We generalize our previous discussions to arbitrary finite many tents.

Definition 2.4 (Separability). Let Ky, -, K, be some closed, convex cones with a common apex x in R”.
They are said to be separable if there exists a hyper plane I' through x that separates one of the cones

from the intersection of the others.

Lemma 2.2. Let Ky,--+,K), be some closed, convex cones with a common apex x in R". Then they are
separable if and only if there exist dual vectors a;, i =0,1,--,p fulﬁllinﬂ

aiT(y—x) <0, Vyek;
and at least one of which is not zero and such that
ag+---+ap=0.
Lemma 2.3. LetQq,---,Qp be sets inR" satisfying
Qon---NQp =1{x},

and Ky,---, K, be tents of these sets at x. If all the tents are convex and that at least one of the tents is
distinct from its affine hull. Then Ko, -+, K), is separable.

2Note that we can also use ul.T (¥ — x) =2 0 by reversing the sign of a;, see (2.24).
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The proofs of the above two results are quite technical and are hence omitted. Interested readers are
referred to [4].
We now have all the ingredients to derive the KKT condition. First, recall the problem formulation:

Problem. Let f, g;, hj be continuously differentiable real functions. Derive the necessary condition for

the following minimization problem:

min f(x)
subjectto g;(x) <0, i=1,---,p (2.25)
h](x):oy j=1)"')q

To solve this problem, let x. be a minimizer and define

Qi ={x:gi(x)=<0}, i=1,---,p
Ej={x:hj(x)=0}, j=1,---,q
O={x:f(x) = f(x)}U{xs}

then

z=NeNZNe= .
i j
The tents of the defined sets are

K% = {x:Vg;(x,)(x—x,) < 0}
K = (x: Vi) (k- x) = 0)
K°® = {x:Vf(x:)(x—x4) <0}

By Lemmal2.3} there exists non-negative vectors w;, ¢;, 0 satisfying

wiT(x—x*) <0, vxe K%
{(x-x)<0, Vxek™

0T (x-x:)<0, VxeKk®

and

Zwi+Zf]‘+9=0 (2.26)
i J
Since K% and K® are half spaces, it follows that
w; =piVgi(xi), &§j=vijVhj(xs), 0=00Vf(xs)

in which y; =0, 8y = 0 and the signs of v; are undetermined. Plugging into (2.26), we get the KKT condi-
tion:
OoVf(xe) + D piVgi(x)+ ) viVhj(x,) =0.
i J
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2.3.2 Proof of the maximum principle
Problem statement

We start by introducing the optimal control problem under fixed terminal time. First, let us recall our

optimal control problem. We focus on time-invariant control systems:

X=f(x,u), 2.27)

where x(f) € R", u(t) € U cR™ forall € [0, ], the initial condition x(0) = xo is assumed to be fixed. The
cost function is

Ly
J(w() =<p(x(tf))+f0 L(x(s), u(s))ds,

where ¢(:), f(-, u), L(-, u) are continuously differentiable for all #. The optimal control problem amounts
to finding a process u. (1), x. (1), 0 < r < tr, with a (measurable) controller u. (¢) such that x. (¢f) € M for
some manifold M, and J(u.(-)) attains a minimum. We say that the problem is in 1) Mayer form if L = 0;
2) Lagrange form if ¢ = 0; 3) Bolza form if neither L nor ¢ is zero.

We claim that the preceding three types of optimal control problems can all be reduced to Mayer

form. In fact, let
t
Xn41(8) =f0 L(x(s), u(s))ds

the system becomes

xn+1 = L(xy u)

{x:f(x’ w (2.28)

\with initial condition (xg,0), and the cost function becomes
J=@x(tf) + Xn41(tp). (2.29)

This is an optimal control problem of the Mayer form of a time-invariant system. Due to this reason, it

suffices to study the optimal control problem with cost function:

I =@(x(tp).
Introduce the following notations which will be used in the proof:
X1 1= X4 (2f)
Qo = {xjuix:@x) <elx)}
Q; : reachability set from x

Q, = M: the terminal manifold
Let u. (1), x«(2),0< r <ty be an optimal process. Then it is easily seen that
Q() n Ql n Qz = {xl}. (2.30)

The reader should immediately realize that such type of condition implies separability of tents of the
three sets, this is the content of Lemma[2.3] Denote K; the tent of Q; at x;. It thus remains to find the
tents K;. The tents Ky and K> can be easily computed:

Ko ={xeR":Vp(x;)(x - x1) <0}

Ky = Ty, Qo
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(note that Q; is a fixed manifold).

Therefore, our problem boils down to calculating the tent of Q; at x;: Kj. By definition, a tent is only
a convex subcone of the tangent cone of Q; at xp, we should however, try to find a tent as big as possible,
since the bigger the tent, the more necessary information it conveys. This is the main non-trivial step in
proving the maximum principle (if we already know Lemma[2.2] and was first achieved by Boltyanskii
and his colleagues using the so called needle variation.

Needle variation

Suppose at the moment that the optimal control u. : [0, 7] — U is continuous. Fix T € (0, 7] and consider

the following needle shaped variation of u. for small € > 0:

w, te(t—¢,71]
ug(t) = .
u.(t), otherwise

where w € U is some constant, see Figure

~~~~~ w.(0)

Figure 2.15: Needle variation.

Denote t+— x,(f) the solution to X = f(x, u¢). Obviously, ue(-) is admissible, thus x(¢¢) belongs to the
reachable set at f, i.e., xe(tr) € Q; for all e chosen above. Thus by definition, % os must belong to
£=
the tangent cone of Q;. Denote
0x¢ (1)

v(t) =
0¢  |e=0+

R Z’E[T,tf]

then it remains to find v(tr). We call v(te) a deviation vector. To find the deviation vector, first we need

to characterize x.(t). Denote v.(t) = %, since u.(t) = u4(t) for t = 7, it follows that

dve(r) 0

_9f
T = e (e(0), 1 () = = (e (1), 0. (1)
of

= a(xe(t),u*(t))ve(l‘), Vie(T, ]

0xe (1)
at
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Evaluating at € = 0+, we get v(¢) = %(x* (1), u« (0))v(?). That is, v(?) satisfies a linear ODE. It still remains
to find the initial condition v(r). Note that

T
X (T) = x4 (T —€) +f f(xe(s), wyds,
T—€

T

=x*(T—€)+f f(x*(S),u*(S))dHf [f (xe(8), w) — f(x4(5), ux(s))1ds

T
=X+ (T) +f [f (xe(s), w) = f(x(S), us(s))1ds
T—€

thus

Xe(T) — X4 (T)
€

T
f FOe (D), w)dt = f e (1), e ()d1 2.31)
T—E

v(r) = lim
e—0+

. 1

lim —
e—0+ ¢

Fxe (@), w) = f(x: (7), us (7).

To summarize, v(-) is the solution to the following Cauchy problem

._ﬂ( (D), ux()v, Vrtelr,tfl
V= ox X« y Us v, T, f
V(1) = f(x: (7), w) = (x4 (T), us (7).

To construct more deviation vectors, let v1(tp), -, vr(2f) be some different deviation vectors ob-
tained as above corresponding to some distinct time instants 7; < --- < 7, and constant inputs wy, -, wy.

Consider the combined needle variation

wi, te(t;—kie,t;] forsomeie{l,---,r}
Ue (1) = .
u.(t), otherwise
where k; are non-negative constants satisfying .7 _, k; = 1. One can show that
r ax(t ruE,k)
Y kiviltp) = ———5
i=1 o¢ £=0+

which implies that Z;:l kivi(tf) are again in Ty, Q;. Still call these vectors deviation vectors and define

K; to be the set of all deviation vectors, i.e.,

dreZ.,t; €0, tf), wieU, k; =0, Z;zl ki=1,

,
K= Z k;v; (tf) vi(tf) the deviation vector obtained from needle

i=1 o . . .
variation att; with spike w;

Then Kj is a tent of Q; at x;.

Final step: the costate equation and the maximum principle

Condition (2.30) implies that Ko, K1, K> are separable. Invoking Lemma [2.2]and Lemma 2.3} we deduce
that there exist three vectors a;, at least one of which is nonzero, satisfying

a/v<0, vek;i=0,1,2 (2.32)

and
ag+ay +ax=0. (2.33)
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In particular, alT v(tp) <0 for any deviation vector v(tr). Now we introduce a small trick: if we are able
to construct some function p : [0, tr] — R" such that p(z‘)T v(t) = constant with pty) = ay, then we ob-
tain immediately p(z) " v(t) = alTv(tf) <0 forall £ € [0, ¢]. In particular, if v is the deviation vector ob-
tained by needle variation at time 7 with spike w, then v(7) = f(x.(7), w) — f(x. (), u (7). Thusat t =1,
p@ T [f(xe (1), w) — f(x4 (1), U (1))] <0 o1

P (X (1), ua (1) = p(0) T fx0 (1), W) (2.34)

For convenience, define
H(x,u,p):=p' f(x,u)
which is the Hamiltonian associated with the system . Now that the spike can be any w € U and ¢ € [0, tf),
it follows from (2.34) that
H(xs (1), u« (1), p(£)) = maéiH(x*(t), u, p(t)) = constant, Vre|[0,1y). (2.35)
ue

This is the maximum principle that we have been looking for! Except two things: the interval [0, )
doesn’t include the endpoint ¢y and the function p hasn't been determined yet. The first issue can be
fixed if everything is continuous in the above formula, which is indeed true as long as we have shown p
is, since f, x. and u. are continuous as assumed. For the second issue, let us recall the following simple
fact:

Lemma 2.4. Consider two linear ODE
x=Ax
p=-AW"p
where x,p € R". Then p(t) " x(t) = p(t) " x(¢') forany t,t' € R.
With this lemma, we can now construct p to be the solution of the following ODE
) Gf(x (1), u« (1)) !
=~ | 7 X% y Ux
p ox p
= —H] (Xu, Us, P) (2.36)
with terminal state p(fr) = a1 (note that this is exactly the costate equation).
Recall that
Ko={xeR":Vo(x1)(x—x1) <0}
KZ = Tx1 Qg

For ay, since Ky is a half space, aOT v <0 for v € Ky implies ag = AV(p(xl)T for some constant A = 0. For ay,
since K; is a sub-manifold, a, L K». It follows from (2.33) that (recall a; = p(zf)):

AV, (t) "+ pler) Lo (2.37)

for some constant A = 0.

Up to now, we have prove the maximum principle for the Mayer problem under the assumption that
U is continuous.

For u not continuous, only the condition needs to be modified by noticing that the limits in
1l exist for almost all ¢ € [0, tr]. Summarizing, we have proved the following.
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Theorem 2.3. Suppose that the Mayer form optimal control problem admits an admissible measurable
optimal law u.(-) with corresponding trajectory x.(-). Then there is a solution to the costate equation
{2.36), such that the triple (x. (1), u. (1), p(1)) satisfies the maximum principle foralmostall t (all t
on the interval on which u. () is continuous) and the transversality condition {2.37).

Some variants

We have so far considered the optimal control problem under the condition that ¢ is fixed. It can be
easily extended to the case of free terminal time: it is obvious that all the necessary conditions of Theorem
[2.3]still need to be hold. The mere difference is that now one can also make the variation of the terminal

time. For example, consider a needle variation at 7, let v(ty) be the corresponding deviation vector. Fix
Oxf(tf +ep)

some >0, since x¢(ty +ep) € Yy, —5— o must also lie in the tangent cone of Q;, but
6xg(tf +eu) dxs(tf) 0xx (tr +ew)
—_— =— + = v(tp) + pf (xa (E5), Ua (25))
o¢ £=0+ 0 le=o0+ O £=0+ ! ! !

Thus we can construct another tent of Q; at x; as
K = {v(tp) + pf (x« (£p), us (£)) s v(tp) € Ky, peR}
It follows that one can obtain a finer condition than (2.35):
H(x, (8), ux (1), p(1)) = I;leaJ(H(x* (0,u,p(1) =0, Vel zp).

Indeed, take v(tf) = 0 (no needle variation), then alT (,uf(x*(tf), u. () <0 for any p € R implies that
a; fxa(tp), us(tf)) =0.

Let us use Theorem2.3]to derive the maximum principle for Bolza form. Recall that the system model
and cost function of the Bolza problem can be equally written as and 2.29). Suppose that the
terminal manifold Q, = M, then for the augmented system (2.28), the terminal manifold is Q, =Qy xR.
The Hamiltonian becomes

H(x,u,p, po) = pr(x, u) + poL(x,u)

and the costate equation still reads p = —H,, and py = 0 since H doesn't depend on x,4;. Thus pg is a

constant. The transversal condition reads

Ve (x, (1) "
1

p(tf)
Po

A + LTy Qo xR

for some A = 0, from which it follows that pp = -1 < 0 and p(f) + /1V(,0(x*(1ff))T 1 Q,. When py is
nonzero, one can take py = —1 by modifying A. Thus we are done with the general Bolza form problem.

2.4 Some advanced topics

2.4.1 Maximum principle on manifolds
The Poisson bracket and symplectic geometry

We include a short introduction to symplectic geometry. The main reference of this subsection is [13].
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Definition 2.5 (Poisson bracket). Let M be a manifold and % (M) the set of smooth real-valued functions

on M (an R-algebra under piecewise product and sum). A Poisson bracket is a binary operation
L1:FWM) xF (M) — F (M)
which satisfies the following properties for all f, g, h € & (M):
1. bilinearity: {f, g} is R-bilinear in f and g;
2. anticommutativity: {f, g} = —{g, f};
3. Jacobi’s identity: {{f, g}, h} + {{h, [}, g} + {{g, h}, f} = 0;
4. Leibnitz’ rule {fg, h} = fig, h}t + g{f, h}.
The manifold M is said to be a Poisson manifold if it is equipped with a Poisson bracket.

Definition 2.6. Let (M, {,};) and (M>,{,}) be two Poisson manifolds. A mapping ¢ : M — M, is called
Poissonifforall f, h e % (M,), we have

2o =1{fop hop.

Definition 2.7 (Symplectic manifold). Let M be a manifold and Q is a 2-form ((0,2)-tensor). The pair
(M, Q) is called a symplectic manifold if Q) satisfies

1. dQ =0 (i.e., Qis closed) and

2. Qis nondegenerate in the sense that Q(v, w) = 0 for all w implies that v is a zero tangent vector.

Definition 2.8 (Hamiltonian vector field). Let (M, ) be a symplectic manifold and let f € & (M). Let X¢
be the unique vector field on M satisfying

Q:(X¢(2),v) =df(2)(v), for allve T, M.

We call Xy the Hamiltonian vector field of f. Hamilton's equations are the differential equations on M
given by

z=Xyr(2).
Remark 2.1. The existence and uniqueness of Xy is guaranteed by the non-degeneracy of Q.

If (M, Q) is a symplectic manifold. Then one can define a Poisson bracket as
{f 8t =QXy, Xg)

which we call the Poisson bracket associated with the symplectic manifold (M, Q). Therefore, every sym-
plectic manifold is also Poisson. The converse is not true. However, Hamiltonian vector fields can still be
defined on Poisson manifold.

Definition 2.9. Let (M, {,}) be a Poisson manifold and let f € & (M). Define X be the unique vector field
on M satisfying
dk(Xy) = {k, f} forall ke F (M)

we call Xy the Hamiltonian vector field of f.
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This definition coincides with Definition 2.8 when the Poisson manifold is symplectic. Now given

afz@) _
“dr

df(Xg(2)) = {f, H}. Thus the Hamilton’s equation can be written in the following three (equivalent) ways:

H € % (M), the Hamilton’s equation is Z = Xp(z). By the chain rule, for any f € & (M), we have

1. z2=Xy(2);
2. f=df(Xy(2) forall f e F(M);
3. f={f H}forall fe Z(M).
The following is a basic fact about Hamiltonian system.

Proposition 2.7. Let¢;: M — M be the flow of the Hamilton's equation z = Xy (z). Then

1. ¢, is a Poisson map;

2. Ho¢, = H (conservation of energy).

The cotangent bundle

We now come to one of the most important constructions of symplectic manifold, namely, the cotangent
bundle.
Consider an n dimensional manifold Q and its cotangent bundle T* Q. Let (g;) be the coordinates on
Q and (qi, p;j) the induced coordinate on T*Q. More precisely, for any w € T*Q, pjlw)=w (6%]-). Next,
define a 2-form w on T*Q by
n .
w=) dq' ndp; (2.38)
i=1
One can check that w is well-defined (coordinate-free). As an alternative, we consider the 1-form
n .
=) pidq'
i=1

and w = —d®. Thus, it suffices to show that © is coordinate-free. (The notation p;dq’ is a little ambiguous
since it may also be understood as a dual vector in T*Q instead of in T*T*Q! We adopt this notation

anyway since it is standard. The function p; in front of dg’ should remind the reader that it is a dual

vector in T* T*Q.) To show that © is well-defined, let (c”]i, p;j) be another coordinate, where p; = p; gZ’
Since dq’ = Z] 15 jdq we have
n . n aq] aq n ~ _ noo
©=) pidq' = ). Pj55azrdd = ) 67p;dq =} pidq’
i=1 i,j,r=1 q q Jjr=1 i=1

The 1-form O is the tautological form or Liouville 1-form and the 2-form w = —d® is the canonical
symplectic form. To summarize:

Proposition 2.8. Let Q be a smooth manifold. Then (T Q, w) is a symplectic manifold, where w is defined

as (2.39).
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Let’s calculate in coordinates. Let H € & (T*Q), and Xy = X i aiqi + X 0 (we use Einstein summa-

op;
tion natation: the repeated index is summed). By definition, for any v = v’ aiqi + oyt a%-’ there holds

dq' Adp; (X, v) = dH(v),

or
Xiyn+i _Xn+ivi — a_Hvi + a_H n+i
aq' ap! '
from which it follows that
1 0H n+i 0H
X' =—, =—-——
op' oq’

Hence

Xy(g,p) = _— .
P ; opi aq'  oq’ dp;

And the Hamilton’s equation reads
i OH 0H

1= 6_pi’ -~ aqi’
Further more, for Hy, H, € % (T*Q), the Poisson bracket reads

" (0H, 0H, O0H; OH.
{Hy, o}t = dH(Xp,) = Y | —r —— — — —|.
izi\dq' op' op' dq;

In the context of canonical symplectic manifold T*Q, definition defines a map f — Xy from
F(T*Q) to Z'(T*Q), where 2 (T*Q) stands for the set of smooth vector fields on T*Q. We define a
map from 2" (Q) to F(T*Q).

Definition 2.10 (Momentum function). Given a smooth vector field X on Q, i.e., X € 2 (Q), define the

momentum function of X as as the unique function Py € & (T* Q) satisfying
Px(q,p) = p(Xg)

forallpe T;Q.

In coordinates, the momentum function reads
Px(pidq;) = pi X'

where X = Xi(q)a%i.
The momentum function has the following important property: let X, Y be two smooth vector fields,
then

{Px,Py}=—-Pix,y (2.39)

this property is called the anti-homomorphism (from the Lie bracket to the Poisson bracket) of the mo-

mentum function.
Exercise 2.6. Verify the formula (2.39).

With these preparations, we are ready to state the maximum principle on manifolds.Consider the
optimal control problem in Mayer form. The maximum principle can be stated as follows (we omit the

transversal condition as they are the same as before).
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Theorem 2.4. Equip T*M with the canonical symplectic structure. Let u. : [fy, tf] — U be the optimal
control and x. : [ty, ty] — M the optimal process of the Mayer problem. Define a Hamiltonian H: T* M x
U —R by

H(x, A w) =(A f(x,u)).

Then there exists a curve A : [1y, il — T*M, with A(t) = (x.(1),A(1)) for t € [to, trl such that A is the
solution to the Hamilton'’s equation
A=XpyA)

Moreover, along A the Hamiltonian H satisfies the maximum principle

H(x. (0), A1), us (1) = mag;H(x*(t),/l(t), u).
ue

2.4.2 Nonholonomic systems and sub-Riemannian geometry

There is a large class of control systems which can be written as

X= i u; fi(x) (2.40)
i=1

where x € R, m < n, f; some C! vector fields and u;(t) € U SR, YVt = 0 the inputs. We assume that the
input space U is symmetric in the sense that u; € U implies —u; € U. We call a kinematic control
system or a control system without drift. The term kinematic control system originates from mechanical
systems, which is in contrast with dynamics control system, where the system is of second order and
the input (force) is imposed on the acceleration. Thus we can think of as controlling directly the
velocity of a mechanical system. We have already seen example of kinematic control system in Section
[2.2.2]- Dido's problem and Section[2.2.7]- Dubins car.

For system (2.40), we are interested in those that are completely controllable. According to Chow-
Rashevskii’s Theorem (Theorem, this occurs when the set of vector fields {fi,--, fin} is Lie bracket
generating, or the linear span of the set of vector fields of the form [[---[f3, fi], fxl,---, f¢] has rank n, for
more details, see Section[2.2.7] When the system satisfies the Lie bracket generating property, we
call it a kinematic holonomic system, or in short holonomic system (we are not going to cover mechanical
holonomic systems, interested readers are referred to [3]). One can verify that both Dido’s system (the
one with state (x, y, z)) and Dubins car are holonomic systems and hence are completely controllable.

The optimal control problem regarding nonholomic system that we are going to study is to

iy m
]o(u)=f0 \/ 2 ui(nde
i=1

for x(0) and x(zf) ﬁxedﬂ This optimal control problem is the content of the so called sub-Riemannian

minimize the following cost:

geomerry. To gain some insight, let y : [0, £7] — R" be a state trajectory of the system (2.40) under some

control input u(#) — such a curve is called a horizontal curve - then we define the length of the curve y as

iy
awzﬁlw%mm

3For this problem, the Euler-Lagrangian equation is degenerate as L. Thus the usual calculus of variation does not tell us useful
information.
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where the “norm” ||y'(1)|| is defined as ,/ l"i 1 ul?(t). The curve with the minimal length is called a
geodesic. Thus, the optimal control problem is equivalent to finding the geodesic between two given
points. Clearly, when m = n, sub-Riemannian geometry becomes Riemannian geometry.

We remark that Jj is invariant under time reparametrization in the following sense: if ¢ = #(7) such

that £#(0) =0and d¢/dt >0, then
Tf m
ih= [\ adr =
i=1

where £(7 ¢) = tr and i; is the the new input for the system % = Z;’; 1 i (1) fi(x(2(7)). To see this, calculate
directly: % = % % = Z;’il u; (¢(1)) fi (x(£(1)), from which we deduce that i; (1) = u; (t(1)) %. On the other
hand, by change of variable, Jy = fOTf vV u?(t(r))%dr = OTf \/Z?il [ui(t(r))%]zdr = J;- Inparticular,
choose 7(f) = fot V2 ul?(s)ds, then Y7 Il? (7) = 1. Thus we may conclude that for any input u, one can
find another input # such that 3" | ﬁ?(t) is constant and @ generates the same cost as u.

For this reason, we claim that:

Claim. Let ¢ be fixed, then u minimizes Jo if and only if u minimizes

=1 tfi HOLL
= — u-: .
2Jo o !

To see this, by Cauchy-Schwarz inequality, we have ]g(u) < 2t¢J(u) with equality holds if and only
Z;?i 1 u?(t) is constant for all ¢ € [0, tf] Suppose now that u minimizes J, and let & be any other admis-
sible controller, by previous discussion, there exists 7 satisfying Jo (1) = Jo (1) and Z?L 1 ﬁ?(t) = constant.

Hence 217 J(u) < 2t¢](@1) = ]g(ﬂ) = ]S(ﬁ). Thus Jo(u) < Jo(@1), as desired. Conversely, suppose that u
minimizes Jj, then we can find @ such that Z;’i 1 afm = constant, then for any other 7,

J) = — () = — J2(@) < (@)
th 0 th 0 - ’

as desired. As we will see, it is analytically more convenient to work with J rather than Jy, which we adopt
hereafter.
Let us now apply the maximum principle to the optimal control problem of nonholomic systems.

The Hamiltonian is (we assume there is no abnormal extremal):
o T I T
Hx,u,p) =) ui(p' fi)— Suu
i=1

where we have denoted u = (u1,---,u,,) . For convenience, denote H;j(x, p) = pT fi(x). Using the mo-
mentum function introduced in previous subsection, H;(x, p) can also be written as P 1 (p). Then

u; = (argmb'fle(x, u, p)); = H;

and along the optimal trajectory,

* * * 1 L 2k *
H(x* (1), u* (1), p (t)):EZHi (x*(9), u* (1)) = constant.
i=1

4Cauchy-Schwarz inequality: for f, g € L?, we have

with equality holds if and only if f = 1g for some constant A.
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By the way, this again justifies that minimizing J is equivalent to minimizing J; since along the optimal

*2 _

solution Y7 | u] i Hl.2 is a constant.

Unlike in the usual case, we do not write the costate equation, instead, we propose another more use-
ful type of equations which are equivalent to the costate equation. Since by Theorem 2.4} (x, p) satisfies

the Hamiltonian equation, thus H; satisfies the Poisson equation:
H;={H;,H}, Yi=1,---m.

To see how these equation can be used, we revisit Dido’s problem.

Revisit of Dido’s problem

Remember that the equation for Dido’s problem reads (the Heisenberg system)

x
d

% vyl = u1f1+u2f2

¥4

where f; =1, 0, —%y], f2=10,1, %x]. Let us consider the equivalent cost

L[l
]:Eﬁ us + usdt.

If we use the costate equation, what we get is

p1= —%Ps(Pz + %Psx)
. 1 1
p2= §p3(p1 - 5193)/)
p3=0
However, the Poisson equations read
H, ={H, H} H,

. (2.41)
Hy = —{Hy, Ho} H

which is much simpler. Denote H3 = {H;, H»} and f3 = [f1, f>], then
Hs = {Hz, H} = {{H), Ha}, H}
1 2 1 2
= {—Pfg,E(Pfl) + E(sz) }
=PpPisyf1+PrPip,p =0

since [fs, fil = [f3, f2] = 0, where P. is the momentum function, see Definition Thus the Poisson

equation can be rewritten as

H =HH
H, =-H3H, (2.42)
H3;=0
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which look more promising than the costate equation. Moreover, the system dynamics along the optimal
trajectory has the form

X = H1

y=H (2.43)

1

z= 5(—yH1 + .X,'Hz)
Claim. Let us now try to solve the equations (2.41] [2.42). The first observation is that Hs is constant.
Define w = H; + i H», where i2 = —1. Then we find w = —H, Hs + i Hy Hy = i H3(H) + i H») = i Hyw, thus
w(t) = e (0). On the other hand %(x +iy) = w, thus (remember x(0) = y(0) =0),

e'Bl—1  wO) | w0)e'™!
—1

x()+iy(r) = w(0) i =-1 H, 72

write —i w(0)/ Hy = roe'® for ry = 0, then the above equation can be rewritten as
(xX(8) + €1) + i (y(D) + cz) = rge! 100

for some real constants ¢; and c¢». Thus (x(¢), y(¢)) lies on a circle.

Dubins car

Dubins car model has the same form as Dido’s problem for with

cos@ 0
fi=|sin0|, fo={0]f.
0 1

The only thing we need to modify in equation (2.42) is the third line. First, we calculate f3 = [sinf, —cos#, 0],
it follows that [f3, il =0 and [f3, f2] = — f1. Thus

H3 = Pflp[fs,fll +Pf2P[f3:f2] =-HH.

Combining together, the Poisson equation reads

H, = H3H,
H, = -H3H,
H;=-HH,

this equation however, is much harder to solve than that of the Dido’s problem.

Note carefully that although H? + H3 is a constant along the optimal trajectory, H? + HZ + Hj
needn't be .

2.5 Appendix: Maximum Principle of Discrete Time Systems

2.5.1 Fixed control region

Historically, the dynamic principle was first developped for continuous time systems. This however,
doesn’'t mean that MP for discrete time system is harder. We will see now for fixed control region, the

problem is in fact easy.
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Consider the discrete time system

X1 = fre(Xk, ui), (2.44)
with input sequence
(uy,--+, un)
and resulting process
(x1,°++, XN, XN+1)-
Assume
ue;cR™tr=1,---,N (2.45)

in which Uy can be state dependent. But in this subsection, we assume that U; = U is fixed. The state is
under constraint
X €M;cR", t=1,---,N+1. (2.46)

Problem 1. The optimal control problem of the discrete time system (2.44) with cost function
N
Jw) = @(xn1) + Y, Li(xg, ug)
k=1
consists in finding a policy
u' = (uy,uy, e, uy)

with ul* € U and N fixed, such that x} € M; for t=1,---, N +1, and J(u*) attains a minimum. We say that

the problem is in
* Mayer formif L=0,
e Lagrange formif ¢ =0,
* Bolza formif neither L nor ¢ is zero.

Like in the continuous time case, we consider only the Mayer form as the other two forms are equiv-
alent to it.
For discrete time system, the sets Qg, > and the tents Ky, K are the same as before. The only differ-

ence is the reacheability region Q; and its tent K;. To calculate K}, define a variation similar to the needle

variation of continuous signal at the instant i € {1,---, N}:
: ur+eu, k=i,
up, otherwise

where u € U. Let x;’fl) be the solution to

x](;-fl) = fk_(x;;'a)’ u;cl,g))y k = {iy"' )N}-

(i,&) _
X=X
Then i
1,E
Oxk
Oe

, kef{i+1,---,N}
e=0
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is the solution to the discrete time variational system

0 - .
Vi+1 = a_szc(xk)uk)yk) kE{l,"',N}

0fi
Vit1 = a—ui(x;;, up)u

Similar to the continuous time case, we call vy, a deviation vector under the variation. Then the con-
vex cone Kf generated by the deviation vectors is a tent of the reacheability region. By Theorem
there exist three covectors ag € K, aj € (K{’)*, ap € K}, not all zero, such that ay + a; + a, = 0 and

ap = Agradp(xy41) with A = 0. To characterize K}', introduce the adjoint system

0fc v .
szpk+1a(xk,uk), ke{i+1,---,N}

PN+1 = a1
The following lemma is obvious, which is the discrete time version of Lemma

Lemma 2.5. Consider the system

X1 = Ap Xk

Pk = Pk+14k
where xi € R, pr. € R™*. Then pixy = pp Xx for all integers k, k'

Then

fi
0<a1UN+1 = PN+1UN+1 = Pit1Vis1 = piHE(X?r uj)u, YueU.
1
which implies

0fc  w
pk+16_uk(xk)uk)=0) Vke{ly"'rN})

since U is open. Since x; is not fixed, we can take +v; € TxT My. Then0< ayvy+1 =p1v1 <0,0r prvg =0,
which is equivalent to
p1L M

The transversal condition is

Agradg(xn+1) + py+1 L My

with A < 0. If the terminal state is free, i.e., M; = R", then py+1 = —Agrad(xy+1)-

2.5.2 Variable control region

In this subsection we consider the Mayer problem with J(u) = J(xn+1)-
Let

@, x(0) = U (fi(x(), W} <R™, t=1,---,N.

ueU;
Assume that the sets ®;(x) are compact, convex and continuously dependent on x € R” for every t =
1,---, N. We say a trajectory
(x(1),---, x(N))
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admits a local section if for every £ =1,---, N, there is a smooth function o; : U c R™ — R, where U is a

neighbourhood of x(#), such that
01(x) €Dy(x), VxeU and o(x(1)) = x(t+1) = fr(x(8), u(1))
Introduce the following notations for each 8 € {1,---, N} in which n = (N + 1) m:

z=(x1,-",xn+1) ER", withxgeR"™, 0€{l,---,N+1}
Zg=1z€R": xg.1 € Py(xg)}, O€{l,---,N}
Q= {zeR":xg€ My}, O fl, -, N+1J
Pg: atentof Mg at xg, 8€{l,---,N+1}
P, ={zeR": xg € Py} (then P, isatentof Qp), O€{l,---,N+1}

Assume that
z= (Xl)"' )XN+1)
is the optimal process.

With these notations, the problem of finding an optimal trajectory for the system (2.44) reduces to
the problem of minimizing J(x(N + 1)) on the set

o[ oi)

Since the tents of Q; are known as Pg for0 =1,---, N+1, it remains to calculate the tents of Zg. Define

00q(Xp)

Q9={2+6z:5c(9+1+6x9+1— 6XQEL9},

0=1,--,N
where
Ly : supporting cone of @y (Xg) at Xg+1, 0 €{1,---, N}

We claim that Qy is a tent of Zg. Assume this fact, we would deduce the following.

There is a number ¥ < 0 and dual vectors

a,e D(P}) cR™N*D p=1... N+1
b,eDQ)cR™ t=1,--- N

such that
N+1 N
wograd, J(Xn+1)+ ) ar+ Y b =0 (2.47)
t=1 t=1
If we write
a;=(a}, -, aM*™h
bl = (bly'” )bi‘v)
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then ai # 0 only when i = ¢, and bi #0onlywhen i = ¢, £+ 1. By assumption (b;,0z) = 0 for any 6z € Q.

Take a §z satisfying 6 x;41 = a”égf’) 0x;and 6x; =0fori # t, then

o ia
b6x, + bi*! %mt >0, 6x, €R™
X

Let ¢, = bl and y, = b'*!, the above implies

60’;(56[)
+ =0.
Pery 0x
Hence the condition (2.47) can be written as
00;()‘6;)
==+ , t=1,---,N
Vi tT Y ox

wo=0
WN=—ANn+1—Wograd, J(Xn+1)

since

grad,J(Xn+1) =(0,---,0,grad, J(Xn+1))

N+1
Y oar=QA1,, Ans)
=1

N
Y be=(Quy1+@2, , Yn-1 TN YN)
=1

where we have denoted A, = al.

Further, choose 6z is such a way that x;41 = X;4+1 +9x;41 € Ly and 6x; = 0 for i # £ + 1. Therefore
0=<y6x111

In other words, the function 7;(v) = ¥, v achieves minimum at the point x,;. Since ®,(x;) is contained
in L;, it follows that

VYiXpe1 = min Y,x=miny; fi(X;,u), t=1,---,N
x€D;(Xy) ueU;

Thus we are left to show that Qy is a tent of Zg.

Choose z € Qg arbitrary (xp,; is not necessarily in @y (xp)). Define
g (z) the projection of xg.; to ®g(xp),
and
Wo(2) = (X0, Xg,90(2), Xg42,++ , Xn) € R"
Then since @y (z) € @y (xy), Vg (2) € Eg for any z € R”. It remains to show
Yo(z)=z+0(z—-2)
or
9o(2) = xg41 +0(2— 2).

Consider the point
0o (%p)

0x

so(xg) = 0(xp) + X941 — bxg
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Ke,6(%g)

RION

Figure 2.16: Illustration I of the proof.

By definition of Qy, sy (xg) € Ly, the supporting cone of ®y(Xy) at Xy ;. Since z is close to zZ, we have

00 (Xg)

sg(0xg) =0(Xg+0xg)+0x941 — O xp

=0(Xg) +6x911 +0(6xg)

=Xg1+06x911 +0(6xg)

= Xg+1 +0(6xp).
Suppose now that sy € g (xp), then the conclusion would follow as |@g(z) — xg+1] < |Sg — Xg+1| since g (z)
is the projection of xg.1 to g (xg). Unfortunately, sy may not be in @y (xg), therefore, it should be replaced
by some other point sé. For this, we notice that sy(xg) is in Lg. We draw a ray emanating from Xy

passing through this point (sg(Xy)) (see Figure|2.16), and then the rays emanating from Xp.; with angle
€ > 0 (sufficiently small) form a cone, which we denote as K, g(%g) and that

IntK; g (Xp) NPy (Xg) # 2.

In the similar way, one can define a cone at og(xp) with the direction of sg(xg) as axis and angle radius ¢,
see Figure By continuity and compactness, one can then show that

IntK g (xg) NPy (xg) # 2.

Now we project sy(xg) to an interior point of ®g(xy), say s, and

00q(Xp)

|59 (xg) — syl < |6 xg+1 — O xg|sin(e)
The conclusion follows by noticing that
9o (2) — Xg1| < |5 — Xg1] < |55 — 59 (x0)] + |5y (x5) — Xg41| = O(€) + 0(5 xp)

and € > 0 is arbitrary.

To summarize, we have proven the following theorem.
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Dy (xg)

Figure 2.17: lllustration II of the proof.

Theorem 2.5. Consider the control system ([2.44), with state constraint and input constraint (2.45).
Assume that ®(x) are compact, convex and continuously dependent on x e R™ forallt=1,---,N. Assume
P, is a tent of M; for each t = 1,---,N. Let (x1, --,Xn+1) be an optimal process under control sequence
(uy,+++,un) which minimizes the cost J(u) = J(xn+1). Then there is a number Ay = 0 and vectors ¥ €
(R™)*, A; € D(Py) such that

0ft(xs, xy)

t=1,--,N
0x

W1 =—Ae+ Yy
Wo=0

N =—-An+1+Aograd J(xn1)

and

H(t,x¢, uy) =min H(t, x4, 1).
uel;
where H(t,x,u) = v fi(x, u).

Remark 2.2. Itis immediately to see that when the initial state x; is fixed, x»,---, xy+1 are not constraint

and U; = U is an open set, then the above condition reduces to

0 ft(xe, uy)
ox '

N = Aograd, J(xn+1)

0 ft(xe, uy)
Ve Out

wt—lzwt t:2,,N

=0, t=1,---,N

2.5.3 Discussions
Bolza form

Now we return to the general form of optimal control, i.e, the Bolza form

N

JW) = @(xn+1) + Y Lic(Xk, ug).
k=1
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To transform it into the Mayer form, let yi,1 = yx + Lr (xk, ux) where

Lk(xk!uk)r kzl)”'yN_l

Li(xp, ug) =
S {LN(XN»UN)'HP(fN(XN;UN)) k=N

Therefore we obtain an augmented system in R”*!:

Xper1 = fre(Xk, Ur)

Yier1 = Vi + Li (o, up)
with y; =0. Let

€ Rm+l

The cost function becomes

J(W) = @(zn+1) = YN+

Suppose that x; is fixed, invoking Theorem there is a number Ay = 0, vectors ¥, = (a;, B;) €

(R™* x (RY)*, A, € D(P;) such that

Oft(xs,uy) 0
(at—l»ﬁt—l):(a[;ﬁt) [Bit&f,ud , =2, ";N
0x 1
(an, Bn) = Ao(0,1)
ofi
(as Br) [gLu[ =0.
ou

from which we see

0fn(xn, un) . OLn(xn, un)

an-1=Ag (gradx(p(XNH)

0x 0x
Ofn(xN, un) OLN(xn, UN)
= Apgrad . p(xn+1) I 61; N + Ao Naz N

Thus redefining ay =: Ag grad ¢ (xx+1) we obtain

aft(xt;ut) +/106Lt(x[;ut) _ %, t=2,.- N
0x 0x 0x

an = dograd . p(xn+1),
of, . oL, OH,

A=~ +ly——=—1=0, t=1,---,N
You Oéu ou

Ap—1=Ag

(2.48)

The Hamiltonian function is Hi(x, y), = ai fi (x, ) + Ao (y + L (x, u)). But since y is independent of u,

one can also define Hg(x, y, u) = a fi(x, u) + AL (x, u) and the maximum condition becomes
Hi. (X, Yi, ux) = min Hi (X, Yi, W)-
uelU

Connections to DP

To illustrate the connections to dynamic programming, we show that dynamic programming algorithm
(I.5) and discrete time maximum principle (2.48) give the same optimal control law. We consider only

the Mayer case as it is equivalent to Bolza form.
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(DP = MP): Assume that

uy(x) = argmin(J 1 (fr (e, w)]

then we have
J7 (%) =T (fr(x, ug ()

from which it follows

i _in (%+%%)

ox  0x \dx Odu; dx

0L 0f, 013 0fi o
0x O0x 0x Ou; 0x

_ 07 0f
0x O0x
. oJ; . aJr
since % =0. Letting g =1, a; = {3‘;1 , we deduce
of
X1 = a[(?_x[
ofi
O=a;,—
taut

aJ* + . « % * *
Let Hy(x,u) = 285 £ (v ). Since J7, | (fi (0, ug)) < J7y (i, w) o1 J5,, (0) < J5, (0), VeV, =

Uueu, {ft(x¢, )} from which it follows

oJ7,  (X41)
L(vt— v)<0, VveV;
0x
aJr aJr . .
r ]’*g(;”l) vy < ]”b(;”l) v (we have used the fact that V; is convex). Hence H;(x;, u;) = minyey, H¢(x¢, u).

. . . oJ’ . . * *
(MP = DP) Itis sufficient to notice that %(v,—v) <0, Yve Vyimplies J; ,(v)) < J; ,(v), Yve

V.

Remark 2.3. Notice that in the discrete time maximum principle, we need the assumption of convexity,
which is not the case for dynamic programming! Consider for example (a common case), when the input
set U, is only a finite set, then V; won't be convex and the discrete time maximum principle does not say

anything!
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CHAPTER

OPTIMAL FILTERING AND STOCHASTIC OPTIMAL CONTROL

3.1 Stochastic calculus: a modern construction of stochastic integral

3.1.1 Motivations

Consider the system x = f (¢, x(¢)) with a noise v: Ry — R"
x=ft,x)+v, xeR™, t=0

We sample the system under sample time A¢, and let x;. = x(kA¢) for k e N.
Then

(k+1)At
Xi+1 = Xk +f f(s,x(8) + v(s)ds
kAt

(k+1)At (k+1At
:xk+f f(s,x(s))ds+f v(s)ds
kAt kAt

For discrete time system, it is custumary to model a system with noise as
Xi+1 = f(KAL, xp) + ng 3.1)

where 7y is a “white noise” in the sense that n; ~ N(0,0?) and that ny,---, ng,--- are independent. If the
above is a sample system of the continuous time system, then the variance of the Gaussian variable ny

should be made to depend on the sample time since if
(k+1)At
f v(s)ds ~ N(0,0%)
kAt
then

(k+2)At (k+1)At (k+2)At
f v(s)ds=f v(s)ds+f v(s)ds
kAt kAt (k+1)Ar

= g+ Ngsq ~ N(0,202)
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which can be viewed as n; under sample time 2A ¢ for some j. Thus the variance of 72; should be propor-
tional to the square root of the sample time. Hence we may assume nj; ~ N(0, cAt) for some ¢ > 0. Now

that
(k+1)At

N(0,cAt) ~f v(s)ds
kAt

it is reasonable to come up with a function w : Ry — R” with % = v(s) and that

(k+1)At (k+1)At
f v(s)ds =f AW 1o -k + DA - wikAD)
kAt kAt ds

1= Wg4+1 — Wi ~ N(0,cAl).

Thus a reasonable noise model could be written as

i= f(e, (e + 10

where w should have the following property: w(t,,) — w(ty,-1), w(ty-1) — w(ty-2), --- are independent
Gaussian variables and that w(#) — w(s) ~ N(0,c(¢ — s)). By doing this, we are in fact constructing a
stochastic process: namely, a Brownian motion. It is called a standard Brownian motion when ¢ = 1.

The above equation is usually written in the following form
dx(t) = f(t,x(0)dt+dw(t). 3.2)

Suppose now that in , the variance of nj is time dependent, namely ny ~ N(O, o2(kAt)At) for
some real function o. Hence
(k+1)At
f v(t,x(0)dt ~ N©O,c(kAt, x(kA1)))At)
kAt
which implies

(k+1)At
f v(t,x(0)dt=o(kAt, x(kAD) [w((k+ 1A — w(kAD)], (3.3)
kAt

where w is the standard Brownian motion. Therefore it is suggestive to write

(k+DAt (k+1)At
f v(t,x(t))dtz:f o(t,x(1)dw(r)
kAt kAt

when At is small. We underscore that the integral on the right hand side is not a Stieltjes integral as the
Brownian motion does not have finite variation. Instead, the integral should be exactly understood as
the right hand side of (8.3). The above discussions motivate to write down the following equation as an
extension of with a diffusion coefficient o:

dx(t) = f(t,x())dt+o(t, x()dw(t). (3.4)

We call the equation (3.4) a stochastic differential equation (SDE). The solution to this SDE is written

as

¢ t
x(1) =x(s)+[ f(r,x(r))dr+f o(r,x(r)dw(r)
N

N
and the integral of the last term on the right hand side is understood as when | — s| is small. Now

since
t
f orx(r)dw(r) = ZU(kAt,x(kAt))(w((k+ DAL — w(kAtr)) (3.5)
S k

the integral on the left hand side for arbitrary s < ¢ should be defined as the limit (in certain sense) of the
right hand side when At — 0.
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Remark 3.1. We call the integral defined above It6 integral of ¢. It is important to keep in mind that the
It6 integral should always be evaluated at the left end points of the partitioned intervals, as in (3.3). One
would obtain a totally different integral if one evaluate at the right end points, which is a clear difference

between Rieman-Stietjes integral.

The rigorous constructions of Brownian motion and It6 integral are quite technical and out of the
scope of this note. We refer the reader to the excellent text [I1]. In the next part, we review some impor-
tant notions from stochastic calculus, especially the It6 formula and the notion of Markov process.

3.1.2 Martingale

Throughout this subsection, we consider a probability space (Q2, %, P) with Q the sample space, & the

sigmal algebra and P the probability measure.

Definition 3.1. A filtrationon (Q, %, P) is a collection (%)p<:<co indexed by [0, +00] of sub-o-algebras of
&Z,such thatforevery0<s<t
FocFscFrcFpu T F

Definition 3.2. A stochastic process (X;);>o with values in a measurable space (E, &) (¢ is the o-algebra
on E) is called adapted (to (F;)o=i=c0) if for every t = 0, X; is &;-measurable. This process is progressive
if, for every ¢ = 0, the mapping

(w, $) — Xs(w)

defined on Q x [0, 7] is measurable w.r.t. the o-algebra &; ® ([0, t]). (28([0, t]) is the Borel algebra on
[0, £])

Another important notion is stopping time.

Definition 3.3. Ar.v. T:Q — [0,00] is a stopping time of the filtration (%), if {T < t} € &, for every ¢ = 0.
The o-algebra of the past before T is then defined by

Fr={A€eF: V120, An{T st} e F;}.

As usual, for ar.v. X, we say that X € L” if E|X|P < oco. Given a process (X;) >0 adapted to (F;) >0, we
adopt the notation E;[X;] to mean E[X;|%,]. Next we introduce one of the most important notions in

stochastic calculus: martingale.

Definition 3.4. An adapted real-valued process (X;) ;=0 such that X, € L! for every t = 0 is called
1. a martingalefif, for every 0 < s < t, E[X;] = X;; (implies EX; = EX;])
2. a supermartingaleif, for every 0 < s < ¢, E5[X;] < X,; (implies EX; < EXj)
3. a submartingaleif, for every 0 < s < ¢, Es[X;] = X, (implies EX; = EX)

Definition 3.5. A real-valued process B = (B;) ;>0 is a Brownian motion started from 0 if

1. By =0 almost surely (a.s.);
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2. for every 0 < s < ¢, the r.v. B;— By is independent of o(B;, r < s) and distributed according to
N(,t—s);

3. all sample paths (¢t — B;(w)) of B are continuous;

if additionally B is adapted to (%;) =0, we say that B is an (%;)-Browninan motion. Similarly, a process
B = (B;) =0 with values in R? is a d-dimensional (F;)-Brownian motion if its components are indepen-
dent Brownian motion and B is adapted to (%;) and has independent increments with respect to (%;).
Obviously, a Brownian motion is a martingale. But one can construct many more martingales using
Brownian motion, among which the most important one is the stochastic integral that we will construct

0? -
9B:=" ! for any 6 € R are martingales.

later. For the moment, one can easily verify that both B? - t and e

Given a stochastic process (X;), there is an obvious way of constructing a filtration such that the
process is adapted: &, = 0(X,; s < ). Hence, when not specified, one may always assume that a process
is adapted to the filtration constructed such. Due to this reason, in the rest of this note, a process is

always assume to be adpated.

Proposition 3.1. Consider a real process (X;) ;=9 and a convex function f : R — Ry such that E[f(X;)] < oo

foreveryt=0.

1. If (X;) is amartingale, then (f(X;)) is a submartingale;

2. If (X;) is a submartingale, and if f is nondecreasing, then f(X;) is a submartingale.

3.1.3 Stochastic integration

As we know from integration theory, to define abstract integration, one starts with some kind of simple
functions. Then since the integration is a linear operator, there is a unique extension of this operator to
the closure (under certain topology) of simple functions. The stochastic integration is also defined in this
way. But what kind of “simple functions” should we start with? More generally, the stochastic integration
should be defined for what kind of functions?

To get some intuiation, we go back to the formula

t t
x(t) =x(s)+f f(r,x(r))dr+f o(r,x(r)dw(r).
S S

The last term on the right hand side suggests that the stochastic integration should preserve certain prop-
erties of stochastic process. For example, take o (r,x) = x, f =0, and x(0) = 0, then x(f) = fot x(rdw(r).
Then if x(£) is a martingale, [, St x(r)dw(r) should also be a martingale.
The goal of this subsection is to define stochastic integration for a rather general class of functions —
semimartingales.
Consider an “elementary process”
p-1
Hy) =) Hi(@)1(z;,1,,)(5) (3.6)
i=0
where 0=y < <--- <, and foreach i € {0,---, p— 1}, H; is bounded and &;,-measurable. Obviously,
H is a progressive process (Definition[3.2). Then invoking the formula (3.5), the integration of H w.r.t. a
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process M = (M;) >0 should be defined as

p-1
(fHdM) =) Hi(My, nt— Mpap). (3.7
t i=0

Easy calculations show that [ Hd M so defined is a martingale (since H;(My,, ar — My, A1) is for each i).

It remains to extend the “elementary processes” to some closed set under certain norm. Some prepa-

rations are needed.

Definition 3.6. An adapted continuous process A = (A;) = is called a finite variation process if all its
sample paths are finite variation functions E] on R;. If in addition the sample paths are nondecreasing

functions, the process A is called an increasing process.
Given a process M = (M;) ;¢ and a stopping time 7T, define the stopped process at T as
M[ =Mt
more precisely, letting X =: M7, then X;(w) = Mz 1) (@).

Definition 3.7. A continuous adpated process M = (M;);>o with My = 0 a.s. is called a continuous local
martingale if there exists a nondecreasing sequence (T},) >0 of stopping times such that T}, 1 co and for
every n, the stopped process (M'") is a uniformly integrable martingale. When M, # 0, M is called a
continuous local martingale if M — M) is such. In both cases, we say that the sequence of stopping times
(Ty) reduces M.

Definition 3.8. A process X = (X;) ;>0 is a continuous semimartingale if it can be written in the form
Xi=M+ A
where M is a continuous local martingale and A a finite variation process.
The next lemma indicates that the decomposition above is unique up to indistinguishability.
Lemma3.1. Let M be a CLM. Assume that M is also a FVP with My = 0. Then M; =0 for every t =0 a.s.

Now we go back to define a norm for the “elementary processes”, a crucial task toward to definition

of stochastic integration.

Theorem 3.1. Let M = (M;)>o be a continuous local martingale. There exists an increasing process denoted
by (M, M) ;) s=0, Which is unique up to indistinguishability, such that M? — (M, M) is a continuous local
martingale. Furthermore, for every fixed t >0, if 0 = ¢! < f]' <--- < t;}n =t is an increasing sequence of

subdivisions of [0, t] with mesh tending to 0, we have
& 2
<M’M>t:r}1—1:{oloi§:l(Mt?_Mtin—l) (3.8)

in probability. The process (M, M) is called the quadratic variation of M.

We can make the following observations.

1We say that a right continuous function a: [0, T] — R with a(0) = 0 has finite variation if there exists a signed measure y on
[0, T] such that a(¢) = p([0, t]) for every t € [0, T.
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e It can be easily checked that for a standard Brownian motion B, we have (B, B); = t.

* The quadratic variation of a process does not depend on the initial value M, by (8.8). In fact, if
M; = My + Ny, then (M, M) = (N, N).

* In the formula (3.8), if M is a finite variation process, then

Pn Pn

2
> (M =M ) s( sup IM[f—M[f_II)ZlMt;z—Mt;z_ll
i=1 1<ispn i=1

1<i<py

¢
5( sup |Mti"_Mti"1|)(j(; |dMs|)—’O

in probability as n — co. Hence we can define quadratic variation for finite variation process. But

can we define it for semimartingales?

That is, if X = M + A, with M a local continuous martingale and A a finite variation process. Then
to define (X, X) = (M + A, M + A), we shall define (M, A) (the impose linearlity on the bracket is
“natural”) i.e., the “bracket” between a local martingale and a finite variation process. But this can
be simply defined as

Pn
(M, A) = r}grgo;(Mt;l =M )(Agn = Agn ).

But

Pn t
Z(Mﬂ‘_Mﬂ‘l)(At.”_At,”l) S(f |dAs|) sup |Mt!’_Mt!’1|—'0
i:l 1 - 4 1= 0 1 11—

1<i<p,

in probability as n — oo.

To go one step further, this motivates us to define the bracket between two local continuous mar-

tingale as

Pn
(M,N) = ,;ggoizzl(Mt;x — My YNy =Ny )

with mesh tending to 0. The above discussions show that the finite variation parts of M and N do
not contribute to the bracket, i.e., if M = X+ A, N = X'+ A, with X, X’ CLM and A, A’ FVP. Then
(M,N)=(X,X").

Theorem 3.2. Given two CLMs M, N. Then
1. (M, N) is the unique (up to indistinguishability) FVP such that M;N; — (M, N); is a CLM.
2. The mapping (M, N) — (M, N) is bilinear and symmetric.
3. For every stopping time T, (M7, NT>t =(MT, N), =(M,N)nt-

4. If M and N are two continuous martingales bounded in L2, M;N; — (M, N), is a uniformly inte-
grable martingale. Consequently, (M, N), is well defined as the almost sure limit of (M, N), as

t — oo is integrable, and satisfies

E[MooNool = E[MoNol + E[{M, N) .
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Consider the space of all CLM bounded in L% with 0 as initial distribution, which we denote as H. Define
an inner product on H as
(M, N)yy = E[MooNool = EIXM, N) o]

then one can show that H is a Hilbert space under this inner product. Now fix a CLM M, define an inner
product on the space of progressive processs as
o0
(H,K)p2y = E [fo HKsd (M, M) (3.9
where
L>(M) = {H is progressive and (H, H) 2y, < 0o}.

As usual, L2(M) is a Hilbert space. Note that in (3.9), because ¢ — (M, M), is a continuous increasing
function, the integral inside the expectation is Stieltjes integral and hence well-defined. Thus, we have
constructed two Hilbert spaces, namely, L?(M) and H. Recall that the RHS of is amartingale. Further

more, it is bounded in H, more precisely

. . p-1 p-1
( | Ham, | HdM) =(Z Hy(Mi 0.~ Mign), H,-(Mt,»HA.—Mt,»A.))
0 0 H i=0 i=0 H

=E

p-1 p-1
<Z Hi(Mti+1 _Ml’i)r Z Hi(M[i+1 _Mt,)>]
i=0 i

i=0

=E

p-1
;) H?((M, M), — (M, M>t,-)]
i

o0

=f HZd (M, M)
0

:(}L}DL%AD

Thus the linear mapping
H— [ HdM
0

is an isometry (hence continuous) from the set of elementary processes c L?>(M) into H. Then one can
extend the integral to L?(M) in a unique way if elementary processes are dense in L2 (M), which is indeed
the case. Thus for any H € L?(M), the integral [ HdM is defined as the limit of [ H,dM where H is
the limit of elementary processes in L%(M). (Note that since H is Hilbert (complete), the limit is still a
martingale!) For convenience, [; HdM is also written as H - M.

The following are some properties of the stochastic integral:

e Let He L2(M), M, N € H. Then
(H-M,N)=H-(M,N)

and H - M is the unique element in H such that the above holds for all N € H. From this formula,
we can deduce that

(H-M,H-My=H-(M,H-M)
:H-(f.Hsd<M,M>s)
0

= H? - (M, M) (3.10)
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where the equality (3.10) is justified first for elementary processes and then one extend it to L?(M).
Written out explicitly ,the above relation reads

. . t
<f HdM,f HdM> =f HZd (M, M);.
0 0 t 0

More generally, for K € L%(N), we have

(H-M,K-N)=HK-(M,N).

e Let M,N€eH, and H e [2(M), K € L2(N). Then since H- M and K - N are martingales in H, we have

for every ¢ € [0,00],
¢

E [[ H,dM;| =0,
0

t N
ESU H.dM, =f H.dM,, YO<s<t
0 0

t
Eg [f H.dM,|=0
N

e More over
E[(H-M)/(K-N)] = E[((HK)-{M,N));]

E[(fOtHdes) (fothst)] :E[/O[Hsst(M,N)s].
[

In the above, we have defined stochastic integral for martingales bounded in L?, i.e. H. Now we generalize

or

In particular

E =E

t
f H§d<M,M>s]
0

the stochastic integral to CLMs.
Given a CLM M, define

t
LIZOC(M)={H:f0 HZd (M, M) < oo, Vtzo} a.s.
LZ(M):{H:f Hfd(M,M>S<oo}
0

(Since (M, M) is FVP, both spaces are well defined). We point out that L2 (M) is still a Hilbert space.

Theorem 3.3. Let M bea CLM. For every H € L% (M), thereexistsa unique CLM with initial value0, which

loc

is denoted by H - M, such that, for every CLM N,
(H-M,N)=H-{(M,N).
IfHe L% (M) and K is a progressive process, we have K € L, (H-M) ifand only if HK € L%, (M) and then

H-(K-M)=HK-M.

We write ;
(H'M)tzf Hd M;
0

and call it the stochastic integral of H w.r.t. M.
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Now that a semimartingale X can be decomposted as the sum of a CLM and a FVP, namely, X = M+ V.

Then for any locally bounded progressive process H, one can define
H-X:=H-M+fH5st

where [ H;dV; is the usual Stieltjes integral.
As before, this integral has the following properties:

1. Let X be a continuous semimartingale, and K, H two locally bounded progressive processes. Then
KH-X=K-(H-X).

2. Let H be alocally bounded progressive process. If X is a CLM or FVP, the same holds for H - X.

3.1.4 Ito’s formula

It6’s formula will be our most useful tool in this text. Even if one does not know the rigorous construction

of stochastic integral, It6’s formula will be sufficient for the study of stochastic optimal control.

Theorem 3.4. Let X',---, XP be p continuous semimartingales, and let F be a twice continuously differ-

entiable real function on RP. Then for everyt =0,

1 Py _ 1 P
F(X )'”)Xt)_F(XOr"')Xo)

p t OF . p .
+Z @(XS,---,Xs)dXS’
1

N

1 &t *F p i wi
- i
+2i,]Z—:1f0 Gxiaxf(XS’ ’Xs)d<X’X>

We mention a few consequences of Ité’s formula.

1. F (th, .. ,Xf ) is a semimartingale. This is what we had expected in the beginning of the last sub-

subsection!

2. Let F(x,y) = xy. Then we see that
t t t
XY = XoYo +f X,dY; +f Ysd X, +f d(X,Y)s

0 0 0

t t
=X, Yo +f X,dY, +f Y. dXs+(X,Y),
0 0
This formula can be viewed as the formula of integration by parts. In particular, if Y = X,
t
X?=Xx2 +2f X,dXs+ (X, X);.
0

We know that when X is a CLM, then (X, X) is the unique FVP such that X2 (X, X)isaCLM. The
above formula tells us that .
(X,X); = X?— X2 —2[ X,d X;.
0

3. Let X! = t, X? = B, (standard Brownian motion), and F € C?(R, x R). Then

'(QF 106%F

L oF
F(t,B;) = F(0, B 9 (s,B)dB or 1
(t) t) (Oy 0)+‘/(; dx (S s)d S+j; ot + 2 6x2

) (s,By)ds.

98



3.1.5 Theory of Markov process

Let (E,&) be a measurable space. A Markovian transition kernel from E into E is a mapping Q : E x

& — [0, 1] satisfying the following properties:
1. For every x € E, the mapping & 3 A— Q(x, A) is a probability measure on (E, &).
2. For every A€ &, the mapping E 3 x — Q(x, A) is &-measurable.

Given a transition kernel Q, if f : E — R is bounded measurable, we define the function Qf : E — R by

Qf(x)=fEQ(x,dy)f(y) (3.11)
which is still bounded measurable.

Definition 3.9. A collection (Qs,;)o<s<; Of transition kernels on E is called a transition semigroup if the

following properties hold.

1. Foreveryxe Eand t€R, Qs (x,dy) =dx(dy).

2. Forallo0<ss<r<tand A€é,
Qs,t(X,A)ZLQs,r(X,dy)Qr,t(y,A) (3.12)

(Chapman-Kolmogorov identity).

3. Forevery A€ &, the function (s, £, x) — Qs ;(x, A) is measurable w.r.t. the o-algebra B(R.) x B(R.) x
8.

When Qg ; = Qs4r,r+r forall 7 € R, we say that the transition semigroup is time independent and we simply

write Q;—s := Qs ;. Now given f € B(E), 0 < s < r < ¢, by Chapman-Kolmogorov identity, we have

Qs,rQr, f(x) = fE Qs,r(x,dy)Qr f(¥)
=f Qs,r(x,dy)f Qr:(y, dw) f(w)
E E
= [ 1) [ QurdnQsty,dw)
E E
:jl;f(w)QS,t(xrdw)
= Qs,tf(x)-

Hence we get the identity
QsrQrr=0Qs; Y0=ss=sr=t

which is equivalent to the Chapman-Kolmogorov identity when Qg ; is understood as operators from
B(E) to B(E). Since A — Qs (x, A) is a probability measure, it is easily seen from (3.11) that Qs : B(E) —
B(E) is non-expansive (i.e., ||Qs || < 1) when B(E) is equipped with norm || f|| = sup{| f(x)| : x € E}.

Now we are ready to define Markov process.
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Definition 3.10. A process (X;);>o with values in E is called a Markov process with transition semigroup
(Qs,t)()ssst if
E(f(X)1=Qs f(Xs), Vs, t=0 (3.13)

for each f € B(E).
When the transition semigroup is time independent, the Markov property becomes
Eslf(Xs+1)] = Qe f(Xy), Vs,120.
Now take f =14, with A€ &. Then implies
P(Xiys € AlFs) = Qs 5411 a(Xs) = Qs 541 (X, A)

from which we deduce that
P(X; € AlXy, -, Xy,) = P(X; € AlXy,)

whenever #; <--- < t,;, < t. In other words, the conditional distribution of X, ; knowing the past (X, 0 <

r < s) before time s depends only on the present state Xs. In particular, when X = x, we get
Qs,:(x, A) = P(X; € Al X5 = x)

Let Cy(E) be the set of continuous real functions on E that vanish at infinity. It is common knowledge
that Cy(E) is a Banach space for the norm || f|| = sup{| f (x)| : x € E}.

Definition 3.11. Let (Q;,;) be a transition semigroup on E. We say that it is a Feller semigroup if
1. VfeCo(E), Qsrf €Co(E)forallO<ss<t.
2. VfeCo(E), lIQss+nf — fll—0as h—0.

Define the operators A(f) by

. Qt t+hf B f
A f = lim ————
o hl—I{JIJr h
where the limit is taken in Cy(E) and the domain of A(¢) is such that the above limit exists, i.e.,

Qt,t+hf_f
h

D(A(1) = {f eCy(E): converges in Cy(E) when h — 0+}.

3.1.6 Stochastic differential equation

Let d and m be positive integers, and let o and b be locally bounded measurable functions defined on

R, xR4 and taking values in R4*™M and in R? respectively. We write 0 = (0)1<i<d,1<j<m and b = (bj)1<i<q-

A solution of the stochastic differential equation

dX,j:b(t,Xt)dt‘FU(t,Xt)dB[ (314)

Xy is Fy-measurable
consists of

1. afiltered probability space (Q, %, (%) re(0,00), P) (Where the filtration is always assumed to be com-
plete);
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2. an m-dimensional (%;)-Brownian motion B = (B!,---, B™) started from 0;

an (%;)-adapted process X = (X',---, X%) with values in R%, with continuous sample paths, such that

t t
X =Xo +f b(s,Xs)ds+f o (s, X;)dBs.
0 0

The solution is called a strong solution if (%;) tc[0,00] is specified a priori. Otherwise it is called a weak
solution, i.e., the filtration is part of the solution. In this note, we are mainly interested in strong solution.

If for any two strong solutions X, Y we have
PX(H)=Y(1),0=st<o0)=1,

we say that the solution is unique.

Theorem 3.5. If there exists a constant K > 0 such that for every t = 0, x, y € R,
[b(t,x) = b(t, )| +1o(t,x) —o(t,y)| < K|x -y

then has a unique strong solution.

We show that the solution of SDE is a Markov process (Definition|3.10).
To that end, define
Qs,:(x, A) := P(X(¢;5,x) € A)

we show that
Qs,¢ f(Xs) = Es[f (X)) (3.15)
(note that this would imply Qs f(x) = E[f(X(£; s, ).

In fact,

Qs,:14(X5) = Qs (X5, A)
=P(X(;$,%) € A)lx=x,
(X is ar.v. so must be put outside P(:)!)
= Es14(X(2;8, X5))
(X, is Zs-measurable)
= El A(Xy).

(uniqueness of the solution enforces that X (#; s, X5) = X; for t = s)

A standard argument using monotone class lemma will finalize the proof of the formula (3.15). It remains

to show that Q ; is a transition group, i.e.,

Qs,rQrr = Qs (3.16)
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But

Qs,c f(x) = E[f(X(£;5,x))
(see the remark after (3.15))
= ELE,[f(X(£;s,x))]]
= E[Qy, f(X})]
(again, by (3.15))
- [ Qurmpx; ey
=er,tf(J/)Qs,r(xy d_)/)
(since P(X, € A) = P(X(r;s,x) € A) = Q;,r (x, A))

:st,r(x,dY)Qr,tf(Y)

which indeed verifies (3.16). For time dependent function, evidently we should define Qs f(s, ) :=
E[f(r, X(;s,x))].
In the literature, it is common to denote

P(s,x; 1, A) 1= Q5,1 (x, A) = P(X; € Al X = X)
and the property (3.16) can now be expressed as
P(s,x;1, A) =fP(s,x; rdy)P(r,y;t, A).

Our next task is to find the generator of the Markov process (transition group) (Qs,1)o<s<¢-
Since , ;
X = x+f b(r,Xf)dr+f o(r,X;")dB;.
0 0

we find the quadratic variation (when X is of one-dimension)

(X*, XY, = <f0.o(r,Xf)dBr,fO.a(r,Xf)dBr>

t
= f a(r, Xf)zdr.
0

t

More generally, we have d (X*, X}, = o(t, X))o ' (1, X})dt =: (a;j)d .

Now given a function ¢ € C'? (C! in w.r.t. to the first variable and C? w.r.t the second), by Itd’s formula
Lo Lo 1 t§?
01, X) = (s, Xy) +fs 0—‘?0, X,)dr +fs %(r,Xr)dX, +>¥ 0—;’@, Xp)ai;(r, X)dr

ijJs

‘o ‘o ‘o
=Xs+f —(”(r,Xr)dr+f —"’(r,Xr)b(r,Xr)dHf % (r,X,)o(r,X,)dB;
s Ot s 0x s 0x
1t (8%
+—f tr(—(p(r,Xr)a(r,Xr)oT(r,Xr))dr
2 Js 0x2

Then ‘5
Elo(t, X¢) — (s, Xs)] = Es [[ a—f(i‘,Xr) + A(r) ((P(T,Xr))dr]
N
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in which
1
AN (@(r,x)) = 5tr(aa'fmp) +(V@)b(t, x) (3.17)
1 % )
== ii(t, x) —— (1, bi(t,x)—.
2Za,,( x)ax,-axj( x)+Y_bi( 2P
Therefore, by fixing X = x, we obtain

Qs,s+n9($,X) = p(s,X) _ Elp(s+h, X(s+ h;s,x)] — (s, x)

n N
1 s+h o
f —a‘f(r, X)) + A1) (o(r, X)) dr
N

=—FE
h

— @s(s, %)+ A(s) (p(s,x)) ash— 0+

Hence the generator of Qs ; is ¢ + A(s)¢ where A is defined as (3.17). When considering only time inde-
pendent functions ¢, then A(s) alone is the generator since ¢; =0 for all s = 0.

3.1.7 Girsanov theorem

'/ML‘

loc - continuous local martingale

“%f)cc : continuous local martingale s.t. sup E |Xs|2 <oo, VEER,
0<s<t

For X € Jﬂl‘ig with Xy =0, define
1
é"(X),;z:exp(Xt—E(X,X)t) (3.18)
where (X, X) is the quadratic variation.
Lemma3.2. &(X) € #°

loc*

Proof. By Ito formula,
t 1
éa(X)t=1+f0 éa(X)s(dXs—Ed(X,Xh)

11t 1 1
+Ef0 é"(X)sd<Xs—§(X,X)S,XS—E<X,X)S>

but ) )
<XS - E (X) X)srXs - 5 (X)X>S> = <X) X)S
therefore .
EX)r=1 +f E(X)sdX;
0
which is a local continuous martingale. O

Theorem 3.6. Let X € .4} with Xo = 0. Consider the following properties:

1. Elexp 3 (X, X)ol < 0o (Novikov's condition);

2. X is a uniformly integrable martingale, and E[exp %Loo] < oo (Kazamaki’s condition);
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3. &(X) is a uniformly integrable martingale.

Remark 3.2. When we consider local martingales on finte interval, say on [0, T'], the conditions in the

above theorem changes accordingly, e.g., the Novikov condition becomes E[exp % (X, X) 1] < 00.

Theorem 3.7. Let (X;) (0,7 be a continous local martingale, and assume that &(X); is a martingale on
[0, T. Define a process
D;=:8(X); = E[8(X)7|Z]

then (Dy) is a uniformly integrable martingale. Further, define a probability measure Q by

dQ

Z=_D
ar*
Then for any martingale Y on [0, T], the process ;=Y —(X,Y),isa martingale under Q on [0, T].

Example 3.1. Let Y = W be a Brownian motion, and

t
Xt =f0 ﬁdes

then ,
Wt: Wt—/ ﬁst
0

is a martingale under dQ = z7d P where

szé’([O',BdeS)T:exp(fOTﬁdeS—%[)T|ﬂs|2ds).

Clearly, &(X) is amartingale if E exp % (X, X)7=Eexp % fOT Iﬁslzds < oo. Infact, we can say more: (Wy) [0,7]

is a Brownian motion. In particular, W, is independent of .

Let¥% c %, and P << Q such that dP = MdQ, then

EQ[X 4519

EPIX|9) = ———= (3.19)
EQ[4514)

This is called the abstract Bayes formula.

3.2 Stochastic optimal control

3.2.1 Stochastic principle of optimality

The formulation of stochastic optimal control problem is somewhat the same as the deterministic case.
Given a filtered probability space (Q, %, (%) s=0, P) on which an m-dimensional standard Brownian mo-

tion B is defined. Consider the following controlled SDE:

dx(t)=b(t,x(t),u(t))dt+o(t,x(t), u(t))dB; (3.20)

x(0) = xp € R”

where b: [0, TI xR" x U — R", 0:[0,T] xR" x U — R, with U being a given separable metric space

and u: [0, T x Q — U is called the control. Define the feasible control set as
10, T]={u:[0,TI xQ— U | u(:) is (¥;)-adapted;}.
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The cost functional for stochastic optimal control is defined as

T

](u(-))zE{h(x(T))+f L(t,x(t),u(t))dt} 3.21)
0

and call
Waq|0,T) = {ue(0,T]: the solution of is unique and J(u(-)) < oo}

the s-admissible control set. It is also natural to consider state feedback control and call
U0, T] = {u € Uaql0, T]: u(r) = P(t, X,) for some continuous function ¢}

the f-admissible control set.
As in the deterministic case, we derive the principle of optimality;, i.e., the stochastic version of (22).

The stochastic optimal control problem is find (-) € %[0, T (if exists) such that

J@) = inf  J(u()
u()e2[0,T)

Assumption 1. (Al) U is a Polish space (separable Banach space).
(A2) The maps b, o, h, L are uniformly continuous, and there exists a constant K > 0, such that for
@(t,x,u) = b(t,x,u),0(t,x,u), h(x),L(t, x, u),

lp(t,x,u) —p(t,y, | <Klx—yl, Vte[0,T], x,yeR", ueU
lp(£,0,w)| <K, Y(t,u)€[0,TI xU

Let
T
J(s,y;u()) = E{h(x(T)) +f L(t, x(1t), u(t))dt}
N

and define the value function as

_ ; _— n
Vis,y)= u(-)elazl};f[s,T]](S’y’u())’ V(s,y)€[0,T) xR",

V(T,y)=h(y), VyeR".
We have the following proposition.

Proposition 3.2. Let (A1)-(A2) hold. Then forany (s,y)€[0,T) xR ands<3§<T

$
V(s,y)= inf E{f L(t, X (&8, y,u(), u®)dt + V(§,X(t;s,y,u(-)))}. (3.22)
u(-)euyls, T] s

Formula enjoys the same structure as 32), but since the cost function (3.21) does not admit the split-
ting in Theorem (1.2), it is not a immediate consequence of that theorem.
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Proof. Let 9?; = 0{B; : s < r < §}. Denote right hand side of || by Vs, y). For any € = 0, there exists
u(-) € %ls, T1 such that

Vis,y)+e>J(s,y;u()

T
=E{f L(t,X(t;s,y,u(-)),u(t))dt+h(X(T;s,y,u(’))}
S
s
=E{f L(t,X(t;s,y,u(-)),u(t))dt}
S

T
+EEg; f L(t, X(%; 5, y,u(), u(®)dt+ h(X(T;s, y, u(-)

$
= E{f L(t, X(t; s, y,u(")), u(t))dt}
N

T
+EEgs f L(t, X(t; 8 X5, u(-), u(®))dt+ h(X(T;§, Xs, u(-))
> 1Js

(uniqueness of solution)
:E{fjl(f,X(t:s,y,u(-)), u(e)dt+ (3, X(;s,, u(.));u(_))}
> E{/SEL(t,X(t; s, 1 ul), uD)de+V(§ XS s, y, u(-)))}
=V(s, ).

To prove the converse, we need a technical result regarding the regularity of / and V: Given a constant
€ >0, there exists 6 = d(g) > 0 such that whenever |x— y| <9,

UGy u)=JEx5u)+IVE N -VE 0l <e, Vul) e 2l8, T

Next, choose a partition of R” with R" = u;D;, D;nD; = @ if i # j and diam(D;) < §. Then there exist
(1) j=1 € %18, T] such that
JG&,xj;ui() = V(§xj)+¢, VxjeD;j.

Hence for any x € D}, we have
JGEx,ui() < JG,xj,uj()+e<s V(§,xj) +2e < V(§,x) +3¢.

Now for any u(-) € %ls, T1, define

~ u(1), tels,s)
u(t) =
{ uj(r), tels§Tland x(¢)€D;
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Then
Vis,y) = J(s,y,u()
T
= E{f L(t, X(5;s,y,u(), u(®))dt+h(X(T;s,y, ﬁ(-))}
S
$
= E{f L(t, X(t; s, y,u()), u(t))dtx}
S

T
+EEgs f L(t, X(5;s,y, a(), u(n)dt + h(X(T;s, y, u()
$1Js

s
= E{f L(t, X(&; s, y,u(), u®)de+J(§, XS5, y, ul); ﬂ(-))}
N

3
< E{f Lt, X(t;8,y,u(-), u()dt+ V(S XS s, y,u() + 31—:}.
S
O

Again, as in the deterministic case, based on the above proposition, one can easily prove the following

theorem.

Theorem 3.8. Suppose that (Al1)-(A2) hold and the value function V € CY2([0, T] x R™). Then V is a solu-
tion of the following PDE (stochastic HJB equation):

—Vi+supG(t,x,u,—Vy,—Vix) =0 (3.23)
uelU

Vix,T)=h(x), xeR"

where )
G(t,x,u,p,P)= Etr(PU(t, x, w)o(t,x, u)T) +{p,b(t,x,u)) — L(t,x, u).

Invoking the infinitesimal generator A(-) defined as (3.17), the stochastic HJB equation can also be

written as
0=V;+ inf[A“()V + L(¢, x, w)], (3.24)
uelU
Vix,T) = h(x), xeR".
where
0° 0

1
A¥(1) == i (8, x, u)=——— (1, b;(t,x, u)—.
(1):= 5 ) aij ”)ax,-ax,-( X)+)_bi x5

Notice that when o = 0, (3.23) reduces exactly to the deterministic HJB (c.f. (1.37)). Thus the stochas-
tic principle of optimality is a generalization of the deterministic one.
3.2.2 Full state LQG control
Consider now the linear controlled stochastic system
dx(t) =[A®x(H) +B(Hu(n)ldt+o(t)dB; (3.25)

on the interval [0, T] with A(-) € L®([0, T];R™*™), B(-) € L ([0, T]; R™™), u(-) € %0, T] and o € L®([0, T};R"*%),

B. is a d-dimensional Brownian motion. The cost function of interest for this system is

T
J(s,x, 1) = E{x(T)TDx(T) +f x(OTM@®x(0) + u(t)TR(t)u(t)]dt},
S
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in which x(s) = x, M(t) = al,;xn, R(t) = bl,;,x;m and D > cI,x 5, for some constants a, b, ¢ € Rsy.

In order to solve the stochastic HJB (3.23) or (3.24), it is natural to propose the following candidate

V(t,x) = xTK(Dx+q(t)

for some functions K : [0, T] — R™*" (symmetric), and g : [0, T] — R.
Now
AV (£, x) + L(t, x, u)
=AY xTKx+qg)] +x" M@ x+u'R(Hu
=2xTKO[ADx+ B ul +tr(c(Do) K@)+ x' M) x+u" R(Hu

which is a quadratic function of u. By the fact that R(f) = bI,;,x, we know inf[A“(£) V (¢, x) + L(¢, x, u)] is

achieved at p)
s (A" OV (5,2) + Lz, 5, w)] = 0}

or
2R(Dus +2BMTK(Hx=0

which results in a static feedback control law
u(t,x) =R B K(D)x.
Substituting u, into the stochastic HJB, we get
0=x"[K+KA+ATK-KBR'BTK+ M]x+4(t) +tr(co ' K).
Hence a sufficient condition for the optimal law is

K(t)=-K®A®) - A(t)TK(t) + K(t)B(t)R_l(t)B(t)TK(t) —M(1)
K(T)=D

40 =tr(o (o () K1)

q(T)=0

and that the resulting solution K () being symmetric positive definite.

3.2.3 Revisit of viscosity solution of HJB

Let us consider two systems

Sy:dx(t) = f(t,x(t), u())dt
Sy dx(t) = f(t,x(), u(t))dt+ V2edB;

i.e., S, is obtained by adding a stochastic term v2edB; on S;.
Consider the cost function for the two systems

T
]1(s,y,u(-))=/ L(t, x(0), u()dt+@(x(T)), x(t) solves S;
N

T
]z(s,y,u(-))zEf L(t,x(8), u(t)dt+@x(T))|, x(t)solves S
S
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respectively.
The HJB for the two systems are
ov(t, x)

0= V,+i2f( f,x,u)+L(¢, x, u)) (3.26)

0*W (x, 1)
S oox

We observe that the stochastic HJB can be obtained from the deterministic HJB by adding the term
eAW. Itis reasonable to expect that when € — 0, W¢ (the solution to with a given €) converges to V'

(3.27)

ow(r,
0= W, +inf[ VLY
u X

f(t,x,u)+L(t,x,u))+e

in certain sense (in fact, uniformly) since the term e AW? vanishes as € — 0. From parabolic PDE theory,
admits smooth solutions (while doesn't! Thus the term eAW regularizes the HJB (3.26)).
Since the convergence of W is uniform, V should be continuous. One can show that this V is indeed the
viscosity solution that we have introduced in Section[1.2.4] On the other hand, the construction of the
viscosity solution in Section([I.2.4|has nothing to do with the discussion here. It is indeed a more intrinsic

way of construction.

3.3 Theory of optimal filtering

3.3.1 Kallianpur-Striebel formula
Give a filtered probability space (Q, &, (%) te(o,1), P) and

System: dX; = b(t,X)dt+o(t,X,)dW; (3.28)
Observable: dY; = h(t, X,)dt+ dB;
Assume (By)teo,7) and (Wy)sejo, ) are independent d and p dimensional Brownian motions adapted
to (%), Xo€ Fpand Yy =0 a.s.
The mappings
b:[0,00) x RY — R4
0 :[0,00) x R4 — R™*4
h:[0,00) x RY — RP
are assumed to be measurable. Without further assumption, we assume that the equation for (X;, Y;) has
a unique (strong) solution.

Denote
FY =0{Y;:0<ss<1}
The goal of the filtering problem is to compute the optimal estimates 7 ,(f) := E[f (Xt)lf}"ty ] when
f(XpeLl.
The idea is to construct a probability measure Q, such that X and Y are independent under Q. Then
by the Bayes formula (3.19), we would have
EQ[f (X0 45171

nt(f)(w): EQ[g—glgty]

B EQf (X (@) 56 (X (@), Y ()]
B EQ4E(X(@), Y ()]
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where X(®),Y (w) € C[0, T]. Our main tool to construct Q is the Girsanov theorem (see Theorem in
the Appendix). Define

t
A,:éf(—f h(s,Xs)st)
0 t
t 1 t
=exp(—f h(s,Xs)st——/ Ih(s,Xs)Izds)
0 2 Jo
t 1 t
:exp(—f h(s,Xs)dYs+—f Ih(s,Xs)Izds)
0 2 Jo

see 1| Then since Y; = W; — (- fot h(s, X5)dBj), it follows from Girsanov theorem (see Example
that (Y;) is a Brownian motion under Q defined by dQ = Ard P whenever

L Th 24
exp 2 Jo [h(s,Xs)|°ds

Next, we show that X and Y are indeed independent under Q. We have to prove

E <00

EQ[@(X) ¥ (V)] = EQ[@(X)]E?[¥(Y)]
for any bounded measurable functions ® and ¥ on C[0, T]. The following relations are trivial:

ER[@(X)¥ (V)] = EP[A7(X, Y)D(X)W(Y)]
= EP[EP[A7 (X, V)D(X)W (V)| X]]
= EP[o(X)EP[A7(X, Y)W (V)| X]]

To continure, observe that

EPIAT(X, V)Y (V)IX](0) = EP A7 (X (@), YX@ (@) ¥ (Y X (@))]

[P (Y X@ (@))]

=E
=f ‘P(y)uw(y)
C[0,T]

where t
YtX(“')((D) :f h(s, Xs(w))ds+ B¢(@),
0

uW is the measure on C[0, T] induced by a Brownian motion W and that YtX @) (@) is a Brownian motion
under dQ = Ar(X(w), YX@ (@)dP by Girsanov theorem. Also, we see that EP[A7(X, Y)Y (V)| X](w) does
not dependent on w and hence is deterministic! Thus we obtain

EQ[@(xX)¥ (V)] =EP[(D(X)]f Yu' ).
Clo,T)

Choose ¥ = 1, we get E?[®(X)] = EP[®(X)]. Choose ® = 1, we get E?[¥(Y)] = [o0,1 ¥ (1" (), which
shows that Y is independent of X.
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Therefore
EQ[f(X)AF 17 ]
EQIATNZF)]
_EC[fxnat 7Y ]
EQIANF)]
CE[fX @A (X(@), Y (@)
EQIATN(X (@), Y ()]
Jew,n FaGDAT (%, Y (@)X (dx)
T Jeon A Y@)pKdx)

() =

(w)

due to the independence of X and Y. i;(x) = x;. The second equality follows from the following fact:

ER[ZA Y = EP[ZArATY)
=EP[ZAVEP A1 Z4))
=EP[z]
= EZAF
= EQZEQ A 194

hence EQ[A7 ] = A}, ie, A, is an F, martingale under Q.
Kallianpur-Striebel formula

EQ[f(X (@A (X (@), Y ()]

Y _
Elf X)IF ) () = N

where z 1 7t
A7l =exp (/ h(SrXs)dYs_zf |h(s,X5)|2dS)
0 0

As a biproduct, we also see
t 1 t
A7 =exp (f h(s, Xs)d Y — 5[ Ih(s,Xs)lzds)
0 0

:éa(f h(s,Xs)dYs)
0 t

Hence A;l is an &; martingale under P on [0, T] i.e, EP [A}1 |F] = A;l.

3.3.2 Zakai and FKK equation

Keep the notations as in the previous section and introduce a new one:

o (f) = EX[f(X)A 1)

then 7,(f) = a:(f) We derive an equation for o;(f). For convenience, put z; = A,‘l, then dz; = z,htTdYt

o (1)°
where we write for convenience h; = hg(s, X5).
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then by Ito’s formula

df (Xpzi=z,Vf(XpTdX,+ f(Xp)dz+

J o 1@ ;

3 2 @ fX0d (X X)) 23 0ifXnd (X}
ij=1 i=1

Uika'jkaijf(Xt)dt

d
i,jk=1

N =

=z,VFX)Tb(t, X)dt+o(t, X)dWi) + f(Xp)z:hl dY, +

1 &

Vf(Xt)Tb(t,Xt)‘F— Z UtkUjkaijf(Xt)]dt
2 ik=1

+z, VX)) o (t, X)dW, + f(X)z:h dY,

=z, Lf(X;) +Ztvf(Xt)TU(tth)th +f(Xt)ZthszYt

or
t
f(X)z = f(Xo) + fo AJLf(Xy)ds

t t
+ [ AV ot x0awss [ ozl s, x9av, .29
0 0

where we have used:

. . d
a”‘af"aﬁijr Y bio; f
i=1

DN —

d
Lf=
i,j,k=1
(x1,x7) = <fbidt+fZaidetk,fIojdt+fZafdetk>
k k
= <f20idetk,fZUjdetk> :chrikajkdt
k k k
<X;,Z[> =0
Take the conditional expectation on (3.29), we obtain

ELF (XA F D
t t
=EQ[f(Xo)] + f EQINS'LF(X)I1F ) 1ds + f EQIN F (X hT (s, X1 F ) 1d Y
0 0

or
t t
Ut(f):ao(f)+f US(Lf)ds+f osths )Ty (3.30)
0 0

where (h; f)(x) = f(x)h(s, x), 00(f) = EP [f(Xo)]. In differential form, it also reads
do(f)=0/Lf)dt+o;(h f)dY; (3.31)

which is an SDE. Equation (3.30) is called the Zakai equation.
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Zakai equation

t t
Udﬂ=adﬂ+ﬁcu@ﬂd&ﬂLUAMﬂdn

Differential form
do(f)=0Lf)dt+o:(h.f)dY;
where
1 4 . . d
Lf=- o’ f+ ) bioif
2 ij,k=1 i=1

(hsf)(x) = hT (s, %) f(x)

With the Zakai equation, we can now derive a equation for 7;(f) using Ito’s formula:

_ Ut(f))
amif) = d(at(l)
_do(f) o(fdo) o (Ploh)? oW oi(hf)
= - + dt— dt
o (1) o (1)? o(1)° o2(1)

=1 (L) + (e f) = o (O (W T 1A Y, — 7, (h)d 1)

or
t t
nt(f)zno(f)+f0 ns(LSf)ds+f0 (s (hs ) —ms(Hms(h)] L dBs (3.32)
where .
B, = Yt—f ms(h)ds (3.33)
0
or

dB;=dY,—-n,(h)dt

and we have used:

L1=0
hel(x) = h(t,x)" = o,(he1) =0 ,(h")
do,1)=o0;h")dY,
d(ﬁ) _dx xdy, d(xny),  xd(ny),

Yt Yt J’% J’? Y?
d{o(f),0:), =lo(h OIPAY,Y), = o (h I dt

The process B, is so important that it has a name: the innovation process of the filter.
The formula (3.32) is called te FKK equation.

FKK equation

t t _
nt(f)zno(f)+f0 ﬂS(LSf)ds+f0 [ns(hsf)—ns(f)ns(h)]Tst

where ,
B, = Y,—f ns(h)ds
0
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Proposition 3.3. The innovation process (B te [0,7] is a Brownian motion adpated to (¥ IY) t€[0,T]-

Proof. Clearly By =0 a.s, and
t
B; = f [hs—ms(h)]ds+ B;
0

where we have written hg = h(s, X;) for convenience. Recall that 7;(h) = E [htlffty 1. It suffices to show

E

eiaT(Bt—BS)|gtY] _ plal=s)2.

For this, we apply Ito’s formula to n; = exp(ia” B;):

ia’B By . [" iaTBu T
e f=¢e S+i| e “a' dBy
N

(' iaTB, T Lo " iaTs
+lf e!® Pug (hu—nu(h))du—ilal f e'* Pudu
S S

. . o T B ) Th )
An immediate observation is that E [ff e!® BugTgp, Igsy] =0since [/ e* Bua’dB,isan #, > F) mar-

tingale. Further, for u = s,

E

eiaTBu”u(h)lng] =E

. Th
e Puplh, 7} 117! ]

=E

. oTs
ela By hulgSY]

thus E [ S[ e"“TB”aT(hu - nu(h))dulg’"sy] = anstE [ei“TB" hy —nu(h)lgsy] du = 0. Combining these two,
we arrive at ) :
E ei“TB’htlgsy] =elo" B _ Elalzf E[ei“TB“hulng] du
N

and the proof is completed. O

Suppose that there is a density p;(x) such that

dP(X; = x|F))

pr(x) = dx

then
m:(f) = Elf X)IF Y = fRdf(x)pt(x)dx

Substitute this into and suppose that f € C?(Rd), then
t
f f(x)pt(x)dx:f f(x)po(x)dx+f f (Ls ) (xX)ps(x)dxds
R4 R 0 Jrd
t
+f U (hsf)(x)ps(x)dx—(f f(x)ps(x)dx)ns(h)T] dB,
0 LJrd R4

t
= | reopdx+ [ oo ( |z ps(x)ds) dx

t t
+ f f(x)( f hsTpS(x)st)dx— f f(x)( f ps(x)ns(h)Tst)dx
R4 0 R4 0

=fRdf(x)

dp:(x) = L py(x)dt + py(x) [h(t,x) — m,(W)] T dB;. (3.34)

t t
po(x)+f0 LZps(X)dHfo ps(X)[hs— (W1 T dBs| dx

Thus
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Since we have assumed that f € CE([Rd), the above equation should be understood in the week sense.

If however, the density for the unnormalized quantity o;(f) is quested, i.e., search for g;(x) such that

at(f)szf(x)qt(x)dx, VfeCiRY

Note that if this is the case, then

_ qr(x)
hence -
_ qr(x
pi0 = Jra qe(x)dx
which implies
B _ Jpa f(0q,(x)dx
7:(f) —fRd fx)p:(x)dx = —fRd 7 dx

Thus, if the equation for ¢;(x) is simpler than (3.34), we can calculate g, (x) first and then use the last
formula to calculate p;(x). Using (3.31), we easily find

dq:(x) =L} q,(xdt+h(t,x)"dy, (3.35)

of which the initial distribution gy (x) is determined by the distribution of Xy. This equation is called the
Zakai-PDE.

Equations for condtional density

Define

”t(f):f fX)p(x)dx
Rd
(= fwqcodx
Rd
then

normalized: dp;(x) = L’;pt(x)dt+ pr(x)[h(t,x)— ﬂt(h)]TdBt
unnormalized: dq;(x) = L} q:(x)dt + h(t, 0Tdy,

3.3.3 Kalman-Bucy filter
Zero input
In this section, we consider filtering problem of the linear model (zero input):

dX; =AW X+ Du;ldt+ C(H)dW;
aY;=H)X;dt+dB; (3.36)

where A(?), C(t), H(t) are deterministic real matrices of dimensions n x n, n x m, I x n respectively. W;
and B; are Brownian motions adpated to filtration &; (w.l.o.g, one can take &; = gtW v gtB). Yo=0a.e.

and X, Yj are independent. u; is the control input adpated to g;ty .
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It is customary in the linear case to assume Xy ~ N (Xo, Po), i.e., the initial distribution of X; is Gaus-
sian and that the equation for (X}, Y;) has a unique strong solution adapted to ;.

In this subsection, we restrict ourselves to the zero input case, i.e., u; =0 for all £ = 0.

Define X, := E[X;|#}] (notice that this is consistent with the notation X, introduced earlier). Since
the system forms a Gaussian system, we are also interested in the covariance matrix of the condi-
tional mean: P, := E[(X;~X,)(X,—X)T|#}]. Dueto Propositionbelow, P, is a deterministic function,
ie., Pri=E[(X,— X) (X, - X7

To apply FKK equation, let f(x) = x/, then

Lf(x) =Y Aixr, hef(x)=x"H®x, h(t,x)=H(f)x
k

hence

N . - . b T
X}:E[Xﬂgty]:mx(;ufo ZAiszkds+f0 [E[X;H(s)xs@sy]—X;H(s)Xs] dBs.
k

Align all X! as a column vector, we get

t
A a7 =
[EIH($) X X{ 1F]1 - H($) X X,] " dB;

X; = E[Xo] +f0tAXsds+f0
= E[X] +f0tAXsds+f0t[E[XsXsT|ng]—XSXS] H(s)"dB;
= E[Xo] +f0tAf(sds+f0[E[(Xs—Xs)(xs—Xs)T@SY]H(s)Tst
= E[Xy] +f0tAXsds+fOtl33H(s)Tst

or equivalently

dX,= AnX,dt+P,HTdB, (3.37)
dB;=dY,-H®X,dt (3.38)

with Xy = E[Xg].
To derive the equation for P,, first notice that
Py = El(X; - X) (X, - XD
=EX. X! - E(X,X],
and then we apply Ito’s formula to P;:
dxix} = xjax]+xlaxj+a(x',x')
S r
= X;dX] + X]dX; +CiCj dt
= X[ (AT X,dt+CldW) + X[ (A'X,dt + C'dWy) + C;C] dt
dXiX] = Xjak]+X]aki+a (X, X7)
= Xlax! + Xlaxi+ PIHWTHO(B) dt

= XA X, dt+ P HTdB) + X)(A' X, + PIHT dB) + PIHD T H()(P)) T dr

116



hence

dELX} X)) = B XIX, + A'X] X)) + Ciclladr
dEIRI X)) = [E(ATRI X, + ATXI %) + PLH(O T HWO(P) T 1d e

and B
pij . . ‘ v
dtf = AJEIX; X, - X; X )+ A'EIX] X, - X] X1 + Cl-ch -PIHO"HB(PHT
or equivalently
ar; _ b 1P T T_5H T b
T AP+ B, AT +ccw! -, HTH( P, (3.39)
with Py = Py, i.e., the covariance matrix of X;.
Kalman-Bucy filter
System:
dX; = A X;dt+ C()dW;
dYt = H(t)X[dt+ dB[
Filter:
dX,= A0 X,dt+P,H®)TdB,
dB;=dY; - Ht)X;dt
where R
dP A A N .
d—tt =ADP,+P,(0 AT +Cccw) -P,H®OTH(» P,

Proposition 3.4. The process X, — X, is independent of ) , i.e., E[f (Xs — X:)|Z 1= E[f (Xs— Xy)] a.s. for
any bounded measurable f .

Proof. Step 1: we show that the conditional distribution thgty is Gaussian. Fix ¢ and let Y,]f = Xpy/on,
n=1. Define
&n =0{Y,f: k=1,--- ,2”}

Then &, is a filtration (£ = gty ). Since (X, Y) is a Gaussian process on [0, ], the joint distribution of
{(Xgg/2n, Yk,/zn)}iil is a Gaussian vector and thus the conditional expectation X;|&, is Gaussian with
mean E[X;|&,] =: X;‘ and covariance ﬁt”. Let 7} (A) := P{X; € Al&,}, then

dn(A) = Elexp(iAT X8, = fd exp(iAT x)n? (dx)
R

A 1 N
=exp (/ITXf - E/ITP?)L) .
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Since {(bn(/l)}‘r’f’:1 and {X;‘}‘r’le are both uniformly integrable martingales adapted to &, (1) and X;’o

exist and are in L!. Thus ﬁ?" also exists. To sum up, in a.s. sense,
AT Yy _ 2T
Elexp(id” X)IF, 1 = Elexp(il” X1)|6Eoo)
= lim ¢, (1)
n—oo
A 1 A
=exp(ATX, - EATPt/l
here we have omitted the superscript “oco0”. Thus X;|.%# tY ~N(X;, ﬁt).Step 2: X, — X, is independent of & tY .
It is known from elementary probability theory that when (X, Y) are jointly Gaussian, then X — E[X|Y] is

independent of Y. From Step 1, we know that X; — Xf is independent of &,, for all n. For any bounded

measurable function f and Ae gty, let A,, = E[14|&5], we have

Elf(X;— X"1a,] = E[f(X;— XMIP(Ap)

but
lim E[f(X¢ = X)1a,] = E[f (X - X)14]
lim E[f(X; = XNP(An) = ELf(X; - X)]P(A)
thus E[f(X; — X)14] = E[f(X; — X;)]P(A). The conclusion now follows. O

To find the conditional density, we use the Zakai-PDE, which reads

dq;(x) = q:(x)xTHHTdY; +tr %C(t)C(t)THess(qt(x))—V(qt(x)A(t)x) dt

which has a solution of the form

1 A . .
g:(x) = const x exp (_E(X_ Xt)TP;I(x— Xt)).

Non-zero input

The non-zero input case is also important, which is not evident right now but will be clear in the next

section.

«un

We use a superscript to indicate the signal under control input u. A first observation is that

t t t
X/ :[ A(s)Xsds+f D(s)usds+f C(s)dW;
0 0 0

t t t
X;‘:zs[f A(s) Xsds|FY +f D(s)usds+ E f C(s)dW,|FY
0 0 0

and then
Xt Xt =x"- X9

There are two implifications from the above formula: first, the covariance matrix P;‘ does not depend

on u,i.e., 15;‘ = Ist ; second, the differential of the above formula results in

dXl=dX?+dx!"-dx?
=dX?+ D(Hu,dt.
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Hence, the only thing we need to do to obtain the Kalman-Bucy filter with control is to add a term

D(t)usdt in (3.37) and keep the innovation process and covariance matrix unchanged.

( Kalman-Bucy filter with input )
System:
dX,=[A(OX;+ D) uldt+Ct)dW,
dYt = H(t)Xtdt+ dB[
Filter:
dX, =[A0OX;+ D u;ldt+ P, H®) dB,
dB;=dY,— Ht)X,dt
where R
dp L . .
d—tt =AWDP,+P, AT +CccT -P,H®TH(t) P,

3.3.4 Numerical method
Particle filter

Monte Carlo method
3.4 Partial State LQG and Separation Principle
This section is devoted to linear quadratic Gaussian control of the linear system

system: dX; = (A()X;+B(Hu)dt+ C(t)dW; (3.40)
observable: dY; = H(t)X;dt+ dB;

under the optimal cost

T
Jiul=E f XHTQWX{ +uf R(tu,dr + XFQp XY (3.41)
0

where Q(t), R(¢) and Q r are all semi-positive definite. The term X ;‘ represents the solution of the system
under control u;, which is required to depend only on the information {Y}sco,s- In other words, u; is
ZY measurable.

The first and the third terms in the cost functional are somewhat annoying since they are not observ-
able. However, we can perform an easy manipulation to transform J[u] into a more tractable form. This
is achieved by applying the tower property of conditional expection:

T
Jul=E f EIXHT QX! F 1+ Elu] ROuddt + EIXFQ X% )]
0

Now the terms in the cost function are all observable! Instead of viewing this as a “magic”, we would

rather say that this somewhat natural. If we admit this fact, then the famous “separation principle” will

119



come as a natural consequence. To see this, let X;‘ = E[X;‘Igf"ty], then

ElXHT Qo X7/}
= E[(X* - X'+ X TQ((X" - X* + X F ) )
= E[(X}' - X" Q) (X} - X)1F )]
+2E[(X)' - X" QXM F 1+ EXH T QX7 ]
= tr(EQ) (X} — X (X = X 1# )/ ) + ELXH T Q) X
= t(E[Q(P) + EIXH T Qo X

As mentioned in the previous subsection, the term tr(E [Q(t)ﬁt“]) is deterministic and does not de-

pend on u. Hence it does not affect the optimal value of J[u]. To make this precise, rewrite J[u] as

T
Jlul=E UO XHTQX! +ul R(ude + XEQp X% | + tr(E[Q(H) Pyl + E[Q/ Pr))

and we can claim

argmin J[u] = argmuin]_[u]
where J(u) is

Jw) =E .

T
[ T QR uf Rowmars Ko, %
0

Now the optimal control problem has been transformed into a “full-state observable” one. Thus in-

voking the results for full-state LQG, we can immediately state the following theorem.

Theorem 3.9. Let P, be the solution of the Riccati equation

dpt_A b o p AT 3 T 3 T
— P+ P, AT - P, HOTH(®HP, + C(H)C(1)
Py = Cov(Xp)

and K; be the solution of the time-reversed Riccati equation

aK; _ T . T
W =—-A(t)" Ki—K;A(t)+ Kt D(t)R™ (1) D(t)" Ky — R(1)
Kr=Qy

Then the partial state LQG has a solution
u; =R (ODWOTK X,
where X, satisfies
dX,;=(A(O-DWR (D) K) X dt+ P, H(H)T dB,
dB,=dY,— Hn)X,dr.

This theorem has the spirit of “separation” since as we know K is the optimal gain for full-state LQG
and X; is the output of the optimal filter. Thus the theorem suggests that we can divide the design of
the partial-state LQG into two parts. The first part is filtering, i.e., to obtain X, and the filter gain P;, the
second part amounts to the design of a full-state LQG based on the filter state X;. These two parts can be

designed separately.
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CHAPTER

OPTIMAL TRANSPORT

4.1 Monge and Kantorovich problem

4.1.1 The Kantorovich problem

Consider an extremely simplified model for the power grid in an isolated region which consists n power
plants and m transformer stations located at different places. Label the power plants and transformer
stations as p; and ¢, i € {1,---,n} and j € {1,---, m}. Assume that the amount of electricity that the plant
p; can generate each day is a fixed value a;, and the electricity that the transformer station #; should
receive each day is fixed at b;. Assume additionally that there is no loss during the electricity transfer

and that all the electricity will be sent to the transformer stations, in other words,

n
. ai=
i=1

NgE

bj. 4.1)

J

Il
—_

The cost of sending unit electricity from plant p; to transformer station ¢; is c(p;, £;), where c is a non-
negative real function.

Now the state grid corporation needs the decide a power transfer plan with the minimum cost. That
is, how much electricity should power plant p; send to transformer station #;? Let us denote the amount

sent from p; to f; as 7; ;. Then the total cost is

n m

Jm)y =) Y mije(pi tj) 4.2)
i=1j=1

in which 7 is the compact notation for the decision variables (;;). See Figure
Let us check the constraint on 7. On the sender side, each plant p; should send out all the power (i.e.,

a;) it generates, which means that

m
Y mij=a; 4.3)
=1
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T11
C(plr t])

a;

b,
a

c(p2,t3)
Figure 4.1: Kantorovich problem.

and on the receiver side, the amount of electricity that transformer station ¢; needs is b;, which implies
that
n
Z”ij:bj- (4.4)
i=1

Note that constraint is now satisfied automatically. Putting together equations (4.214.4), we arrive

at the following optimization problem
n m
minJ(m) =3 Y mijc(pi,tj)
i=1j=1

m
subjectto: ) m;j=a;
j=1 (SP)

n
2. mij=bj
i=1
mij=0
in which {ai}lf'il, {bj};?:l and {c(pj, tj)}i=1,,n; j=1,--,m are known coefficients. Let us denote this problem
as (SP). Obviously, the SP problem is a linear programming problem. Define
m n
M(a,b)={PeR™™:P;j=20,) Pjj=a;, y Pij=bj} 4.5)
j=1 i=1
and for P € I1(a, b), denote
n m
(BCY:=) Y P;jCij.
i=1j=1

With these notations, the SP problem can be conveniently written as

min (PC). (4.6)
Pell(a,b)

As we have mentioned, the SP problem is a linear programming. Thus it can be solved by all linear
programming algorithms, e.g., network simplex method. Typically, the computational complexity is of

order O(d®logd) where d = m + n.
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4.1.2 The Monge problem

We now put another constraint on the transshipment problem. Suppose that the electricity generated by
each one of the power plant is to be sent to only one power transformer station. For example, this may
happen when building transmission lines to multiple transformer stations is impossible or too expensive.
For each power plant p;, denote T(p;) € {t1,-+, t;} as its target. Then the total cost can now be written

as
n

J(D) =Y clpi, T(pi))ai,

i=1
and the constraints (4.3}4.4) are replaced by

a; = bj
i:T(p,‘)=tj

accordingly. The objective now is to seek for a map T which minimizes J(T) under the above constraint:

n

min J(T) = Y cpi, T(pi)a;
i=1 4.7)
subject to: Y ai=b;
i:T(pi)=t;

See Figure

c(p, T(p1))

az

as .; ‘bz

o)) b,

as

as

Figure 4.2: Kantorovich problem.

We call this problem a Monge problem. Unlike the SP problem that we discussed earlier which is a
linear programming, the MP problem is nonlinear: the cost function c(-,-) and T'(-) itself may both be
nonlinear. Hence the Monge problem is much more difficult and less well-behaved. But this problem is
still important in applications.

It is interesting to note that the optimal value of the MP problem is always bigger than that of the SP

a;, ifT(p;)=t;
Pijz{ i pi j

problem, since

0, else
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is always an admissible plan for admissible T. A natural question to ask is: when are the two optimal
values equal? This question is very important because it tells us when can we recast the MP problem,
which is ill-behaved as an SP problem, which is a linear programming. This question is however, not
obvious at all. Later, we will work this out in a systematic manner under a more general framework of

optimal transportation.

4.1.3 The dual of Kantorovich problem

Associate with every linear programming problem, there is a dual problem. We derive this dual from
scratch since the methodology will be used later to derive more general optimal transport dual problems.
To streamline the derivations, we introduce some useful notations that will be frequently used in the
sequel. Let C € R"*™ be the matrix whose component at the i-th row and j-th column s c(p;, ), and a,
b two column vectors whose i-th and j-th element is a; and b; respectively.
Introduce the indicator function of a set A:
0, ifxe A

Ix(x) = .
+oo, ifx¢ A

Then the problem is equivalent to

min {(P,C) + Ira,n) (P)}

PeRLy
For a € RZ, and b € R, define a® b as the matrix whose i-th row and j-th column element is a; + b;.

n

m m n
In@p(P) = sup (=Y Pij)fi+) (bj—) Pij)g,
feRn, geR™ j=] j=1 j=1 i=1

= sup a'f+b'g-(Pfeg)
feR", geR™

thus
min {(BC)+ I P)} = min sup a' f+b'g- (Pfog-C)
PER;S” PERZSW fER",gERm

= sup min a f+b' g-(Rfeg-C)
felR",ge[RszE[RgSm

= sup (f,a)+(gb)
fegsC

where in the second equality, we swapped the minimization and maximization which is legitimate due

to minimax theorem of linear programming problem.

4.1.4 From “discrete” to “continuous” optimal transport

Suppose now that we are going to move a pile of sand from X to Y to construct certain structures, see
Figure[4.3] The sand on the left of the figure can be described by a density function f : X — Rand the sand
on the right is described by some density function g: Y — R. Suppose that the unit cost of moving the
sand from the interval (x, x+ dx) to interval (y, y+dy) is c(x, y)dxdy, and that there is [1(d x, d y) amount

of sand moving from (x, x + dx) to (y,y + dy). When dx and dy are sufficiently small, we may assume
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the existence of some function 7 (x, y), satisfying I1(dx, dy) = n(x, y)dxdy. Due to mass preservation, we

must have
fXH(dx,dy)=g(y)dy, fyl'l(dx,dy)=f(x)dx
or
[ rtndr=go, | ntedy=ro.
The total cost is

f/c(x,y)n(x,y)dxdyzf c(x, y)m(x, y)dxdy.
xJy XxY

Figure 4.3: Moving a continuous distribution.

Thus the problem is formulated as

min J(7) = f c(x, y)r(x, y)dxdy
s XxY
subject to: fn(x,y)dx:g(y), fn(x,y)dy=f(x) (4.8)
X Y

n(x,y)=0

This is the Kantorovich version of the optimal transport problem. We derive next the corresponding
Monge problem. Suppose that the sand in the interval (x, x + dx) are all sent to (T (x), T'(x) + d T (x)) for
some continuously differentiable function 7': X — Y. Then the mass preservation constraint is now

f fdx=g(ydy
T(x)e(y, y+dy)

By change of variable formula (holds when T is a diffeomorphism, for the shape drawn on the right of
Figure[4.3} such T clearly does not exist! We neglect this issue though), the left is

_ _ (T 1)
Tl (2)ldet DT (9)ldz = — L LW
/Zay,ymy)f (T (2)lde @z = e DT ()]
Hence
ldetDTW)] = 2P vrex. (4.9)
g(T(x))

This equation is called the Monge-Ampere equation.
The total cost is

J(T) =fXC(x. T(x)) f(x)dx
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To summarize, the Monge problem is the following optimization problem

min J(T) :f clx, T(x)) f(x)dx
T X

fx)
g(T(x)

Note that this problem is highly nonlinear and is extremely hard to solve. Indeed, the Monge-Ampeére

(4.10)
subjectto: |detDT(x)| =

equation is a nonlinear PDE which is difficult to solve even numerically.

Exercise 4.1 (Transport maps between Gaussian distributions). Consider two Gaussian distributions. 4" (y;, %)
and 4 (42, Z2) on R"?, where u;, p2 are the mean vectors and X, X, the covariant matrices. Find an ad-

missible map of the form T'(x) = yp + A(x — u;) for some constant matrix A.

4.1.5 A quick review of measure and integration theory
Measure

To efficiently describe the optimal transport problem, it is inevitable to use some measure theory.

Given a set X, a measure on X is some extended real value function which measures the sizes of the
subsets in X, e.g., the number of points in the set, the length of a curve, the area of a surface, the volume
of a polyhedron, etc. Obviously, a measure, say y, should have the following properties: 1) u(@) = 0;
2) for any finite collection of disjoint subsets Aj,--- A, in X, the finite additive property should hold
Y uAy) = u( " A;). It turns out that the finite additive property 2) is too weak to work with; just
think of the case that we need to take limits when doing improper Riemann integration. Therefore, 2)
is asked to be replaced by a stronger requirement, the so-called countably additive property: 2’) for any
countableﬂ collection of disjoint sets Ay, -+ A;,---, there hold Y7 | u(A;) = (U2, A;).

It seems that we are done with the definition of a measure, i.e., an extended real value function on 2%
(the set of all subsets of X) satisfying properties 1) and 2’). Unfortunately, such a function in general does
not exist. The reason is that the set 2X is too big which contains some “bad sets” that hinders us from
defining a meaningful function having properties 1) and 2’). To cope with this, the strategy is to restrict
the definition of a measure on a smaller class of sets. Let us check what kind of sets should be included
in this class. First, the empty set @ should be in this class. Second, if A;,---, A;,--- are in this class, 2’) is
meaningful only if U‘i’zl A; is also in this class. In other words, the class should be closed under countable
union operation. Apart from these, we also require that 3) the class is closed under complement; in
words, if A is in the class, so is A°. In particular, X = @° is in the class, and 2’), 3) together imply that
countable intersection operation is also closed. The reason to include this is that not only we need to do
addition (union of sets) in the class, but also we need be able to do subtraction. A class with properties

1), 2’) and 3) is called a o-algebra:

Definition 4.1 (o-algebra and measurable space). Given a set X, a 0-algebra &/ on X is a collection of
subsets of X satisfying the following properties:

Degedd;

2)If Ay, Aj,--€of, thenUP | Ajeof.

3)If Ae of, then A € .

We call (X, /) a measurable space.

1A set Ais said to be countable if there exists a bijective mapping betwee A and the set of natural numbers.
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The first example of a o-algebra is 2X i.e., the collection of all subsets of X. As we have mentioned
before, this o-algebra is often too big to work with. However, when X is a discrete set, either finite or
countable, this o-sigma algebra will be in effect for in this course.

It turns out on the one hand, a o-algebra is big enough to contain the sets that we are interested in,
and on the other, it is small enough for us to define a measure (i.e., such measure exists). However, the
justification of the latter fact is not as obvious. Interested readers are referred to [8].

An important class of measurable spaces is the Borel measurable space.

Definition 4.2 (Borel measurable space). Let X be a topological space. The Borel o-algebra on X, de-
noted 98(X), is the smallest o-algebra containing all the open sets of X. A measure on %(X) is called a
Borel measure.

Typical sets in Borel o-algebra include: 1) all the open sets; 2) G sets: countable intersection of open

sets; 3) F, sets: countable union of closed sets, and so on.

Definition 4.3 (Measure). Given a measurable space (X, /), a measure i : &/ — [0,00] is a function satis-
fying

D) u(g) =0;

2) for countable collection of disjoint measurable sets {A;}, u( ‘;gl A,-) = z;’gl H(A;).

We call (X, </, 1) a measure space.
A measure is sometimes written as du.

Example 4.1 (Dirac measure). Given measurable space (X, «/), we can define for every x € X a measure
Ox:4 —1{0,1} by
1, ifxeA
0x(A)=14(x) = .
0, else
Example 4.2 (Counting measure). Given a set X and 2% its o-algebra, for S € 2%, define the counting
measure #8S as the cardinality of the set S. If the cardinality of S is infinite, set #S = co. It is plain to verify

that this is indeed a measure.

Example 4.3 (Probability measure). When the measure satisfies u(X) = 1, then p is called a probability
measure. The set of probability measures on X is denoted as & (X).

Sets with zero measure play an important role in measure theory, we call such sets null sets. On a
measure space X, we say that a property is satisfied for almost every x € X (abbreviated as a.e.) if the
property holds for all x € X/N for some null set N, i.e., u(N) = 0. If for every null set N, every subset
of N is measurable, we say that the measure u is measure complete. Given a measure space (X, <f, 1),
one can extend the o-algebra «f to make X a measure complete space (X,./, 11). We call X the measure
completion of X.

Example 4.4 (Lebesgue measure). Let X = R” be equipped with the normal topology. The completion
of the Borel measureﬂ Z" on B(R™) with the property that .Z"*(S) = vol(S) for every cubic set S € R" is
called the Lebesgue measure. Notice that cubic sets generate the topology of R", the Lebesgue measure
is uniquely defined.

2A Borel measure needn’t be complete.
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Integration

A function f: (X, <) — (Y, %) is said to be measurableif S € 8 = f’l(S) € of . We define integration of
Borel measurable functions from (X, 28(X), u) to (R, B(R),.Z") where .#" is the Lebesgue measure on the
real line. The following is a characterization of such functions.

Proposition 4.1. A function f : (X,2B(X), ) — R, B(R), m) is measurable if and only if any of the fol-
lowing is measurable foralla e R: Dixe X: f(x)<a}; 2 {xeX: f(x)<a}; I {xeX: f(x)=a}; 4
{xeX: f(x)>al.

Unless otherwise specified, the term “Borel function” means “real-valued Borel measurable function”

henceforth.

Proposition 4.2. If{f;} is a sequence of Borel functions, then the following functions are also measurable:
g1(x) =sup; f;(x), g2(x) =inf; f;(x)
&3 (x) =limsup;_., f;(x), 84(x) =liminf; . f;(x) '
To define the integration, one starts with non-negative simple functions of the form
m
P =) aila(x)
i=1

where {A;} are some measurable sets and a; some non-negative coefficients. Define the integration of ¢

as

f ddp =) aip(A).
i=1

This number is set to zero if a; > 0 and p(A;) = oo for some i.
Then one argue that any Borel function f = 0 is a limit of an increasing sequence of non-negative

simple functions:
f=lim f;
1—00
and therefore the integration of f can be defined as the limit
ffd,u = lim ff,-du.
1—00

The following are some equivalent notations for integration /' fdu when there is no danger of ambi-

ff, ffdu, ff(x)du(x), ff(x),u(dx).
X X X

Example 4.5. LetN = {1,---,n,---} be the set of natural numbers equipped with the counting measure.

guities:

Let {a;}?2, be anon-negative sequence, which can be viewed as a measurable function i — a;. Itis readily
checked that the integration of this function is simply

o0
fa.: Zai
i=1

Example 4.6 (Absolutely continuous measures). Given a (base) measure p on (X, %8(X)), and a measur-

able function f: X — R, the following formula
v(A) = fAf(x)du(x) = fo(x)lA(x)d,u(x), VAe B(X)
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defines a new measure on (X, 28(X)). We shall denote this measure as f(x)du(x) and say that it is abso-

lutely continuous w.r.t. the measure p. For measurable function g: X — R, it can be easily verified that

the integration of g is
fg(x)dV(x)=f g(x) f(x)dp(x),
X X

i.e., one simply replaces dv(x) by f(x)du(x), this justifies our notation. The proof strategy is to first to

prove for simple functions and then use simple functions to approximate general measurable functions.

Example 4.7. Let X = [0, 1] be equipped with the Lebesgue measure .|| 1;. We calculate the integration

of the function f(x) = y/x on X. For n = 1, define sets

1.k k+1
Ex=f 1([2_”,2—n)), 0<k=<2"-1
and functions
2"—-1 k
fux) = Z 2—”'1Ek(x)
k=0
2 4
21 22
y=+x 3 y =+x
22
1 2
7 z
1
2z
0 g E, 1 0k E E, E; 1
n=1 n=2

Figure 4.4: Construction of f;,. On the left, n = 1; on the right, n = 2.

On can verify that f,, 1 f as n — oo for all x € [0,1). Next, it is readily calculated that .Z 1 (Ex) =

and

1
o 6 o T T3t

2"-1 n neon+l n n
@k+DDk 2 (@"-D2"@2""-1) 1 (2"-12 2
k=1
Thus by definition

which coincides with the Riemann integral.

2k+1
22n

To define integration of a function f with possibly negative values, first decompose fas f= f* - f~,
where f* =0, f~ = 0 (this decomposition may not be unique). If one of f f* and [ f~ is finite (otherwise

we will run into the pathological case co —o0), we define

[ rau=[ rrau- [ 1
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We say that f is integrable as long as both [ f* and [ f~ are finite, or equivalently [|f|dyu < co. Denote
the set of integrable functions on X as L' (X, u) or simply L!(X) or even L.

The integration defined above is called Lebesgue integration, which (with Lebesgue measure .£")
coincides with the Riemannian integration when restricted piece-wise continuous functions on compact
sets in R”. On the other hand, it is defined for much larger class of functions. Indeed, it is not an easy
task to construct a function which is not measurable; almost all functions in real life are measurable
and can be integrated. What’s more, technically, the Lebesgue integration is much more flexible and
more convenient to use. In particular, while it is often a subtle issue to exchange limit and integration
in Riemannian integration (one often needs certain uniform convergence), the requirement to exchange

limit and integration is much less strict. One of the most useful criteria is the following:

Theorem 4.1 (Dominated convergence theorem). Let (X, ) be a measure space and {f,} a sequence of
integrable functions such that f,,(x) — f(x) pointwisely as n — oo for a.e. x € X. If there exists a non-

negative g € L' (u) such that|f,| < g a.e. for all n. Then f € L' (u) and

[ rau=im [ faoduco

Another two useful results for non-negative functions are the monotone convergence theorem and

Fatou lemma:

Theorem 4.2 (Monotone convergence theorem). If{f,} is a non-negative sequence such that fj < fj1 for

all j and f =lim,_. fn, then
ffdu = ,}ggoffndu-

Lemma 4.1 (Fatou’s lemma). If{f,} is a non-negative measurable sequence, then
flir{rlg}ffn(x)du(x) < li,{r_l,g}ff fndu

4.1.6 General formulation of optimal transport

We are now ready to introduce the general formulation of the optimal transport problem. There are two
approaches we may adopt. Either by abstracting the reasoning of the continuous version of optimal
transport in Section ?? or introducing directly abstract optimal transport problem using measure theo-
retical terms. We here adopt the second approach to help the readers familiarize a bit the measure theory

(the first approach is rather easy and the reader should also do it).

Pushforward of measures

Throughout this course, X, Y will be denoted as the source and target spaces of the optimal transporta-
tion respectively. They are assumed to be a complete metric spacesﬂ We equip X and Y with non-
negative complete Borel measures, say p and v respectively.
Given a measurable function f : (X, 8(X), 1) — (Z,%(Z2)) (Z hasn't been assigned a measure yet), we
can define a measure on Z by
fen(B) == u(f~'(B)), VBeRB(2).

3A metric space X is said to be complete if for any sequence {x}, d(xy, X;) — 0 as n, m — oo (such sequence is called a Cauchy
sequence) implies the existence of a point x € X such that d(x;,x) — 0 as n — co.

130



One can check that f;u is a well-defined measure, called the pushforward measure of uby f.Ifg: Z - W

is another measurable function, then it is easy to see that

(fogluu= fu(gum)-
The following formula will be used frequently:

Proposition 4.3 (Change of measure formula). For any measurable function f : X — Y and any measur-

able function ¢ : Y — [0,00], one has

[ oatin= [ @o nap.

The proof strategy is first to check the formula for simple functions, and then approximate Borel

functions by simple functions.

Proof. If ¢p =1, for some measurable A< Y, then on the left

fY LA dfeu(y) = fru(A) = p(f 1 (A)

and on the right,
fxlA(f(x))d;u(x):fxlf-lm)(x)du(x)=u(f‘1(A))

Next, it is obvious to see that this also holds for all non-negative simple functions. Now for non-negative
Borel function ¢, choose a sequence of simple functions such that ¢, 1 ¢, then by monotone conver-
gence theorem, the formula also holds. The proof is finalized by decomposing general ¢ into positive

and negative parts. O

The abstract Monge problem
Monge problem

Let X, Y be two complete metric space, u € Z(X), v € Z(Y) two probability measures and
c(x,y): X xY — [0,00] a Borel cost function, representing the cost of shipping a unit mass from x

to y. The Monge problem is
iITlf{f c(x, T(x))dp(x): T: X — Y Borel, Tyu = v}. ™M)
X

A map T satisfying the constraint Ty = v is called a transport map.

We henceforth denote this problem as (M). The critical part in (M) is the constraint Tyu = v. By
definition, this is equivalent to saying v(A) = p(T’1 (A)) for all measurable A < Y. Thinking v(A) as the
mass of set A in the target set Y, then the constraint v(A) = u(T~'(A)) says that if we trace back the
sources of the elements in A (i.e., the preimage of A under T), then they have the same mass as in the
target. This coincides with the underlying assumption of optimal transport. To see that, we revisit the
optimal transport problems that we defined previously.

Discrete case: If p and v are discrete probability measures on X = {x1,---,x,} and Y = {y1,---, ym}
respectively:

n m
=Y ady, v=Y by,
i=1 j=1
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in which a;,b; = 0 and ¥ a; = ¥ b; = 1 (the requirement that they sum to 1 is not essential; it can be

replaced by any other fixed numbers). Then the cost can be calculated:

n

J(T) = fX c(x, T))dp(x) = Y c(x;, T(xi))a; (4.11)

i=1
For a mapping T : X — Y, the pushforward of T is
n n
Typ(A) = w(THA) = Y a;0x, (T (A) = Y aibr(xy (A)
i=1 i=1

hence the requirement Ty p = v forces the following to hold
n m
2 aidri) = ) biby,
i=1 j=1

which happens if and only if
a; = bj. (4.12)
i:T(x)=yj
The equations are exactly those in (£.7).
Continuous case: This time, let us consider the absolutely continuous measures du(x) = f(x)dx,
dv(y) = g(y)dy form some Lebesgue measurable functions f and g, where dx is the Lebesgue measure
on R”. Then

](T)=fXC(x,T(X))du(x)=fXC(x, T(x)) f (x)dx. (4.13)

When T is a diffeomorphism, the constraint Txu = v imposes the following
Typ(A) = w(T~ (A) = f fodx
T-1(A)
=v(A) :f gy)dy :f g(T(x))|detDT(x)|dx
A T-1(A)

hence

f(x)
g(T(x))’
Equations (4.13}[4.14) are exactly (4.10) introduced in Section ?2.

One important question in Monge problem is when the set {T : Tyu = v} is non-empty. A further

|detDT (x)| = VxeX. (4.14)

question is, how to construct a transport map from the given data p and v. Itis easy to construct measures
p and v such that T does not exist:

Example 4.8 (Nonexistence of transport map). Let X = {0}, Y = {0,1} and u = §p and v = %50 + %61.
Obviously there is no map T : X — Y satisfying Tyu = v, because the point 0 can only be mapped to
either 0 or 1, but not both. More generally, if the cardinality of the support of v is larger than that of g,
transport map does not exist. In particular, when p is a discrete measure, i.e., its support is a discrete set,

and v a continuous measure, there is not admissible transport map.

Example 4.9 (Transport map on the real line). Consider two probability measures on the real line, p,
v e Z(R). The compatibility condition Ty = v says u(T~'(A)) = v(A) for all Borel sets A. Since intervals
(—o0, a] generates the Borel measure, it is sufficient to require

T (=00, al} = v{(—oco,al}, VYacR.
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The right hand side is simply the cumulative distribution function, which we denote as F, (a) := v{(—oo, al}.
On the left, if T is a strictly increasing map, then T~} (~o0, a] = (—oo, T~!(a)]. And it follows that the left
hand side is F,(T~!(a)). Equating the two terms, we get

Eyu(T™Ya) = Fy(a)

thus T can be taken as T(x) = F, ' o F,(x). In general, this map needn’t be strictly increasing and F,
needn’t be invertible, e.g., when v is supported only on finite intervals. A better definition for T is

T(x) :=inf{y € suppv: F, (y) = F,,(x)}. (4.15)

Indeed, if suppF, = R, then F, is invertible and T(x) = F, ' o F,(x). But definition makes sense
even if F, is supported only on subset of R. It remains to verify that T is an admissible transport map,
ie., Fy(y) = p({x: T(x) < y}) for all y € R. Obviously, T is nondecreasing, and hence there exists a € R,
such that {x: T'(x) < y} contains (—oo, @) and is contained in (—oo, a]. Since p is atomless, in either case
they have the same measure. Thus it suffices to prove Fy(y) = F,(a). On the one hand, since (oo, a) €
{x: T(x) < y}, then for any a' < a and € > 0, we have by definition of T, F,(a’) < F,(T(a') +€) < F,(y +e).
Letting e — 0 and a’ — a, by continuity of F,, (since p is atomless) and right continuity of F,, we get
F,(a) < Fy(y). On the other hand, for any a' > a, we have T(a') > y because {x: T(x) < y} S (-o0, al,
which is equivalent to {x : T(x) > y} 2 (a,00). Hence F,(y) < Fy(a'), and F,(y) < Fy(a) by continuity of

Fy, see Figure[4.5]

E,(a")

/ R0
/

Figure 4.5: Tllustration of the proof.

y T(a")

The following result says this also holds in higher dimension.
Proposition 4.4. Given two probability measures i and v, if u is atomless, then there always exists a Borel
map T such that Ty =v.
The abstract Kantorovich problem
Let us recall the Kantorovich problem in continuous case (see Section 22, problem (4.8)):

min J () :f
p

Xx

v c(x,y)p(x, y)dxdy
subject to: pr(x,y)dng(y), fyp(x,y)dyzf(x)
px,y)=0
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Here we changed a bit the notation (replace m with p) to avoid confusion. Suppose that f(x)dx and
g(y)dy are two probability measures. The equations on the second line above motivate us to define a
measure 7 € Z(X x Y) by

JT(S):[Sp(x,y)dxdy

for Sc X x Y. m is easily seen to be a probability measure. We claim that with this notation, the constraint

on the second line can be recast as
7(AxY)=pu(A), n(XxB)=v(B) (4.16)

for all measurable sets A< X, B<c Y. To see this, first notice

m(AxY) =f p(x,y)dxdysz p(x,y)dydx
AxY Aly

u(A) =[ fx)dx
A

then equate the rightmost terms of the above two lines to get

flA(x)(f p(x,y)dy—f(x))dxzo.
X Y
One then argue that
fgb(x)(f p(x,y)dy—f(x))dxzo
X Y

for all Borel functions ¢ and conclude that [, p(x,y)dy = f(x), as expected. The reverse direction is
straightforward.

We remark that the equations can be written more concisely as
(px)sm=p, (pylsm=v
where px: X xY — X and py : X x Y — Y are the projection maps. Call the following set
Fu=me Z2XxY):(px)emr =4, (pylem=v} (4.17)

the set of transport plans between p and v. We claim that I'(i, v) is never empty. Define a measure y® v
as follows
1®Vv(AxB)=p(A)v(B)

which is uniquely determined since A x B generates the Borel o-algebra of X x Y. By this definition, it is
immediate that y ® v is a transport plan.

Example 4.10. Let u = 2?21 aiby, andv = Z;n:1 biéyj two discrete probability measures on X = {xi,-+, x,}

and Y ={y1,---, ym} respectively. Let w € I'(u, v). Then r is a probability measure on X x Y, or

n m
n= Z Z Pija(xivJ’j)'

i=1j=1
for some non-negative numbers {P;;} satisfying }_; ; P;; = 1. For any x; € X, by definition of a transport

plan, we have

m
a; =plx) =n(x}xY)=)_ P;j
j=1

n
bj=v({y) =aX x{yjh) =) Pjj
i=1
which coincides with[4.5] Thus I'(y,v) = I(a, b), as expected.
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The Kantorovich problem is formulated as follows:

Kantorovich problem

Given two probability measures p € Z(X), v e & (Y), the Kantorovich problem is to seek a prob-
ability measure 7 € (X x Y) to the following minimization problem:

inf{f c(x,y)dr(x,y) :meT(u, v)}. X
Z XxY

We henceforth denote this problem as (K). The Kantorovich has the following important properties:

1) The set I'(u, v) is never empty since u ® v is always in I'(i,v). Thus the problem is always well-
defined.

2) It is a convex optimization problem over a convex set. Indeed, for 71,7, € I'(i,v) and A € [0, 1], it is
easily seen thatw = Az +(1-A)my) is a transport plan, e.g.,m(AxY) = Am (AxY)+ (1 -V (Ax Y) = u(A).
On the other hand, the mapping 7 — [ cdx is affine since ['cd(Am; +(1—-A)7y) = A [ edmy + (1 -A) [ edrma.

(Note that we cannot talk about linearality since 7 is restricted to be probability measures).

Problem (M) versus problem (K)

We mentioned earlier that the Monge problem can be viewed as adding an additional constraint on the
Kantorovich problem, or in other words, Kantorovich problem is a relaxation of the Monge problem.
This still holds for abstract optimal transportation problems. In fact, we can associate every transport

map T : X — Y with a transport plan = byE]
7= (id x T)up

where id is the identity mapping on X. To see that x is a transport plan, notice that 7(A x Y) = p(@id x
T Y AxY)) = wix € A; T(x) € Y} = pu(A). The other equation is similar. Thus we can conclude

inf (K) =inf (M). (4.18)
T T

We point out that even though p has a density, e.g., du(x) = f(x)dx, the map 7 = (id x T)zu needn’t
do. In fact, 7 is concentrated on the graph of T:

Gr(T):={(x, T(x)) e X x Y},

see Figure

4Given two mappings T} : X — Y7, T» : X — Yo, the mapping T} x T : X — Y7 x Y5 is defined as T7 x T»(x) = (T1 (x), T2 (x)).
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| ™

Figure 4.6: Monge problem versus Kantorovich problem. On the left, the mass is concentrated on the
graph of T. On the right, we draw the continuous density function of a probability measure n. The
brighter the value, the higher the density value at that point.

It now seems that the (K) problem is so much more general than (M) that the one would normally
not expect the reverse direction to hold. But quite surprisingly, the reverse direction holds under very
mild conditions: if 1) 1 does not assign positive measure to singletons, i.e., u{x} = 0 for any x € X (we call
such p atomless or p has no atom) and 2) the cost function c(x, y) : X x Y — R is continuous, then the
inequality becomes equality:

Theorem 4.3 (Pratelli). Ifu is atomless andc: X x Y — R is continuous, then
min (K) =inf (M).
n T

The proof of the theorem is quite technical which relies essentially on Proposition[4.4} based on that
proposition, for any 7 € I'(i, v) —when p is atomless — we can find a sequence of transport maps {T},} such

that (id x T,,)#u converges to 7 in certain sense. The continuity of ¢ then will allow us to take the limit

limf c(x, Tp(x))du(x) = limf c(x, y)d(id x Tp)su(x,y) =[ c(x,y)dn(x,y).
n—oo Jx n—oo Jxxy XxY

Observe from above that given a sequence of measures {u,}, the convergence we need is the following:
there exists a measure p such that for any continuous function ¢, [ ¢pdu, converges to [ ¢du. In fact, a

weaker requirement is sufficient, i.e., the weak convergence of measures:

Definition 4.4 (Weak convergence). A sequence of measures {1,} on X is said to converge weakly to u

[ o~ [ pan

for all bounded continuous functions ¢ € Cj(X).

and is denoted p, — p, if

4.2 Structures of the minimizer

4.2.1 Existence of optimal transport plan

For both Kantorovich and Monge problem, the first question needs to be addressed is the existence of

minimizers. We study the Kantorovich problem first.
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Recall that in the discrete measure setting, the Kantorovich problem is a linear programming on a
convex compact set I1(a, b). Thus a minimizer is guaranteed to exist. In the general setting, we will see
that the set I'(i, v) is still compact — under the weak topology introduced earlier. Recall that:

1) a set X is compact if for any sequence {x,} in X, there is a convergent subsequence {x,,} whose
limit lies in X.

2) the weak topology on I'(, v) is defined by: u, — piff [ ¢pdy, — [ ¢pdp for all bounded continuous
o.

Now that I'(y, v) is compact, if the functional 7 — [ cdrn is continuous, we can conclude that there
exists at least one minimizer in I'(¢, v). However, sometimes continuity is a strong requirement, and a

weaker condition is enough, i.e., lower semi-continuity.

Definition 4.5 (Lower semi-continuity). On a metric space X, a function f : X — RU {+o0} is said to be

lower semi-continuous (L.s.c. for short) if for every sequence x,, — x, we have
x) <liminf f(x;).
f(0) < liminf £ (x,)

By definition, a continuous function is L.s.c. Increasing left continuous functions and decreasing right

continuous functions on the real line are also l.s.c.

Theorem 4.4 (Weierstrass extreme point theorem). If f is l.s.c. on a compact metric space X, then f

achieves minimum on X, i.e., there exists x. € X such that
flx) = m)}nf(x).
Next, we show that 7 — [ cdm isLs.c. when cison X x Y:

Proposition 4.5 (L.s.c. of 7 — [¢dn). Ifc: X x Y — [0,00] is Ls.c., the mapping n — [ c¢dx is also Ls.c. in
P (X x Y) w.rt. the weak topology.

Proof. We need to show that, for a sequence {71;} € Z(X x Y) converging weakly to 7, there holds

f cdr <liminf | cdn;.

1—00

If c is continuous, then we can prove this rather easily. Define a sequence ci(x, y) = c(x,y) A k < c(x, y)E]
which is bounded continuous on X x Y and ci 1 ¢ as k — oo pointwisely. By definition of weak conver-
gence,

lim | cxdn; = f crdrm.

i—oo
Apply monotone convergence theorem
fcdn = lim | cgdn = lim lim | cxdn; = lim liminf | cidn; <liminf | cdx;
k—o0 k—o0i—00 k—oo i—o0 i—o0

as desired.

For l.s.c., the proof strategy is the same: approximate ¢ by some continuous bounded functions and
then tend to limit. The following clever construction produces a Lipschitz continuous function from a
Ls.c. function:

cr(x,y) = xle)i(n}f/ey{c(x’, YA k+kdx (x,x") + kdy (y, y')} (4.19)

5We denote x A y:=min{x, y}, and x vV y = max{x, y}.
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where dx and dy are the metric on X and Y respectively. We assert that ¢ 1 ¢. Indeed, 0 < ¢; < cg41 <

¢ A k < ¢, it suffices to prove c(x, y) < sup; cx(x, y) since this implies (by monotonicity of ci)
limcy < ¢ <supcg =limcy.
k k k
Fix x, y, by definition of ¢y, for any k = 1, there exists xi, yx such that

1
c(xp, Yi) Nk + kdx (x, xi) + kdy (y, yi) < cie(x, ¥) + -
Let k — oo, we discover that dx(x,xx) — 0, dy(y, yx) — 0. Thus by definition of L.s.c., (w.l.o.g., assume

supy c(xg, yi) is finite):

c(x,y) <liminfc(xg, yx) =liminfc(xg, yi) A k < sup ci(x, ).
k—o0 k—o0 k

The Lipschitz continuity of cx(x, y) is left as an exercise (see below). O

Exercise 4.2. If {f;}aca is a family of Lipschitz continuous functions on X with a common Lipschitz
constant — we call the family equi-Lipschitz — then f(x) := infy f,(x) is also Lipschitz continuous. In

particular, if f,; has the same Lipschitz constant, say L, then the Lipschitz constant of f is also L.

The compactness of the set I'(i, v) is much more technical. We state the following theorem without
proof. Before that we need the notion of separable spaces. A metric space X is said to be separable if it has
a countable dense set. For example, a Hilbert space admitting countable basis is separable. L” (X, u) is
also separable for p € [1,00) if X is, e.g., LP (R",.£"™). A separable complete metric space is called a Polish

space.

Theorem 4.5 (Compactness of I'(u,v)). Let X,Y be Polish spaces, and u€ P(X),ve P(Y). ThenT(u,v)

is compact w.r.t. the weak topology.
Finally, we can conclude with the help of Proposition[4.5/and Theorem[4.5the following result:
Theorem 4.6. Let X,Y be Polish spaces and c: X x Y — [0,00] Ls.c., then the Problem (K) has a minimizer.

Although the existence of optimal transport plan for the Kantorovich problem is guaranteed in most
reasonable cases and is rather easy to analyze, it is not the case for the Monge problem. We will only
be able to prove the existence of optimal transport maps for much narrower class of problems and even
in those cases, the proof is non-trivial and requires deeper understandings of the minimizer of the Kan-

torovich problem.

4.2.2 Duality theoryI: X x Y compact

Remember that in Section|4.1.3] we derived the dual formula for discrete Kantorovich problem min (P, C),
which is sup r4g< (f, @) + (g, b), and that strong duality holds

min (PC)= su ,a)+{g,b). 4.20
pIain, (BC)= sup (f.a)+(g.b) (4.20)

With a bit insight, one may write the abstraction of the above formula in the general setting

min /cdnzsup{f (p(x)du(x)+f v(Ndv(y) 1 Ppx) +w(y) < c(x,y)} (4.21)
el (u,v) R4 X Y
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This formula is called Kantorovich-Rubinstein duality. Since both sides of are linear programming
problems (infinite dimensional though), the duality has a high chance to be true. Recall that the non-
trivial step in proving involves an exchange of “inf” and “sup”. This is also the case for (4.21).
Indeed,

min fcdn = n}[lnf cdm + I,y (1)

7l (1,v)
but
Ir(uy) () = sgpfqb(x)d[u—(px)#n] (x)+s1$pfw(y)d[v— (py)sm] ()
=81¢1>p f $px)dp(x) - f P(x)dr(x,y) +St¢p f p(y)dv(y) - f y(y)dr(x,y)
Thus

min fcdn:n}[insupf(c—(b—l//)dﬂ+f(pdu+fwdv

el (w,v)

>supm1nf(c ¢— u/)dﬂ+f(pdp+fu/dv (weak duality)

= sup f¢(x)du(X)+fw(y)dV(y).
dX)+y(y)=c(x,y)

If equality is met for the inequality on the second line, i.e., when we can swap the min and sup, we will
get the formula @.21).
The device to prove the duality relation is the the following Fenchel-Rockafellar duality theorem:

Theorem 4.7 (Fenchel-Rockafellar duality). Let E be a normed vector space, E* its topological dual (the
space of bounded linear functionals on E), and ©, E two convex functions on E with values in R U {+oo}.

Let®* and =* be the Legendre-Fenchel transform of ©, Z respectively. If 3z, s.t.
O(zg) < +o0, Z=(zp) <400

and

O(z) is continuous at zy

Then there holds
inf{®(z) + 2(2)} = max{—O* (—z*) - =" (z*)}
zeE z*eE*

To gain some insight on how to prove the Kantorovich-Rubinstein duality, we use Theorem [4.7] to
justify the minimax property of the discrete duality relation (4.20). Rewrite the right hand side of (4.20):

wp<fa»wgw>—?p@ﬁa»ng>+{?

feg=sC

iffeg=C
else

=sup

P* —00, else —oo, else

({(f,a)+<g,b>, itP'=fog {0, ifP*sC)

Denote

,a)+{g,b), ifP*=fe 0, ifP*<C
_@W_Pﬂ:{<f )+(8:) feg _Eﬂpﬂ:{

—00, else —o00, else
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—

then one can readily check that ®* and Z* are the Legendre transform of ® and = defined as follows
(calculate ®** and Z** first and then argue ® = @** and Z** = 5):

op) = 0, ifZ;."zlP,-j:ai, Z?leiijj =(p) = (PC), ifP=0
+o0, else. ’ +00, else

Therefore
inf{l@(P)+Z(P)}= inf (PC)
P Pell(a,b)

By Fenchel duality, we now deduce (4.20).
Let .# (X x Y) be the space of Borel measures on X x Y. Mimicking the above reasoning, we define
two functionals ©, Z: #Z (X x Y) — RU {+oo}:

0, ifrel'(u,v) cdrn, ifnr=0
@(n):z{ H , E(n)z{f

+o0o, else. +00, else

To apply Fenchel duality theorem, one has to first determine the Legendre transforms of ® and =. But
the topological dual of .Z (X x Y) is not analytically convenient to work with. Thus we go from the other
direction, i.e., from the right to the left of (4.21). In this case, we need to change the sup on the right to

infinstead:

Sup{f (/)(X)du(x)+f w(y)dV(y):(/)(X)+w(y)56(x,y)}
oy WJX Y

=—inf{f (p(x)du(x)+f u/(y)dv(y):qb(x)+1//(y)Z—C(x,y)}
bw \UX Y

Now

inf{f (x)dp(x) +/ w(dv(y) 1 dp(x) +y(y) = —c(x,y)} =inf=(u) + O(u)
oy \JX Y u
where O, Z are defined as

o0 - {o, ifuvyz-—cwy { JxdOdp) + fyy(dv(y), if ) +y () = ulx,y)

+o0o, else +00, else

where the living space for u is yet to be determined. It should be chosen in a way that its topological dual
is rich enough and easy to work with. A good candidate is C;,(X x Y) when X x Y is compact, since it is
well-known that the topological dual of Cp(X x Y) is A4 (X x Y).
Let’s assume X x Y is compact and c is lower semi-continuous. The Legendre transforms of ©, = :
Cp(X xY)—RuU{+o0} are
O (—m) = sup — (7, u) — O(u)

ueCy

sup {—fudn: u= —c}
ueCy
sup{fudn:usc}
ueCy

{fcdn ifr=0

+00 else.
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and

=" () = sup {(n, u) —Lgb(x)d,u(x) —j;w(y)dv(y):gb+1// = u}

ueCy

= sup {f(p(x)+u/(y)dn(x,y)—fgbdp—fwdv:(pﬂyz u}

ueCy

0 if (px)sm =4, (pylam=v
+o0o else.

respectively. By Fenchel duality,

max—-0*(—m1)—-Z*()= max — | cdr=— min fcdn
T mel (u,v) el (u,v)

from which it follows that

RHS of (£.20) = —infO(u) + Z(u) = —max—-0* (-1) —Z*(7) = min fcdn
u p/4 el (u,v)

= LHS of [d.20).

as desired. In conclusion, we have proved the duality relation (4.21) when X x Y is compact. The following

general result shows that compactness is not essential though:

Proposition 4.6 (Duality for compact X x Y). Let X x Y be compact and c: X x Y — [0,00] Lsc., then the
Kantorovich-Rubinstein duality (4.21) holds.

In order to extend to non-compact case, we need some convex analysis tools, which are important
also for further understanding the structures of optimal transport plans and maps. In particular, the

notion c-cyclical monotonicity of the supports of optimal plans will be crucial to us.

4.2.3 c-cyclical monotonicity
Convex analysis recalled

Let X be a complete metric space, recall that for a convex functional f : X — (—o0,00], the subdifferential
of f at x is defined as
Of () :={x"eX":{(x",y-x)<f() - f(x), VyeX} (4.22)

where X* is as usual the topological dual of X, and ¢, )is the paring on X* x X. The following are some
well-known properties of the subdifferential (the reader is invited to verify these properties) of a convex
function:

1) 6f (x) is a convex closed (possibly empty) subset of X*.

2) x* € 0f(x) if and only if f(x) + f*(x*) = (x*,x), where f* is the Legendre transform of f, i.e.,
Fr(x") =sup e x {{x*, x) = f(x)}

3) When f is differentiable[ﬂat x, then df(x) ={Vf(x)}.

4) 0f is a monotone operator: for x} € 8 f(x1), x; € 0 f(x2),

(x5 = x{,x2—x1)=0.

61n this course, a function f is said to be differentiable at x if r — f(x+ ry) is differentiable at r = 0 for all y € X.
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5) Another remarkable property regarding subdifferential is cyclical monotonicity of its graph. Since

x— 0f(x) is a set valued map, its graph is well defined:
Grdf) :={(x,x") e Xx X" : x* €0f(x)}.
For a set of points (x1,x),--+, (xy, X3) on the graph and a permutation ¢ on {1,---, N}, we have
(x], Xo () — Xi) < f(Xg() — f(x3)
adding up together, we get
i(x;*,xgu-) —-xi)<0. (4.23)
i=

A graph T < X x X* satisfying (4.23) is said to be cyclically monotone. Notice that there also holds
N
> <x:;(l-) - x}",xi> <0.
i=1

c-cyclical monotonicity

Cyclical monotonicity is a special case of a more general notion, namely, c-cyclical monotonicity, which
plays a fundamental role in optimal transport. Our final goal in this subsection is to show that the support

of an optimal transport plan is c-cyclically monotone.

Definition 4.6 (c-cyclical monotonicity). AsetI’ € X x Y is c-cyclically monotone if

N N
Y clxi,y) < Y clxiy Vo) (4.24)

i=1 i=1

for every N = 1, permutation o of {1,---, N} and (x;,y;) €' fori=1,---,N.
Example 4.11. Consider the set
I ={(p, ) € Cp(X) x Cp(Y) : p(x) +w(¥) < c(x, ), VX, yE X x Y}

For ¢,y € I, call

L) ={(x,y) e X x Y : p(x) +w(y) = c(x, y)}
the contact set of the pair (¢, ). Then I'(¢p, ¥) is c-cyclically monotone. Indeed, for (x1, y1),---, (XN, YN)
and any permutation o of {1,---, N}, we have

N N N N
Z c(xi, yi) = Z ¢(x;) + Z Y (Yoi) = Z c(Xi, Yoi)-
i=1 i=1 i=1 i=1

To see that c-cyclical monotonicity is a generalization of cyclical monotonicity, let Y = X* and c¢(x, x*) =
—(x*, x) in [4.24), we immediately recover (4.23).

Similarly, we can generalize the Legendre transform:

Definition 4.7 (c-transform). Given c(x,y): XxY — RU{+o0}, ¢p: X — [—00,00), ¥ : Y — [—00,00), define

Py

w(x) := inf{c(x,y) —w(y)}
yey

inf{c(x,y) — p(x)}
xeX

and say that ¢° (resp. w°) the c-conjugate of ¢ (resp. ).
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Definition 4.8 (c-concavity). A function ¢: X — [-00,00) (resp. ¥ : Y — [—00,00)) is said to be c-concave

if it is the infimum of a family of c-affine functions c(-, y) + a (resp. c(x,-) + ), i.e.,
d(x) = J}élgi; c(x, y)+ay
for some index set «f .
c-concave function has the following important properties whose proof is left as an exercise:
* ¢ is c-concave if and only if it is the ¢ transform of a function v, i.e., ¢ = ¥¢;
e °¢ = ¢, with equality if and only if ¢ is c-concave.
The following is the last definition we will need:

Definition 4.9 (c-superdifferential). Given c(x,y): XxY — Ru{+oc}, ¢p: X — [—00,00), the c-superdifferential
of ¢ is a set valued map

°Pp(x):={yeY:clx,y) —c(x',y) = p(x) — p(x') for all x’ € X}

If we specify the definition to c(x, x*) = — (x*, x), then we see that 0°(— f)(x) = {x* € X* : (x*,y - x) <
f(—f(x)} =0f(x) in which the inequality is in opposite direction compared to (4.22). That is the reason
why we should not call 3°¢ c-subdifferential.

Exercise 4.3. Show that y € 0°¢(x) if and only if ¢p(x) + ¢p€(y) = c(x, y) and deduce from this relation that
the graph of 0°¢ is c-cyclically monotone. Hint: Gr(0°¢) is a contact set.

The following result says that a c-cyclically monotone set is always contained in contact sets, or more
precisely, the graph of some c-superdifferential Gr(0¢¢).

Theorem 4.8 (Rockafellar). Assumec: X xY — RandthatT < X x Y is c-cyclically monotone. Then there
exists a c-concave function ¢ : X — [—00,00), ¢p # —oo, such thatT' < Gr(0°¢p). If ¢ is bounded Lipschitz, i.e.,
c e Lip, (X x Y), then ¢ can be chosen such that (¢, ¢¢) € Lip;, (X) x Lip, ().

Proof. We construct ¢ with the desired properties. For any (xy, yn) €T, ¢ should be such that
¢(x) = c(x, yn) —c(xn, yN) +p(xn), VxeX.
We can continue for (xy-1, yn-1),-*, (X0, Yo) €T,

¢(x) = c(x,yn) — c(xn, Yyn) + (XN, YN-1) — c(XN-1, YN-1) + P(XN-1)

= c(x,yn) —c(xn, yN) + c(xN, YN-1) — c(XN-1, YN-1) + - + ¢(x1, Yo) — (X0, Yo) + P(xp).
If p(xp) = 0, the above formula suggests defining
¢(x) :=inf{c(x, yn) — c(xn, yN) + c(xn, YN-1) — c(XN-1, YN-1) + -+ + (X1, Vo) — c (X0, Yo)}

where the infimum is taken over all finite set of points on I'. We need to verify that 1) ¢ is c-concave; 2)
¢(xp) = 0. For 1), it is obvious. It remains to show 2). Take N =1 and (x1, y1) = (X9, o), we get ¢(xg) < 0.

Thus we need only show that ¢(xo) = 0, which is obvious due to c-cyclical monotonicity of T
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It remains to show that ¢ and ¢ are bounded Lipschitz whenever ¢ € Lip, (X x Y). The Lipschitz
continuity is obvious since ¢ is an infimum of a family of Lipschitz functions, see Exercise[4.2] Note that

¢°(y) < c(x0, y) — p(xp) <supc < oo
Since ¢ is c-concave,
inf(x) = inf¢p““ (x) = iI)TleiIJT/lfC(x, y) — ¢ (y) = infc — sup p© > —oo

Similarly, one can show that sup ¢(x) < +o0. Thus ¢ is bounded on X. One can prove for ¢¢ analogously.
O

Now, reconsider the discrete Kantorovich problem. Suppose that 7 = }; j Pij0(x;,y;) is an optimal
plan. If the support of 7 is not c-cyclically monotone, we can find a set of points (x;;, ¥j,), ", (Xiy, Vju)

with P; j >0for k=1,---, N and a permutation o of {1,---, jn} such that

N N
> i yji) > Y Wi Yo(jn)- (4.25)
k=1 k=1

We use these information to construct a better plan:

N N

=m-e), Otxiy,yj) € > O xiy Yotjp)
k=1 k=1

Since P;, j, is strictly positive, 7 is non-negative for small € > 0. Next, notice that

N N
(px)#ft = (px)sm—€ ) Oy +e€ ) Ox, = (px)sm
k=1 k=1

N N
(pV)eft = (py)sm—€ Y 8y, +e€ ) 8y, = (py)sm
k=1 k=1

since o is a permutation. Thus 7 is a bona fide optimal plan. It remains to show that 77 performs better
than 7. Indeed, invoking (4.25),

N N
fcdﬁ—fcdn = —E(Z c(xip, Yi) = Y ¢(Xip, Yo(jp) | <O
k=1 k=1

as desired. Thus we have shown that the support of the optimal plan of discrete Kantorovich problem is

c-cyclically monotone. The same reasoning also holds for general Kantorovich problem:

Theorem 4.9 (c-cyclical monotonicity of the support of optimal plan). Assume thatc:X xY — [0,00) is

continuous and that 7w € T (u,v) is optimal with [ cdn < co. Then suppn is c-cyclically monotone.

Exercise 4.4. Prove Theorem[4.9] The proof strategy is almost the same as that of the preceding discrete
version. Hint: since c is continuous, one may construct some neighborhoods U; x V; around (x;, y;) such

that c(x,y) > c(x;,y;) —eon U; x V; and c(x, y) < c(x;, Yo(i)) + € on U; x Vg(j).
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4.2.4 Duality theoryII: X x Y non-compact

Let us see how much possible can we extend our result to non-compact X x Y. Let & € I'(u,v) be a
minimizer (whose existence is guaranteed by Proposition [4.6). When ¢ : X x Y — R is continuous, by
Theorem[4.9] the support of 7 is c-cyclically monotone. Thus by Theorem[4.8}

suppr € Gr(0°¢) = {(x,y) € X x Y : p(x) + ¢ () = c(x, Y}

for some c-concave function ¢, and (¢, ) € Lip;, (X) x Lip, (Y) whenever ¢ € Lip, (X x Y). Since c(x, y) —
(p(x) + () = 0 on the support of 7, we have

/cdn:fc(x,y)—((P(x)+¢C(y))dn+f¢(x)+¢c(y)dﬂ
=fqb(x)+qb“(y)d7r(x,y)
=f ¢(x)du(x)+f ¢ (M dv(y).
X Y

To summarize, we have proved:

Proposition 4.7 (Bounded Lipschitz cost function). The Kantorovich-Rubinstein duality holds for
c € Lip, (X x Y). In addition, the maximum on the RHS is attained at a pair (¢, p°) € Lip, (X) x Lip, (),

where ¢ is the c-transform of ¢. The function ¢ is called the Kantorovich potential.

Notice that in the proof of Proposition we didn't use Fenchel duality theorem, but the result is
stronger than Proposition [4.6| when ¢ is bounded Lipschitz. In particular, [4.7holds for ¢ with negative
parts. But Proposition[4.6/has the advantage that it holds for Ls.c. ¢ and that it does need to be bounded.
The goal of the rest of this subsection is to prove the following result for non-negative c:

Theorem 4.10 (Kantorovich-Rubinstein duality). Assumethatc: XxY — [0,00] is Ls.c., then the Kantorovich-
Rubinstein duality (4.21) holds.

Proof. In the proof of Proposition [4.5) we have shown that ¢ can be approximated by an increasing se-

quence of bounded Lipschitz functions {c}: ¢k 1 c as k — co. Let 7 be an optimal plan, we have

min f cdr= sup | ¢du+ f wdv (weak duality) (4.26)
T P+y=c

> sup | ¢pdu+ f wdv
P+y=cy

= mﬂin f cxdr (Proposition[4.7)

Thus it suffices to prove

lgin;ongnfckdﬂ > mnlnf cdr
which forces the inequality to be equality. Let 7y € argmin, [ cdn. Since I'(g,v) is compact, we
can find a subsequence of {r}, still denoted as {7}, and some 7. € I'(i, V), such that 7 — 7. as k — oco.
This implies

lim minfckdn: lim fckdnkzliminff cpdnk:fcpdn* zfc,,dn
s k—o00 k—o0

k—o0
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for any p = 1 since cg is an increasing sequence and 7 is optimal. Then letting p — oo, by monotone
convergence theorem, we obtain

k—oo T

lim min f crdm = f cdn

as desired. O

Remember in Theorem[4.9) we proved that when ¢: X x Y — R is continuous, then the support of
is c-cyclically monotone. The following rather surprising result says that the converse is also true when

x — c(x,y) and y — c(x, y) are bounded by integrable functions.

Theorem 4.11. Assumec: X x Y — [0,00] is Ls.c. and there exist functions f € L' (u), g € L' (v) such that
cx,y) < f(x)+gy). Then
1) e (w,v) is optimal if and only if suppm is c-cyclically monotone.

2) there exists a c-concave function ¢ : X — [—oo,00) such that ¢ € L' (), ¢¢ € L' (v) and

minfcdn:f gbdu+f ¢dv.
m X Y

4.2.5 Existence of optimal maps

We are now ready to study a bit the existence theory of minimizers of the Monge problem. Due to the
highly nonlinearality of the Monge problem, general results regarding existence of minimizers are not
available. However, there are at least two important situations of which strong conclusions can be made.

The fist one is the quadratic cost case in Euclidean space and the other is convex cost on the real line.

Quadratic case: c(x, y) = %Ix - yl2

Assumption: X =Y =R", c(x,y) = %Ix — yI2, u, v are probability measures with finite second moment,
ie., flxlzd,u(x),flxlzdv(x) < 00, and  is absolutely continuous w.r.t. Z".

The following is the main theorem on existence of optimal maps. It reveals a rather surprising con-
nection between Monge problem and convex analysis (be aware that the Monge problem is highly non-
linear).

Proposition 4.8. Under the above assumption. The Monge problem has a unique solution. Further more,
the optimal map is constructed from a convex functiony differentiable u-a.e., given by the formula T (x) =
Vy (x) for p-a.e. x. Conversely, ify is convex, differentiable p-a.e. with |Vy| € L?(w), i.e., [|Vy|?du < oo,
then T := Vy is optimal from p tov := Typ.

The proof strategy is to construct the optimal map from an optimal plan, with the help of the exis-
tence theory of optimal plans that we have already studied in Section[4.2.4]

Proof. Under the assumption, the Kantorovich problem has an optimal solution 7 supported on Gro®¢p
for some c-concave function ¢. Let us take a closer look at what it means to be c-concave in this context.
By definition
¢(x) = inf c(x,y;) + a; = inf 1Ix—y-l2 +a;= 1|x|2 + inf l|y~|2 -yl x+a;
e 70T e 2 ! T2 iest 27" ! "
It is immediate to see that ¢(x) — %lez is concave and lower-semi continuoussince it is the infimum of a

family of affine functions. Obviously, the converse also holds. Thus for quadratic cost, ¢ is c-concave if
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and only if ¢p(x) — %lez is concave. Since a convex function is differentiable almost every where, so is ¢.
At point x where V¢ exists, we examine Gr(0°¢). If (x, y) € Gr(0°¢), then c(x', y) —p(x') = %Ix’ -y —p(x")

is minimal at x" = x. Differentiating w.r.t. x’, we get
1L 2
y=x-Vpx)=V Elxl —-¢px) ]| =:Vy(x)

where ¥ (x) = %lez —¢p(x) is convex and . But this implies that for any x € px (Gr(6°¢)), there is only one

point corresponding to x, which is Vi (x). Thus we can define a map T on R” as
T(x) =V (x)

and 7 is supported on the graph of T. Consequently, = = (id x Vy)4u, and T are optimal plan and optimal
map respectively invoking Pratelli Theorem[4.3] To see that T is unique up to a negligible set, suppose
that T’ is another optimal map. Then 7’ = (id x T')su is also an optimal plan. Moreover, 7" = %(7‘[ +7)
is also optimal, which, by similar reasoning above, is supported on a graph which is only possible when
T=T p-ae.

To prove the converse, we utilize Theoreminvoking that c(x, y) = 3|x— yI* < [x[* +y|>. We need
to show that the graph of Vi is c-cyclically monotone. But since v is convex, by definition of the subdif-
ferential, we have for any set of points (x;, Vi (x1)),---, (xn, Vi (xn)) on the graph and permutation o of
{l, sl N}

(Vy(x:), Xo (i) — Xi ) S Y (Xg(i) — W (x:)

from which it follows that

N
YV (x), Xo (i) — Xi) < O.
i=1

But this is equivalent to (verify!):

N N
Y V) - x> < Y IV (x) — X1
i=1 j

i=1

as desired. O

Remark 4.1. As a byproduct, we also see that optimal plan for the Kantorovich problem under assump-
tion is unique up to a 1 ® v negligible set. Indeed, if 7’ is another optimal plan, then 7" = 1 ( + ') is also
optimal. But we have seen that the graph of 7" must coincide with that of 7 for y-a.e. x, which implies
that 7" = 7 and consequently = = 7’ for p® v-a.e x, y € X x Y. More generally, whenever an optimal plan
must be induced by a transport map, then we have uniqueness of both.

The real line: c(x, y) = h(x—y)

Let us consider the cost of the form c(x, y) = h(x— y) on the real line, where £ : R — [0,00) is convex. Note
carefully that h takes values in R instead of in R U {co}, which forces ¢ to be a continuous function on R, a

well-known fact.

Exercise 4.5. Any convex function & : R” — R is continuous. Give an example that this fails to be true if

we allow +oo0 in the range of h.
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Now by Theorem there exists an optimal plan 7 to the Kantorovich problem. By Theorem
if [ cdm < +oo, then I := suppr is ¢-cyclically monotone. Now Rockafellar’s theoremsays that there
exists a c-concave function ¢ : R — [—00,00), ¢ # —oo, such that I' € Gr(0°¢). In particular, when c is
bounded Lipschitz, e.g., when ¢ vanishes outside a compact set., ¢ can be chosen to be bounded Lips-
chitz, which is differentiable .#!-almost everywhere. In this case, for any (x, y) € Gr(0°¢), by definition
h(x' = y) — p(x') is minimum at x’ = x, and thus

Vh(x—y)—Vp(x)=0 (4.27)
. Since h is strictly convex, V£ is invertible, and we may further get
y=x—-(Vh) oVep(x) = T(x).

By Remark[4.1} T is the unique optimal transport map. Notice that the formula (:27) can be
Remember that in Example we have shown that for u € & (R) atomless, formula ([4.1I5) provides a
transport map. In particular, when suppv = R, then T can be explicitly written as T = F, 1 o F,, where F,,

F, are the cumulative functions of the measure ¢ and v respectively. To conclude, we have:

Proposition 4.9. Suppose that c(x,y) = h(x—y) for some strictly convex function h: R — [0,00), i is atom-
less and c is bounded Lipschitz. Then the optimal transport plan n is induced by the unique optimal

transport map, i.e., m = (id x T)xp.

In this proposition, the requirement bounded Lipschitz of ¢ is somehow too strong. To relax this, we

use the following technical lemma.

Lemma 4.2. Assume thatT <R xR is c-cyclically monotone. ThenT is a monotone graph in the sense that

whenever (x,y),(x',y)eT andx < x', onehasy < y'.

Now starting from the fact that supp is c-cyclically monotone, suppr is concentrated on a monotone
graph by the above lemma. However, a monotone function can have at most countably many disconti-
nuity points and all of them are of the first kind. Thus through the optimal plan 7, a transport map can
be constructed, which is uniquely determined up to %! -negligible sets, and as before, this is the unique
optimal transport map.

We left the proof of Lemmal4.2|as an exercise.

Proposition 4.10. Suppose that c(x, y) = h(|x— y|) for some convex nondecreasing function h: R — [0,00),
u is atomless. Then there exists an optimal transport map T (possibly non-unique) if [ c¢(x, T (x))du(x) <

Q.

Example 4.12. Let p = %101}, v =212, and c(x,y) = |x - y|. To obtain calculate the optimal value,
we can use the results in since c(x, y) = h(x—y), with h(x) = |x| convex. Then T(x) = F, ' o F,,(x) isan
optimal map, which results in mingg) = 1. On the other, T (x) = x + 1 and T>(x) = 2 — x are also optimal.

Example 4.13 (Histogram equalization). Histogram equalization is a common operation used to in-
crease the global contrast of an image. This is applied for example when the intensity of pixels of the
image lie in a narrow range in the histogram. Suppose that the histogram of the original image is rep-

resented by a vector of dimension N, or a probability measure (after normalization) p = Zﬁi 0 @i6;. For
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grayscale images, N is usually 255. Histogram equalization is to find a map which transforms the his-
togram p into a uniform distribution v, still supported on {1,---, N}. The problem is easier to solve if we
view y as an atomless continuous distribution, for example, by approximation. Then T(m) = F; !0 Fu(m)
(see Example[d.9) is the unique optimal transport map for any cost c(x, y) = h(x—y) with £ strictly convex.
Since v is uniform, T has a simple formula

m
T(m)=(N+1) ) a;.
i=1

This formula says that, for pixels of intensity m, it should be mapped to intensity T (m).

Figure 4.8: After histogram equalization

Dido’s problem revisited

We now solve Dido’s problem using a totally different approach. In Figure[4.9} we draw two regions in
yellow color. On the right is a semi-circle with radius r and whose center is at the origin. The set on
the left is a region enclosed by a curve y and the x-axis which has the same area as the semi-circle, i.e.

area(C) = area(H) = 1712
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\ 4

Figure 4.9: Dido’s problem and optimal transport

We want to show that the length of the curve v is less than the perimeter of the half circle, i.e., nr.

If we reflect the two sets along the x-axis, then we obtain two new sets, still denoted as C and H, as in

Figure[4.10}

y y

I

Figure 4.10: Dido’s problem and optimal transport

Define two probability measures that represent the two sets:

1 1
W= —zﬂzlc, vi= — ¥?

H
nr nre

where .#? is the Lebesgue measure on the plane. Now since u has density, under quadratic cost c, there
exists an optimal transport map T on R? such that Tyu = v by Proposition Assume that T is C! (the
regularity is a subtle issue), then by mass preservation, T must map the points in C onto H. Again by
Proposition[4.8] T is the gradient of a convex function ¢, i.e., T = V¢p. By Monge-Ampere equation (@.9),
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we have

pcd  _ 1, VxeC(C,

detVT(x)= ——— =
pe(T(x))

where pc and pg, are the densities of u and v respectively. Since VT = V¢, VT is symmetric and has only

real eigenvalues, say {1, A,}. Thus

A+ A

1=+vdetVT(x) = VA1 < = %tr(VT(x)) = %diVT(x)

and
f divT (x)dx = 2vol(C) = 2rr?
C

On the other hand, let v be the outward pointing normal field on dC, then by divergence theorem,

/divT(x)dx:f (T,v)dlsf rdl =2ré(y)
c ac ac

since T'(C) € B, from which we obtain
ly)znr

as desired.

It is easy to see that the above reasoning also holds in higher dimension. More precisely, let £" and
o1 denote the Lebesgue volume and surface measures in R”. We have the following generalized result
of the Dido’s problem, which is called the isopermetric inequality:

Proposition 4.11 (Isoperimetric inequality). Let E € R" be a bounded open set with C' boundary. Let
B < R" be the ball with £™(E) = £"(B). Then "' (0E) = "~ (4B).

Proof. Itis sufficient to note the following inequalities:
1
1=(detVD)"" < —divT
n

and
o™ Y 0B) = n.¥"(B) = n.Y"\(E) < f divTdx = f (T,vydo™ ' <™ 1(3E).
E 0E

4.3 Metric properties of optimal transport

4.3.1 Wasserstein spaces

Optimal transport provides a way of measuring the difference/distance between different measures. This
shall be clear once we have introduced the metric side of optimal transport.

Given a metric space (X, d), set
Py(X):= {,u e A(X): fd(x, x0)P du(x) < oo for some xg(hence for all) xy € X}

for p € [1,00] and define the Wasserstein distance on &7, (X) as the optimal value of the Kantorovich
problem (with c(x, y) = d(x, y)P):

W,’f(u,v):: min fd(x,y)pdn(x,y).
el (w,v)
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In particular, for y,v € &2, (R"), W,f (1, v) = mingery,v) J1x—ylPdn(x,y). As in functional analysis, p =
1,2, +oo are the most interesting cases. We prove that W, defines a metric or distance on 3”,, (X), i.e.,, we
need check for p1,v,0 € &2,(X), the three properties:

1) Wy(,v) =2 0and Wy (u,v) = 0iff u=v;

2) Wy, v) = Wy (v, w);

3) Wy (u,0) = Wy(u,v) + Wy(v,0).

First we prove 2). Leti: Y x X — X x Y be defined by i(x, y) = (y, x), then

fd(x,y)dn(x,y)=fy XdOi(y,x)d(i_l)#n(y,x)

and 7 € T'(w,v) iff (i"1)4m € T(v, w). Thus

minf d(x,y)dn(x,y) = minf a(y, x)dr(y, x).
mel(uv) Jxxy nel(v,) Jy xx

For 1), the only nontrivial claim we need to prove is W), (u, v) = 0 implies yu = v. Suppose Wy, (i, v) =0,
then x = y for m-a.e. (x,y) € X x Y. Then for any f € C,(X),

f fdu= f FEdue) = f FEdn(x, ) = f Fdn(x,x) = f Fy)dniy,x) = f fdv
Thus p=v.

It remains to prove 3). We need the following technical lemma.

Lemma 4.3 (Dudley). Let (X;,u;), i = 1,2,3 be Polish spaces, w12 € T'(uy, t2) and w3 € T'(u2, u3). Then
there exists m € P (X1 x Xp x X3) such that

pitm) =m,  pr(m) =3
where p'/ (x1, X2, x3) = (x;, X))

Now let 712 and 723 be optimal plans between y, v and v, o respectively. Let 7 be such that piz () =
m12 and p23 () = 73. Since pn e (1, 0),

Wp(u,a)”Sfxzd(xl,xs)’”dpfn(xl,xs)
= f 3d(x1,x3)’”dn(x1,x2,x3) (change of measure)
X

< fX3 [d(x1, X2) + d(x2, x3)1Pd7 (X1, X2, X3)

< {U d(x1, x2)Pdm(xy, X2, x3)
X3

1/p
= {([ d(xl,xg)”dnlz(xpxz)) +
X2

= (Wy(u,v) + Wy(v,0)P

1/p 1/p)P
+ (f , d(xz,x3)pdn(x1,x2,x3)) } (Holder)
X

1/p)P
f d(xz,xg)”dnzs(xz,m)) }
X2

which is the desired triangle inequality.

In fact, we can say more:
Proposition 4.12. If(X, d) is a complete metric space, then (WP(X ), Wy,) is also complete.

The proof of this proposition relies on a generalization of Dudley’s lemma. Since it is only of theoret-

ical interest to us, we omit the proof.
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4.3.2 Geodesic structure

Given two probability measures ¢ and v, suppose that we are interested not only in the initial/final des-
tination, but also in the “path” used to move the mass in between. An application that motivates this
problem can be interpolating two given images of a growing tumor at different times. This is analogous
to finding the geodesic joining two points on a manifold, i.e., we care not only of the distance between
points, but also of the shortest path (geodesic) joining the two points.

Let (X, d) be a complete metric space, and consider the Wasserstein space (£, (X), W>). A path join-
ing the initial and final measures p and v is amap p. : [0, 1] — £ (X) such that py = ¢ and gy = v. Our ob-
jective is to characterize the path between two points (measures) with the shortest length, but the length
of a curve in &2,(X) is yet to be defined. Remember that for a curve in Euclidean space y : [0,1] — R”,
the length of y is defined as fol Iy’ (£)|d¢t. That is, to define the length of a curve, one needs the defini-
tion of derivative, or velocity of the curve, and that the derivative is defined only for functions which are
differentiable almost everywhere. A wide class of curves in R” that are differentiable almost everywhere
are absolutely continuous curves. However, we will not need this and instead define absolute continuity

according to the following more useful form:

Definition 4.10 (Metric derivative). Let (X, d) be a metric space. We say that a curve y : [a,b] — X is

absolutely continuous and we write y € AC([a, bl; X) if there exists g € L' (a, b) such that
y
dyx),y(») s/ gndt, Vasx<y<bh. (4.28)
X

And the metric derivative of y € AC(|a, b]; X), denoted |y'(¢)], is the limit (when exists, otherwise set to

00)

d(y(n),y(t+h)

4.29
T (4.29)

"(0]:=1i
ly (0l lim
The following result justifies our definition:

Proposition 4.13. For anyy € AC([a, bl; X), the lower limit is a limit which exists for ' -a.e. t €
la, b] and |y'(-)| is the minimal g, up to " -negligible sets that satisfies [@.28).

With this proposition at hand, we can finally define the length of a curve in metric space.

Definition 4.11 (Length). Given a curve y € AC([a, b]; X), the length of curve is defined as

b
o(y) :=f ly' (01dt.
a

As usual, the length of curve is invariant under reparametrization, i.e., if ¢ : [a, b] — [c, d] is strictly
increasing, then
l(y)=4(yod).

Thus we can always find a reparametrization ¢ such that ¥ := y o ¢» has constant speed, i.e., |7 (#)] is
constant for #!-a.e. t.

Note that the length should be defined in a way that it is always larger than the distance between
the two endpoints. This is indeed true since by Proposition and formula (.28), d(y(a),y(b)) <
/. f Iy’ (£)|d¢. When the inequality becomes equality, we call the curve y a geodesic:
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Definition 4.12 (Geodesic). We say thaty € AC([a, b]; X) is a geodesic if
2(y) =d(y(a),yD)).

An important property to notice is that the restriction of a geodesic on any interval is again geodesic

(verify!).

Definition 4.13 (Geodesic space). Denote Geo(X) the space of constant speed geodesic on [0, 1]. We say
that (X, d) is geodesic if for all x, y € X, there exists y € Geo(X) with y(0) = x and y(1) = y.

The following are some obvious properties of the space Geo(X):

1) For y € Geo(X), the length of y is £(y) = d(y(0),y(1));

2) The speed of y is d(y(0),y(1)), i.e., |y’ ()| = d(y(0),y(1)) for a.e. t;
3) A continuous curve y € C([0, 1], X) is in Geo(X) if and only if

d(y(s),y(®) =1t -sld(y(0),y1), Vs tel0,1]. (4.30)

To see this, assume y € Geo(X), then d(y(s),y (1)) = fst IY'| = |t—sld(y(0),y(1)). Conversely, if y € C([0, 1], X)
is such that the above equality holds for any s < ¢ € [0, 1], then for s < s’ < ¢’ < t, we have

d(y(0),y(1)) =d(y(0),y(s) +d(y(s),y(®) +d(y(t),y(1))
=(s+(t—9)+1-0d(y(0),y1)
=d(y(0),y(1))

thus the inequality is equality and holds. This implies that y is absolutely continuous and |y’ ()| =
d(y(0),y(1)). Through the proof we see that the condition can be relaxed to

d(y(s),y(0) =t -sld(y(0),y1), Vs tel0,1]. (4.31)

The following is our main theorem of this subsection: it says that we (27, (X), W),) is a geodesic space

whenever (X, d) is, and that we can lift the geodesic in X to ﬁp(X) in a rather simple manner.

Theorem 4.12. If(X,d) is a geodesic space, then
1) (Z,(X), Wp) is also geodesic.
2) Let g, 41 € @p (X), and 7 an optimal plan for the cost c(x, y) = d(x, y)P, Yx,y - [0,1] — X the geodesic
joining x to y, then
e =Ty

is a constant speed geodesic in &7, (X) connecting po and p1, where' (X, y) =Y, y(1).
3) If uo has a density, and that there exists an optimal map T, then

we=(Tpupo
is a geodesic connecting [y to p; where T(x) =Y x,1(x) (1).

Proof. Let m by an optimal plan between py and p;. We will need to show that ¢ — pu; = (I'y)sm is a
constant speed geodesic in &7, (X). By (4.31), it suffices to show

Wy (s, o) < 1t = sIWp (o, 1),  Vt,s€[0,1].
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Indeed,
W;(us,pt) sfd(X,y)pd(rs,rt)#ﬂ
=fd(yX,y(s),yX,y(t))”dn(x,y)
since (I's, I'y) 47 € I'(us, 4¢). Now that y , is a geodesic, then d(yy,y(S), Yx,y(£) = [s— tld(x, y) and
W) (s, 1) < s — tl”fd(x,y)”dn(x,y) = |s— tIPW} (o, 1)

as desired. This proves 1) and 2). To prove 3), it’s sufficient to note that an optimal plan is induced by an

optimal map T. O

Example 4.14. If X = R” and d is the usual Euclidean metric, then I';(x,y) = (1 - f)x+ ty and T¢(x) =
Q-0x+tT(x)=[1-nid+ ¢tT1(x).

4.3.3 Benamou-Brenier formula

Let us take a look at the third item of Theorem For convenience, we focus on Euclidean space, i.e.,

X =R" equipped with Lebesgue measure .Z". Suppose that

Mo = po(x)dx

it is then tempting to ask if the u; = (Ty)#po also has a density along the geodesic. Obviously, for this to
hold, p; should also have a density, say p;. Next, assume that y1; has a density p;(x), i.e.,

(T #to(dx) = ps(x)dx,

we would like to find the expression for p;. Notice that the last equation implies that for all compactly
supported f : R"” — R, there holds

ff(x)d(Tt)#uo(x)=/f(x)pt(x)dx.
Differentiate this w.r.t. ¢, we get (remember that f is compactly supported):
d a O0pr . d
d—tff(x)pt(x)dx—ff(x) ar dx= dtffoTt(x)po(x)dx

B 0T,
—fo 3 Po(x)dx

oT,
=— f fx)div | po(x) at ix) dx (integration by parts)

By Fundamental lemma, the first and third line imply

0 .

% +div(pov:) =0
where

v(x) = (T —id)o T; (%) (4.32)
since oT
% = T(x)— x = (T —id) o T, ' (T;(x)).
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In other words, T;(x) is the solution to the following non-autonomous Cauchy problem

.x r) = x(T
{y () = v: (< (1)) .

¥x(0)=x
Remark 4.2. On the other hand, by formula (4.14), we see

Po

-1
detVT; °Tr) ().

pr(x) =

The metric derivative of W), by definition is

Wp (e, e+ h)
|hl

We want to show that for any i, induced by the flow of the ordinary equation (4.33), i.e., u; = (X¢)# o,

[t = lim
Ky s

where X; is the flow, the metric derivative of the curve t — yu, satisfies
= [ 1000 ) = 10Ol
In fact, by definition, ;45 = (X;1p0 X; Dypte. Thus we have
W G i) = [ 1= Xeon o X7 001 d

- f X, 0 X1 (0) = Xpano X 0017 dpty ()
t+h
<1/
t
t+h
U
t+h p
= {f ||Vr(')||Lp(/,tr)dr}
t

which implies || < [|v:()|Izp(u,) for all £ €[0,1].

t+h P
f vr(Xp o X7 (x))dr| dp(x)
t

f|y,(X,oX{1(x)|’7dur(x)

1/p p
dr} (Minkowski inequality)

1/p p
flvr(x)lpdur(x) dr} (def. of uy)

When ¢ — pu; is a geodesic, then |,Lt/,| =lve()lLp - Indeed, let T be the optimal map between o and
U1, then

W) (g, o) = 15— H1P W) (o, 1)
=|s— tl”flx— T(x)|Pdpo(x)
- |s—t|”f|(id— T)o T (0)1PA(T) ptto (X)

= |5_t|pflvt(x)|pdﬂt(x)
as expected. Thus for yy = podx, u1 = p1dx, we have

! opr . ..
W,f(uo,m) = g}l}g}{fo Nve(pp,andt: a_tt +div(p,v,) = 0}. (4.34)

This is a special case of a more general formula, called Benamou-Brenier formula once its meaning is

properly understood:
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Theorem 4.13 (Benamou-Brenier formula). For yg, y; € @,,([R”), one has

! 9
W) (o, 1) = min{f0 0 Ollp i % +div(veps) = 0in 0,1) x R”}

where the minimization is among all curves . € AC([0,1], &,(R")) and Borel vector field v, : R" — R".
The partial differential equation in the minimization is understood in the distributional sense, i.e.,

b L
To see the motivation of (4.35), let u; = ¢ (¢, x)dx, then
f f (pdxdt:f f —(pdtdx+f f (ve-Vp)pdxdt
0 R7 R”? JO ot 0 R”
= —f f p—dtdx—f f pdiv(¢pv,)dxdt
reJo Ot 0o Jre

o0
= —f f 0 dxdz
o Jrr

=0

du:(x)dr=0, VpeCX((0,00) xR™). (4.35)

a—p(t x)+ vs(x)-Vp(t, x)
at ) t p ’

0
6—";+vt~Vp

0
a—gf +div(opv,)

from which we deduce the equation in (replacing ¢ with p;).

4.4 Miscellaneous topics

4.4.1 L' optimal transport

In Section [4.3.2] we studied optimal transport for cost function ¢(x,y) = d(x, y)”, p € (1,00) on a Polish
space (X, d). In this subsection, we consider the special case p = 1. The reason to treat this case sep-
arately is that it has some distinguishing features from the other cases with p > 1. We call this type of
problems L! optimal transport.

A first distinguishing feature of L' optimal transport is that c-concavity in this case is equivalent to
Lipschitz continuity with Lipschitz constant 1 — denoted as Lip, (X). In fact, a c-concave function has the
form

P(x) = irl_lfd(x, yi)+a(yi),

since |d(x, y)—d(x', y)| < d(x,x"), the mapping x — d(x, y) is in Lip; (X), so is ¢ by Lemma Conversely,
if ¢ isin Lip; (X), then ¢p(x) —p(y) = d(x, y) for all x, y € X. Thus

Px) = irylfd(x, N+o() =(=P)°x)

which by definition, is c-concave. To summarize:

Proposition 4.14. Assume c(x,y) = d(x,y), where d is the metric on X. Then a function ¢ : X — [—00,00)

is c-concave if and only if ¢ € Lip, (X). The c-conjugate of ¢ is p¢ = —¢p.

Now by Proposition[4.7} strong duality holds:

i d(x, y)dn(x,y) = f d(p—v). 4.36
nerP(l,f,lv) fX X (x, y)dr(x, y) (petgill?l)(cx) qu (u=v) (4.36)
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and

suppr S {(x, ) € X x Y : p(x) —p(y) = d(x, y)}

if ¢ is a Kantorovich potential.

Let X = R" and assume p is absolutely continuous w.r.t. .Z". In this case, c(x, y) = |x — y| where | - |
is the Euclidean 2-norm. Now since c is differentiable almost everywhere, ¢ € Lip, if and only if ¢ is
continuous, differentiable a.e. and |V¢| < 1. Thus formula can also be written as

min d(x,y)dn(x, max v max d v 4.37
”GF(MV)[I‘Q"X[R” (x y)dntx, y) = ¢eLip, (X) [Rn(p (H=v)= Vpl= (/) (=v ( )

We can now proceed as in the quadratic case to arrive at the conclusion that the optimal plan 7 is sup-
ported on Gr(0°¢) for some ¢ € Lip,. Thus for any (x, y) € supps, the mapping x' — |x'— y|—¢(x) achieves
minimum at x’ = x. Since ¢ is Lipschitz, it’s differentiable almost everywhere. Differentiating w.r.t. x, we

get
—-Yy
(x) =
Vel Ix y
from which we conclude that
y=x—-tVp(x)

for any ¢ > 0, and |V¢(x)| = 1. Thus if an optimal transport map is to exist, at the current stage we only
know the direction of the transport. This is quite different from the quadratic case. Example[4.12|shows
that optimal transport maps may not be unique for L'-optimal transport.

Let us now come back to the right most maximization of (4.37). If d(u —v)(x) can be written as

div(w)dx for some function w € CZ°(R";R"), then using integration by parts, we get

dd(p—v) = maxf -Vo(x) w(x)dx = f |w(x)|dx.
\V¢\<1 R?

More generally,

dd(p—v) = m(;lx{f(pd(p v)+1nff|w(x)|—V(p(x) w(x)dx} (4.38)

N(p|<1 R”

since

else

) 0, if [Vl <1
1nff|w|—V¢'wdx= .
w o0,

If we can swap max and inf in (4.38), then we would get

(pd(u V) = 1nff|w(x)|dx+max{f(,bd(p V) — /ch wdx}

IV¢I<1
:igf{flw(x)ldx:f¢d(y—v)—fV(powdsz, V(l)}

in which the constraint f(bd(p —v) — fV(/)- wdx = 0, for all ¢ is exactly div(w)dx = d(u—v)(x) for w €
C2(R™;R™). This motivates us consider the following so called Beckmann’s problem.
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Beckmann’s problem
Problem. Consider the minimization problem

igf{flw(x)ldx:w:lR”—»[R",divw:u—v} (B)
where the divergence divw is understood in the following sense

f(p(x)divw(x)dxz —fV(/)(x) -w(x)dx
for all ¢p € C°(R™). This problem is called Beckmann’s minimization, denoted (B).
Our previous discussions are justified by the following theorem:

Theorem 4.14. Beckmann’s problem admits a minimizer. Moreover, its minimal value is equal to that of

the Kantorovich problem with cost c(x,y) = |x—yl|, i.e.,

min{flw(x)ldx:divw:u—v}: min flx—yldn(x,y).
w mel (u,v)

Proof. First, the inequality min(K) < min(B) is guaranteed by weak duality, see (4.37) and (4.38). We
need only prove the reverse inequality min(B) < min(K). It is sufficient to construct a solution w to the
divergence equation from an optimal transport plan 7 such that [ |w|dx < [ |x - y|dz. We provide only a

formal proof. Consider the following linear operator

1
L) = f f Yoy (0 €0y (B)dedn(x, )
R”xR”? JO

on Cy(R™), where () = (1 - f)x + ty. Invoking Riesz representation theorem, there exists a (vector)
measure wy, such that

L&) =f€(x)-wn(dx).

To verify that w; is indeed a solution to the divergence equation, we need to show
L(-V§) = f pd(u—v)
for ¢p € C°(R™). Now by definition of L(-),
ld t
f—wb(x) Wy (dx) =f f AP0y ™ 4 i, y)
R xR JO dt
=f [p(y) — Pp(x)]d7(x, y)
R" xR"
= f dd(pu—v).

as desired. Next, we show O
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e o class 1 class 1

class 2 class 2

Figure 4.12: Domain adaptation

4.4.2 Image processing

Color transfer

Domain adaptation

Image interpolation

4.4.3 Control and optimal transport
Fluid dynamics viewpoint

Optimal steering

4.5 Numerical methods

Continuous methods: Brenier-Benamou formula

Discretization: Entropy regularization and matrix scaling
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ODE

The solution ¢(t;0, x) with initial condition x(0) = x of the ODE
x=f(t,x)

satisfies the semigroup property

¢(t;5,¢(s,0,x)) = (20, x).

Proof. Let
@(t,s) =¢(t;5,¢(s;0,x)), t=s
We have to show
@(t,s) = @(t,0).
It suffices to show that
0¢(t,s)
=0, Vs<t.

os
We calculate

t
@(t,5) =d(s0,x) +f fro(r,s)dr

Then
201,
ﬁ D _ s wam—ﬂswam+f—imwu»
f;wm,nm’)
d dp(t,s) 6f 6<p(ts) 0p(t,s) B
di os  oax PP T T | LT
Hence % =0foralls<t.

CHAPTER

APPENDIX

op(r, s)
S
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Gaussian vectors
We gather some freqently used properties of Gaussian variables.

* Let x and y be independent Gaussian variables

X~N(y,Zx), ¥~ Ny, Zy)

] s

y~N(Au, AZAT)

then
X

y

Zx

)

Zy

e If x~N(u,2),let y= Ax, then

* Suppose x and y are jointly Gaussian

X z z
y Byl |Zxy Zy
then
-1 —1sT
xy~ N+ ey 25 - ), Ze— 22y 2T
Hence

Elxlyl = p+ 252y (v — ty)

Furthermore, y and x — E[x|y] are independent.
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