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Disclaimer

The present notes are a ongoing work in which there exist many errors and non-rigorous statements –

especially about references. I recommend you to double check all the statements while reading. I believe

this is also a good way of learning.
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DYNAMIC PROGRAMMING

1.1 Discrete time systems

1.1.1 Shortest path problem

To understand dynamic programming, perhaps it is best to start with the shortest path problem. The

following digraph (Figure 1.1) shows some possible paths connecting the starting point F to the target T .

The number on each arrow indicates the cost walking from one node to the other, and the total cost is the

sum of the costs of all moves. The objective is to find the path connecting F to T which has the minimal

cost.

𝐹𝐹 𝑇𝑇
2

1

1

1

2

3
2

1

2

1

3

3

2

1

Figure 1.1: Shortest path problem.

A naive solution to this problem is via enumeration. That is, find all the paths connecting F to T ,

compute the cost of each path, and select the path with the minimal cost. For a problem with N layer

(stage) and m states, there are mN−2 possible paths, and on each path, one has to do addition operation

for N−1 times. That is, one has to do at least (N−1)mN−2 addition operations, which grows exponentially

fast as the number of stages increases. Even for small m, this is not realistic since in practice, N is usually

very large.
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Dynamic programming can be seen as an algorithm that can reduce the computational loads based

on the celebrated Bellman’s principle of optimality:

Bellman’s principle of optimality

An optimal policy has the property that no matter what the previous decision have been, the

remaining decisions must constitute an optimal policy with regard to the state resulting from

those previous decisions.

This principle appears to be obvious and that no proof is needed, although rigorous proof is not hard

to provide.

Before applying Bellman’s principle of optimality to the shortest path problem, let us first highlight a

basic methodology in optimal control that will be used throughout the lecture:

To derive an optimal solution, fix an optimal solution, then check the properties of this solution.

This philosophy, though naive, can sometimes provide rich information of the optimal solution which

largely reduces the search space. We justify this fact by applying Bellman’s principle of optimality to the

shortest path problem. Let us introduce some notations. Denote Ji (x) the cost-to-go function from state

x at stage i to stage N , N (x) the set of neighbours of x at the next stage and c(x, y) the cost going from

state x (at stage i ) to y (at stage i +1). The shortest path problem amounts to find

min
paths F → T

J1(F ).

Define the value function

J∗i (x) = min
paths x → T

Ji (x)

which is the optimal cost going from x at stage i to T . Suppose that we have found an optimal path ℓ,

then at any stage < N , for x ∈ ℓ, according to Bellman’s principle, there must hold

J∗i (x) = min
y∈N (x)

{c(x, y)+ J∗i+1(y)} (1.1)

for i = 1, · · · , N −1. The boundary condition appears at i = N , in which case J∗N (y) = 0. In principle, one

may solve the above equation backward to finally get the value J∗1 (F ) and the desired shortest path. Let

us count the number of additions that we need to do. As before, the digraph has N stages and at each

stage, there are m states. Thus to obtain J∗N−1(·), one only needs to do m comparisons and no addition is

needed. To obtain J∗N−2(·), at most m2 additions are needed, the same for J∗i (·) when 2 ≤ i ≤ N −2. For

J∗1 (·), only m additions are needed. Putting together these operations, we need (N −3)m2 +m =O(N m2)

additions. This number is much smaller than (N −1)mN−2 when N is large. The equation (1.1), derived

from Bellman’s principle, is called the Bellman equation of this problem. Thus the shortest path problem

is turned into solving a Bellman equation.

Although Bellman’s equation is merely a necessary condition, it is clear that in the shortest path prob-

lem, it’s also sufficient for finding the optimal path.

We underscore a crucial property of the cost function that can be easily neglected when applying

Bellman’s principle. That is, the fact that the total cost is a sum of the costs at each step is essential.

We will come back to this point when we study continuous dynamic programming. For the moment,

establishing some intuitions is enough.
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1.1.2 Optimal control on finite horizon

We now dive into optimal control of discrete time systems. We will see that optimal control can be for-

mulated as a shortest path problem, at least when the control space and state space are finite. Thus the

above reasoning still holds true.

Consider the nonlinear discrete time dynamical system

xk+1 = fk (xk ,uk ), (1.2)

where xk ∈ Xk (the system state at time instant k), uk ∈Uk (the input at time instant k). A control cost is

a function that takes the following form

J =ϕ(xN )+
N−1∑
k=1

Lk (xk ,uk ), (1.3)

with 1 ≤ N ∈Z , and the initial state x1 is assumed to fixed. Here ϕ and Lk are assumed to be some non-

negative functions. The control objective is to seek for a sequence of control input π = (u1, · · · ,uN−1),

which is also called a policy, such that the cost J is minimized, while keeping the constraints xk ∈ Xk

and uk ∈Uk . The cost defined as (1.3) encompasses most (if not all) optimal control costs (on finite time

horizon) in the control literature. This is intimately related to the fact that the cost of a problem in real

world is almost always additive in the sense we discussed in previous subsection.

Notice that the cost (1.3) is only calculated on finite time intervals, i.e., from 1 to N . We call such an

optimal control problem on finite horizon. Sometimes we also consider infinite horizon optimal control

where the the cost function takes the form

J =
∞∑

k=1
Lk (xk ,uk ). (1.4)

Although one may formulate the finite horizon optimal control problem as a infinite horizon one, for

example, by defining Lk = 0 for all k > N and LN (xN ,uN ) = ϕ(xN ), this may sometimes complicate the

problem. As we will see later, in general, the infinite horizon problem is usually harder (at least theoreti-

cally) than the finite horizon one.

As mentioned before, when Uk and Xk are finite sets, the optimal control problem is equivalent to

a shortest path problem. Thus we can immediately derive the Bellman equation. However, it is often

the case that either the input space or the state space or both are continuous spaces, say for exam-

ple the constraint |uk | ≤ 1. Although the problem is no longer a shortest path problem, we can ap-

ply Bellman’s principle in almost the same manner. As before, define the cost-to-go function Ji (x) =∑N−1
k=i Lk (xk ,uk )|xk=x +ϕ(xN ), and the value function J∗i (x) = min(ui ,··· ,uN−1) Ji (x). Then according to Bell-

man’s principle,

J∗i (x) = min
ui∈Ui

{Li (x,ui )+ J∗i+1( fi (x,ui ))}. (1.5)

The above equation meets the boundary at i = N −1, with J∗N (x) =ϕ(x), for there is no control at the final

stage. Equation (1.5) is the Bellman equation for the optimal control problem on finite horizon. Thus by

solving this equation, we can, at least obtain the information (necessary condition) of the optimal policy.

It is easy to notice that, this equation can be solved backward. For example, since J∗N (·) is known, we

deduce

u∗
N−1(xN−1) = argmin

uN−1
{LN−1(xN−1,uN−1)+ϕ( fN−1(xN−1,uN−1))}

7



and so on. Finally, one terminates at u∗
1 (x1) = argminu1 {L1(x1,u1)+ J∗2 ( f1(x1,u1))}.

The function J∗1 (x1) is clearly the optimal cost and the corresponding policy (u∗
1 (x1), · · · ,u∗

N−1(xN−1))

is optimal. That is, solving the Bellman equation (1.5) is necessary and sufficient for finding the optimal

control.

Here we mention a difficulty in solving the Bellman equation. When no additional structures are

imposed on f and L, the minimization (1.5) is often not numerically tractable. When Ui and Xi are finite

with low dimension, it is not a big problem. But taking into consideration that the control law has to

be digitalized at the implementation stage, the input space, as well as the state space, when continuous,

need to be discretized. We may still assume that Ui and Xi are finite, but with possibly large cardinalities.

For example, assume that Ui = ∏m
k=1 Ik ⊆ Rm and Xi = ∏n

k=1 Jk ⊆ Rn , with Ik , Jk intervals in R. Partition

Ik and Jk into q and p intervals respectively, then there will be qm possible inputs and pn states at each

stage. In the worst case, there will be O(N pn qm) addition operations to do, which is intractable when p

and q are large for n,m ≥ 3. Such phenomenon is called curse of dimensionality noticed by Bellman in

the 1960s. Today, this term is widely used in various areas to indicate the intractability of the algorithm

in higher dimension.

There is, however, a special but extremely important case, that we can solve without much pain: the

linear quadratic regulator (LQR) problem.

1.1.3 Example: Discrete LQR on finite horizon

Consider the constraint free linear plant

xk+1 = Axk +Buk

with cost function defined by

J = x⊤
N SN xN +

N−1∑
i=1

(x⊤
i Qxi +u⊤

i Rui )

with Q ≥ 0, SN ≥ 0 and R > 0.

The optimal control problem is to find an optimal control policy such that J is minimized. Using

previous notations, the Bellman equation reads

J∗i (x) = min
ui

{x⊤Qx +u⊤
i Rui + J∗i+1(Ax +Bui )} (1.6)

with boundary condition J∗N (x) = x⊤SN x. We assert that J∗i (x) is of the form x⊤Si x for some Si ≥ 0. To

see this, we calculate J∗N−1(xN−1) and the rest is justified by induction. Indeed,

J∗N−1(xN−1) = min
uN−1

{x⊤
N−1QxN−1 +u⊤

N−1RuN−1 + (AxN−1 +BuN−1)⊤SN (AxN−1 +BuN−1)},

from which we see that

u∗
N−1 =−(B⊤SN B +R)−1B⊤SN AxN−1

and it is evident that J∗N−1(xN−1) contains no first order or scalar terms. Define

KN−1 := (B⊤SN B +R)−1B⊤SN A

which is called the Kalman gain, then u∗
N−1 =−KN−1xN−1. Substituting u∗

N−1 back, after direct but cum-

bersome calculations, we get

J∗N−1 = x⊤
N−1SN−1xN−1

8



where

SN−1 =Q + (A−BKN−1)⊤SN (A−BKN−1)+K ⊤
N−1RKN−1

or equivalently

SN−1 =Q + A⊤SN A− A⊤SN B(R⊤SN R +B)−1B⊤SN A.

By induction, one may derive the equation for u∗
i , Ki and Si , which we summarize in the following:

Ki = (B⊤Si+1B +R)−1B⊤Si+1 A

u∗
i =−Ki xi

J∗i = x⊤
i Si xi

Si =Q + (A−BKi )⊤Si+1(A−BKi )+K ⊤
i RKi

(1.7)

with boundary condition SN a known matrix. The optimal value of the problem is provided by J∗1 (x1) =
x⊤

1 S1x1. The algorithm runs as

SN → (KN−1,u∗
N−1) → SN−1 → (KN−2,u∗

N−2) →···→ S2 → (K1,u∗
1 ) → S1

Although the linear plant we consider here is time-invariant, the extension to time-varying linear

systems is rather straightforward: it suffices to replace A by Ai and B by Bi in the formula (1.7).

1.1.4 Infinite horizon problem

Unlike in the finite horizon case, where the time-dependence of the system is of little importance (for

example, even though the system is time-invariant, the optimal policy is clearly time-dependent), the

optimal control of time-invariant systems on infinite horizon is quite different from that of time-varying

systems. In particular, the theory for time-invariant system is much richer than that of time-varying

system. For this reason, we will focus on time-invariant system

xk+1 = f (xk ,uk ) (1.8)

where xk ∈ X and uk ∈U for all k ≥ 1. The admissible control input space may be time-dependent, say

uk ∈U (xk ) ⊆U , a constraint. The cost function is of the form

J =
∞∑

k=1
L(xk ,uk ). (1.9)

Claim. For any stationary policy u, i.e., uk = u(xk ) for all k ≥ 1, the cost function (1.9) under policy u has

the property that

Ju(x) = L(x,u(x))+ Ju( f (x,u(x)))

In fact, J (x) = L(x,u(x))+∑∞
k=2 L(xk ,u(xk )) = L(x,u(x))+ Ju( f (x,u(x)), as claimed.

Recall that the cost-to-go function Ji (x) = ∑∞
k=i L(xk ,uk )|xi=x . The value function J∗i is the same for

all i since

J∗i (x) = min
(ui ,··· ,

∞∑
k=i

L(xk ,uk )|xi=x = min
(u1,··· ,

∞∑
k=1

L(xk ,uk )|x1=x = J∗1 (x)

Due to this, we may denote J∗(x) := J∗i (x), and the Bellman equation takes a very special structure:

J∗(x) = min
u∈U (x)

{L(x,u)+ J∗( f (x,u))}. (1.10)
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The difference of (1.10) compared to the Bellman equation of finite horizon problem lies in the fact

that the function J∗ appears on both sides of the equation. Therefore, it seems not possible to solve equa-

tion (1.10) via backward iteration as in the finite horizon case, after all, there is no boundary condition to

start with! However, one may guess that starting with J∗ = 0 and by iteration, J∗ converges to a solution.

We will discuss this in more detail in next subsection. Once J∗ has been found, the optimal policy is given

by

u∗(x) = arg min
u∈U (x)

{L(x,u)+ J∗( f (x,u))}.

As mentioned before, Bellman equation provides necessary and sufficient condition for finite horizon

optimal control problems. One may ask if this still holds for infinite horizon problem, i.e., when (1.10) is

satisfied for some function Ĵ , is Ĵ the optimal cost function? This is clearly untrue as one may always add

a constant to the solution which produces another solution. But at least we know the following.

Proposition 1.1. Let J∗ be the optimal cost function and Ĵ a solution to the Bellman equation (1.10), then

Ĵ ≥ J∗.

Proof. By assumption, there exists û(·) satisfying Ĵ (x) = L(x, û(x))+ Ĵ ( f (x, û(x)). Then under the policy

û(·), for any x1 ∈ X , we have

Ĵ (x1) = Ĵ (xk )+
k∑

i=1
L(xi , û(xi )),

which holds for all k ≥ 1. Thus Ĵ (x1) ≥∑∞
i=1 L(xi , û(xi )) ≥ J∗(x1).

On the other hand, if we know before hand that the solution to the Bellman equation is unique (at

least in a certain class), then we may conclude that solving Bellman equation is sufficient to find the

optimal cost function.

Contraction property

Define an operator T accordingly to

T J (x) = min
u∈U (x)

[L(x,u)+ J ( f (x,u))].

It is not yet clear how to choose the living space for J (·). Let us consider a simple but illustrative case.

Assume that L(x,u) is uniformly bounded for all u ∈U (x), L and f are measurable, U (x) is measurable

for all x and the minimization is always achieved. Then T can be seen as a mapping on L∞(X ). We show

that T is non-expansive on the Banach space L∞(X ). In fact, for any other J̃ ∈ L∞(X ), there holds

T J (x) = min
u∈U (x)

[L(x,u)+ J̃ ( f (x,u))+ (J ( f (x,u))− J̃ ( f (x,u)))]

≤ min
u∈U (x)

[L(x,u)+ J̃ ( f (x,u))]+||J − J̃ ||∞

= T J̃ (x)+||J − J̃ ||∞,

changing the role of J and J̃ , we immediately get

||T J −T J̃ ||∞ ≤ ||J − J̃ ||∞,

as claimed. However, non-expansiveness does not necessarily imply the existence of a fixed point.
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To get stronger conclusions, further assumptions on the system or cost function shall be needed. For

example, this can be achieved by adding a discount factor α ∈ (0,1) to the cost function:

J (x) =
∞∑

k=0
αk L(xk ,uk )

∣∣∣∣∣
x0=x

.

In this case, it is readily checked that J∗i+1(x) =αJ∗i (x). Hence the Bellman’s equation (??) becomes

J∗(x) = min
u∈U (x)

[L(x,u)+αJ∗( f (x,u))].

Now define T̄ J (x) = minu∈U (x)[L(x,u)+αJ ( f (x,u))], similarly, we deduce that

||T̄ J1 − T̄ J2|| ≤α||J1 − J2||, ∀J1, J2 ∈ L∞(X )

Hence T̄ is a Banach contraction mapping, and hence there exists a unique J∗ ∈ L∞(X ) such that

T̄ J∗ = J∗

For any initial function J0 ∈ L∞(X ), denoting Jn = T n J0, we will get

||Jn − J∗|| ≤αn ||J0 − J∗||

Thus Jn converges to the optimal cost exponentially as n →∞.

�
It has to be noted however that, the assumption of uniform boundedness of L(x,u) is very strong.

For example, it is often the case that L(x,u) →∞ as |x|→∞, e.g., L(x,u) = |x|2 +|u|2, obviating
the assumption. Thus, in the present context, the non-expansiveness and contraction properties

of the Bellman equation will not be used.

Quadratic cost function for affine nonlinear systems

There is an important class of systems, called control affine systems,

xk+1 = f (xk )+ g (xk )uk

with quadratic cost function L(x,u) = x⊤Qx+u⊤Ru. Assume that f is C 1 and that u can be chosen freely.

If the Bellman equation (1.10) admits a C 1 solution (strong assumption!), then one can “solve” for the

optimal policy

u∗(x) = 1

2
R−1g (x)⊤

∂J∗

∂x
( f (x)+ g (x)u∗(x)). (1.11)

Plugging u∗(x) into the Bellman equation, we obtain

J∗(x) = x⊤Qx + J∗( f (x)+ g (x)u∗(x))

+ 1

4

(
∂J∗

∂x
( f (x)+ g (x)u∗(x))

)⊤
g (x)R−1g (x)⊤

∂J∗

∂x
( f (x)+ g (x)u∗(x)) (1.12)

which is a partial differential equation.
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In general, the equations (1.11) and (1.12) cannot be solved explicitly (except in the LQR case as we

will see later), thus one needs to apply numerical methods to approximate the solution. One may initial-

ize with an arbitrary policy u0(·) and a value function J0(·), then iterate according to equations (1.11) and

(1.12):

u1(x) = 1

2
R−1g (x)⊤

∂J0

∂x
( f (x)+ g (x)u0(x))

J1(x) = x⊤Qx + J0( f (x)+ g (x)u1(x))

+ 1

4

(
∂J0

∂x
( f (x)+ g (x)u1(x))

)⊤
g (x)R−1g (x)⊤

∂J0

∂x
( f (x)+ g (x)u1(x))

...

This naive iteration scheme has no guarantee of convergence for general nonlinear affine systems. How-

ever, by slightly modifying the above iteration procedure, convergence can be guaranteed for large class

of systems. The idea is, we iterate either the policy u or the value function J while the other one is calcu-

lated according to the Bellman equation. Intuitively, this has better convergence property than iterating

u and J at the same time, since it may happen that both u and J are away from u∗ and J∗. We study this

in the next subsection.

Policy iteration and value iteration1

There are two basic iteration approaches for solving the Bellman equation (1.10) approximately, namely,

policy iteration and value iteration.

Value iteration: start from some non-negative function J0 : X →R and iterate according to

Jk+1(x) = min
u∈U (x)

{L(x,u)+ Jk ( f (x,u))}. (1.13)

The approximate optimal policy can be taken as

u∗
N+1(x) = arg min

u∈U (x)
{L(x,u)+ JN ( f (x,u))}

when JN reaches a reasonable level of accuracy.

There is an important property of value iteration, called the monotonicity property. Being J∗ the

optimal cost function, if we start from J0 ≥ J∗ , then Jk ≥ J∗ for all k ≥ 0. In fact,

J1(x) = min
u∈U (x)

{L(x,u)+ J0( f (x,u))}

≥ min
u∈U (x)

{L(x,u)+ J∗( f (x,u))}

= J∗(x).

Interestingly, we can get stronger result for the case J0 ≤ J∗. That is, the sequence {Jk } is monotone

increasing:

J0 ≤ J1 ≤ J2 ≤ ·· · ≤ J∗
1This part is mainly taken from the paper [2].
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since

J1(x) = min
u∈U (x)

L(x,u) ≥ J0(x)

J2(x) = min
u∈U (x)

{L(x,u)+ J1( f (x,u))}

≥ min
u∈U (x)

{L(x,u)+ J0( f (x,u))

= J1(x)

...

Thus, there exists a function J̃ ≤ J∗, such that Jk → J̃ pointwisely, but there may exist a gap between J̃

and J∗. The following classical result provides a sufficient condition that J̃ = J∗.

Proposition 1.2 (Convergence of value iteration I). If U is a metric space and the sets

Uk (x,λ) = {u ∈U (x) : L(x,u)+ Jk ( f (x,u)) ≤λ}

is compact for all x ∈ X , λ ∈ R and k, then the value iteration Jk ↑ J∗ pointwisely for any J0 ≥ 0 satisfying

J0(x) ≤ minu∈U (x) L(x,u)+ J0( f (x,u)) for all x ∈ X , e.g., J0 = 0.

The proof of this proposition is a bit technical, the interesting reader is referred to [1].

We now switch to the other case: J0 ≥ J∗, for which we need more structures and assumptions. As-

sume that the set defined by

Xs := {x ∈ X : ∃u ∈U (x), s.t.L(x,u) = 0, x = f (x,u)}

is non-empty. Then, if x ∈ Xs , we have J∗(x) = 0. We call Xs the stopping set, which is a desirable set of

termination states that we try to reach or approach with minimum total cost.

For an initial state x, a policy π is said to terminate starting from x if the trajectory of system starting

from x reaches the set Xs in finite time. Denote

J = {J ≥ 0 : J (x) = 0, ∀x ∈ Xs }. (1.14)

We assume that for every x ∈ X , there is a policy which terminates and which can approximate the opti-

mal policy as closely as possible. More precisely, we assume:

Assumption 1. The stopping set Xs is non-empty. Moreover, for every x ∈ X , with J∗(x) < ∞, and

every ϵ> 0, there exists a policy π that terminates starting from x and satisfies Jπ(x) ≤ J∗(x)+ϵ.

This is a reasonable assumption which is satisfied in many important examples. Normally, the most

technical part to verify is the existence of π satisfying Jπ(x) ≤ J∗(x)+ϵ. Check the paper [2] for sufficient

conditions that guarantee Assumption 1.

Proposition 1.3 (Uniqueness of solution of Bellman equation). Let Assumption 1 hold. The optimal cost

function J∗ is the unique solution of the Bellman equation (1.10) in the set J .

Note that Proposition (1.3) is NOT saying that the optimal policy terminates! It says that the optimal

cost must vanish on Xs . For example, as we will see later, in the linear quadratic regulator problem, the

optimal policy is a static feedback u =−K x, which normally does not vanish unless one starts from x = 0.

One should be able to derive the proof of this proposition after finishing this section.
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Proposition 1.4 (Convergence of value iteration II). Let Assumption 1 hold. Then the value iteration

(1.13) Jk converges pointwisely to J∗ for initial J0 having the following properties:

• J0 : X →R+ is non-negative;

• J0(x) = 0 for all x ∈ Xs ;

• J0 ≥ J∗.

Proof. By monotonicity property, we know Jk ≥ J∗ for all k ≥ 0. Moreover, it is obvious that for x ∈ Xs ,

Jk (x) = 0 for all k.

We now take a different viewpoint of the value iteration: it can be seen as solving for a finite horizon

optimal control problem with terminal cost J0. Thus for every policy π = (u1,u2, · · · ) and every initial

state x1 ∈ X , we have

J∗(x1) ≤ Jk (x1) ≤ J0(xk )+
k−1∑
i=1

L(xi ,ui )

where {xi }k
1 is the state trajectory generated by the policy π with initial condition x1. Note that the first

inequality is due to Jk ≥ J∗. If J∗(x1) =∞, there is nothing to prove, hence assume J∗(x1) <∞. Now, for

any policy π that terminates from x1, by definition we have xk ∈ Xs for k large enough, and consequently

J0(xk ) = 0. Thus

J∗(x1) ≤ lim sup
k→∞

Jk (x1)

≤ lim sup
k→∞

{
J0(xk )+

k−1∑
i=1

L(xi ,ui )

}

=
∞∑

i=1
L(xi ,ui ) = Jπ(x1)

Now take the infimum on π, we should get

J∗(x1) ≤ lim sup
k→∞

Jk (x1) ≤ J∗(x1)

for J∗(x1) <∞, since Jπ can approximate J∗ arbitrarily well.

Let’s carry on to the policy iteration scheme.

Policy iteration: start from a policy u1(·), then solve

Juk (x) = L(x,uk (x))+ Juk ( f (x,uk (x))) (1.15)

for Juk (·). Next, iterate uk (·) according to

uk+1(x) ∈ arg min
u∈U (x)

{L(x,u)+ Juk ( f (x,u))}. (1.16)

We mention that Juk (·) is only implicitly defined by (1.15), and that Juk vanishes on Xs .

The main result of policy iteration that we are going to prove is the following.

Proposition 1.5. Let Assumption 1 hold. A sequence {Juk } generated by the policy iteration algorithm

(1.15), (1.16) satisfies Juk (x) ↓ J∗(x) for every x ∈ X .
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Proof. In equation (1.16), two stationary policies, uk and uk+1 are involved. Let us replace them with two

arbitrary stationary policies, say µ and ν, and that ν is defined through the minimization

ν ∈ arg min
u∈U (x)

{L(x,u)+ Jµ( f (x,u))} (1.17)

from which it follows that

Jµ(x) = L(x,µ(x))+ Jµ( f (x,µ(x))) ≥ L(x,ν(x))+ Jµ( f (x,ν(x)))

For notation ease, denote J̃1(x) = Jµ(x) and J̃2(x) = L(x,ν(x))+ Jµ( f (x,ν(x))). Continuing the above pro-

cedure inductively (viewing f (x,ν(x)) as x2), we obtain a monotone decreasing sequence

Jµ(x) ≥ J̃1(x) ≥ J̃2(x) ≥ ·· · J̃i (x) ≥ ·· ·

where

J̃i (x) = Jµ(xi )+
i−1∑
j=1

L(x j ,ν(x j ))

in which the sequence {x j } is generated by policy ν from x. Thus

Jµ(x) ≥ J̃2(x)

= min
u∈U (x)

{L(x,u)+ Jµ( f (x,u))} (see (1.17))

≥ lim
i→∞

J̃i (x) ≥
∞∑

j=1
L(x j ,ν(x j ))

= Jν(x)

Now substituting µ= uk , ν= uk+1 into the above inequality, we get

Juk (x) ≥ min
u∈U (x)

{L(x,u)+ Juk ( f (x,u)} ≥ Juk+1 (x)

for all x ∈ X , and all k ≥ 1. Thus Juk ↓ J∞ for some J∞ ≥ 0. Taking the limit on both sides, we obtain2

J∞(x) = min
u∈U (x)

{L(x,u)+ J∞( f (x,u))}.

That is, J∞ is a solution to the Bellman equation (1.10). Note that Juk ∈J , hence J∞ ∈J . Now, invoking

the uniqueness of the Bellman equation (Proposition (1.3)), the conclusion follows.

Stability issue

One of the most important problems in control theory is the problem of stabilization. Optimal control

provides a way for fulfilling this purpose. For that, a cost function shall be proposed first. A widely

2More rigorously, the limiting procedure is divided into two parts. First, note that

min
u∈U (x)

{L(x,u)+ J∞( f (x,u))} ≤ min
u∈U (x)

{L(x,u)+ Juk ( f (x,u))} ≤ J∞(x)

on the other hand,
L(x,u)+ Juk ( f (x,u)) ≥ J∞(x)

for all u. Now taking the limit, we discover

L(x,u)+ J∞( f (x,u)) ≥ J∞(x), ∀u ∈U (x).
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used function is the quadratic cost function that we have already mentioned previously, i.e., L(x,u) =
x⊤Qx +u⊤Ru for Q > 0 and R ≥ 0.

Now if for the nonlinear system (1.8) xk+1 = f (xk ,uk ), a solution J∗ to the Bellman equation satisfies

c1||x||p ≤ J∗(x) ≤ c2||x||p , ∀x ∈ X

for some positive constants c1, c2 and p ≥ 1, then we assert that the stationary optimal policy u∗(x) =
argminu{L(x,u)+ J∗(x,u)} is exponentially stabilizing. Indeed, under the optimal policy,

J∗(xk+1) = J∗(xk )−L(xk ,u∗(xk ))

≤ (1− c) J∗(xk )

where we have used the fact that L(x,u) ≥ c J∗(x) for some positive constant c > 0. It follows that J∗(xk ) ≤
(1− c)k J∗(x1) → 0 as k →∞. Hence xk → 0 exponentially as expected.

Infinite horizon LQR

The most well studied optimal control problem on infinite horizon is the linear quadratic regulator prob-

lem. This is mainly because of its wide range applicability and simplicity. For us, the LQR problem will

serve as a concrete example to help us enhance the understandings of the materials of this section, e.g.,

the solution to the Bellman equation, policy and value iteration, and stability issue etc. But we also high-

light that, due to the nice structure of the LQR problem, it has some interesting features that cannot be

derived from the machinery that we have introduced so far. For example, we will see that observability

will now play a role in determining the global convergence of the value iteration in for a certain class of

initial functions.

Consider the linear time-invariant discrete time system

xk+1 = Axk +Buk (1.18)

with quadratic cost

J =
∞∑

k=1
xT

k Qxk +uT
k Ruk (1.19)

where Q ≥ 0 and R > 0. Assume that u ∈ Rm is constraint free. In order that J < ∞, it is sufficient to

assume that the system is stabilizable (verify!). Now the Bellman equation (1.10) reads

J∗(x) = min
u

{x⊤Qx +u⊤Ru + J∗(Ax +Bu)}. (1.20)

The central question becomes how to solve the Bellman equation (1.20). At this stage, it is not clear

how should J∗ look like. Fortunately, we know that under some mild conditions, the value iteration

starting from J1 = 0 converge to J∗, see Proposition (1.2). Let’s calculate Ji (x). For i = 1, it is obvious that

J1(x) = min
u

{x⊤Qx +u⊤Ru} = x⊤Qx.

Denote J1(x) as J1(x) =: x⊤P1x, or P1 =Q. To get J2(x), we calculate

J2(x) = min
u

{x⊤Qx +u⊤Ru + (Ax +Bu)⊤P1(Ax +Bu)}.
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Let us pause for a moment. It seems that we have done similar calculations in the finite horizon LQR

problem. If wee look at the Bellman equation (1.6), we notice that the only difference there is that we

solved (1.6) in backward time with a boundary condition at t = N . Here, the value iteration starts with an

“initial” value function, like solving the Bellman equation in forward time, but it’s obvious that these two

are the same, only with different boundary conditions. Thus we can copy most of the calculations from

there, say equation (1.7), to write Ji (x) = x⊤Pi x where

Pi+1 =Q + A⊤Pi A− A⊤Pi B(R +B⊤Pi B)−1B⊤Pi A (1.21)

with boundary condition P0 = 0. To employ Proposition (1.2), it remains to check if the set

Uk (x,λ) = {u ∈Rm : x⊤Qx +u⊤Ru +x⊤Pk x ≤λ}

is compact, but this is obvious since R is positive definite. Thus we conclude that

lim
i→∞

Pi = P

for some P ≥ 0. In particular, the optimal cost function is a purely quadratic function. With this informa-

tion in mind, now if we are to solve the Bellman equation (1.20) directly instead of by value iteration, we

may substitute J∗(x) = x⊤P x into (1.20), to get the discrete time algebraic Riccati equation (abbr. DARE):

P =Q + A⊤PA− A⊤PB(R +B⊤PB)−1B⊤PA. (1.22)

which can also be written as (see (1.7))

P =Q + (A−BK )⊤P (A−BK )+K ⊤RK . (1.23)

From the above reasoning we see that the existence of solution of the DARE is guaranteed when the

system is stabilizable. The uniqueness is however a bit more tricky. The only tool available for us is Propo-

sition 1.3, which requires Assumption 1. The reader can check that Assumption 1 is satisfied whenever

Q > 0 (see [2]), which is a stronger requirement than needed. After all, linear systems theory tells us that

the DARE admits a unique solution P ≥ 0 whenever the pair (A,C ) is detectable where C (full row rank)

factors Q through Q =C⊤C .

� One should distinguish between the uniqueness of the solution of the DARE (1.22) and the unique-

ness of the solution of the Bellman equation (1.20); the former restricts implicitly on the space of

purely quadratic functions.

Proposition 1.6. Consider the LTI system (1.18) with cost function defined by (1.19). Assume that Q ≥ 0,

R > 0 and Q can be factored as Q =C⊤C for some matrix C with full row rank. Assume further that (A,B)

is stabilizable and (A,C ) is detectable. Then the following properties hold:

1. There exists P > 0 such that for every P1 ≥ 0, we have

lim
k→∞

Pk = P

where Pk is obtained by the value iteration (1.21).
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2. P is the unique solution to the DARE (1.22) with the set of positive semi-positive definite matrices.

3. The optimal policy is given by the static state feedback

u(xk ) =−K xk (1.24)

where

K =−(B⊤PB +R)−1B⊤PA.

4. The closed-loop system is exponentially stable, i.e., A−BK is Schur stable (the spectrum of which

lies in the open unit circle of the complex plane).

Before proving this proposition, we mention that the second argument is a direct consequence of the

first: suppose P̃ ≥ 0 is another solution, then by the first claim, the value iteration starting with P̃ will

converge to P . But P̃ is a fixed point of the DARE, hence Pk ≡ P for all k ≥ 1, which forces P̃ = P.

Another thing to mention is that since we are working implicitly under the space of purely quadratic

functions rather than the space J (see (1.14)), we will adopt a new proof approach.

Proof. Step 1: show that P obtained by value iteration from P1 = 0 is positive definite, and hence (1.24) is

exponentially stabilizing; see the subsection Stability issue.

Notice that under the control (1.24), the closed loop system reads xk+1 = (A−BK )xk . Then from (1.23)

we see

x⊤
k P xk −x⊤

k+1P xk+1 = x⊤
k (Q +K ⊤RK )xk , ∀k ≥ 1.

If P is not positive definite, then ∃x1 ̸= 0, such that x⊤
1 P x1 = 0, but this enforces that x⊤

k+1P xk+1 = x⊤
k (Q +

K ⊤RK )xk = 0 for all k ≥ 1 since P ≥ 0, Q +K ⊤RK ≥ 0. Consequently,

C xk = 0, K xk = 0, ∀k ≥ 1.

In this case, the closed loop system (along this trajectory!) is simply xk+1 = Axk . Now that (A,C ) is

observable, it follows that xk = 0 for all k ≥ 1, a contradiction. Thus P > 0.

Step 2: show that the value iteration from any P1 ≥ 0 also converges to the P above.

Denote by Pk (P1) the value iteration from P1 at the k-th step. By monotonicity of the value iteration,

we know that Pk (P1) ≥ Pk (0) for all k ≥ 1. Recall that x⊤
1 Pk (P1)x1 is the minimal cost of

x⊤
k P1xk +

k−1∑
i=1

(x⊤
i Qxi +u⊤

i Rui )

then it must be smaller than the cost generated by the control law (1.24), i.e.,

x⊤
1 Pk (P1)x1 ≤ x⊤

1

{
((A−BK )k−1)⊤P1(A−BK )k−1+

+
k−1∑
i=1

((A−BK )⊤)i−1(Q +K ⊤RK )(A−BK )i−1

}
x1.

Recall that A −BK is Schur stable, it follows that limsupk→∞ x⊤
1 Pk (P1)x1 ≤ x⊤

1 P x1. Combining this with

the fact that Pk (P1) ≥ Pk (0) → P as k →∞, we immediately get Pk (P1) → P .
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We now turn to policy iteration for the LQR problem.

To make the problem meaningful, choose an initial policy u1 =−K1x such that A−BK1 is Schur stable.

Then according to policy iteration, in the first step we solve

Ju1 (x) = x⊤Qx +u⊤
1 Ru1 + Ju1 (Ax +Bu1)

for Ju1 . Arguably, we can choose Ju1 to be purely quadratic, say Ju1 (x) = x⊤P1x. Then the above proce-

dure is equivalent to solving the linear matrix equation

P1 =Q +K ⊤
1 RK1 + (A−BK1)⊤P1(A−BK1). (1.25)

In the second step, one computes u2 according to

u2 = argmin
u

{x⊤Qx +u⊤Ru + (Ax +Bu)⊤P1(Ax +Bu)}

=−(B⊤P1B +R)−1B⊤P1 Ax

=: −K2x.

Repeat this procedure, one would obtain a sequence of stationary policies {uk }.

Notice that equation (1.25) is not a Riccati equation. However, if we can show that Pk converges to

some P , then obviously Kk →−(B⊤PB+R)−1B⊤PA and that equation now becomes the Riccati equation

(1.22). If in addition, P ≥ 0, then P must be the same P obtained in the value iteration procedure. Indeed,

we have the following result. For a proof, see [10].

Proposition 1.7. Under the assumptions of Proposition 1.6, the matrix Pk obtained from the policy itera-

tion converges monotonically to the matrix P obtained from the value iteration, i.e., Pk ↓ P.

Remark 1.1. The policy iteration for LQR problem has better converge rate (quadratic) than value itera-

tion (linear), see [10].

1.1.5 Appendix: Multistage Optimization

We provide an alternative approach to optimal control of discrete times systems via multi-stage opti-

mization. It can be seen as the mathematical foundation of Bellman principle.

A Fundamental Lemma

Consider the minimization problem

inf
(x,y)∈D

f (x, y)

where D ⊂ X ×X , and X is a metric space. Denote Dx := {y ∈ X : (x, y) ∈ D}, D y := {x ∈ X : (x, y) ∈ D}.

Lemma 1.1. The following equality holds

inf
(x,y)∈D

f (x, y) = inf
x

inf
y∈Dx

f (x, y) = inf
y

inf
x∈D y

f (x, y).

In addition, the infimums can be replaced by minimum when either of the three infimum is achieved for

some (x∗, y∗) ∈ D.

19



Proof. Let I1 = inf(x,y)∈D f (x, y), I2 = infx infy∈Dx f (x, y). It suffices to prove I1 = I2. By definition, there

exists a sequence {(xk , yk )}∞k=1 ⊂ D , such that limk→∞ f (xk , yk ) ↘ I1
3. Then

I2 ≤ inf
y∈Dxk

f (xk , y) ≤ f (xk , yk ), ∀k ≥ 1.

Letting k → ∞, we get I2 ≤ I1. For the inverse direction, note that for any ε > 0, one can find a pair

(x ′′, y ′′) ∈ D such that

inf
(x′,y ′)∈D

f (x ′, y ′) ≥ f (x ′′, y ′′)−ε (1.26)

and f (x ′′, y ′′) ≥ I1. On the other hand, there exists an integer K > 0, such that for all k ≥ K , f (xk , yk ) ≤
I1 +ε≤ f (x ′′, y ′′)+ε. It follows from (1.26) that for any (x, y) ∈ D ,

f (x, y) ≥ inf
(x′,y ′)∈D

f (x ′, y ′) ≥ f (xk , yk )−2ε, ∀k ≥ K .

Hence

I2 = inf
x

inf
y∈Dx

f (x, y) ≥ lim
k→∞

f (xk , yk )−2ε= I1 −2ε.

Since ε is arbitrary, we get I2 ≥ I1, which implies that I1 = I2.

This lemma is extremely simple but powerful as we will see next. We underscore that the interchange-

ability of two inf are essential. On the other hand, it is usually illegal to interchange inf and sup as in

general

inf
x

sup
y

f (x, y) ̸= sup
y

inf
x

f (x, y).

which makes differential games different from classical optimal control.

Multistage optimization

For most of the time, we will consider “min” in lieu of “inf”, due to the consideration that the difference

between the two are not essential for our discussions.

Consider the function

J (x, y, z) = f (x, y)+ g (y, z)

and the minimization problem

J∗(x) = min
(y,z)∈D

f (x, y)+ g (y, z).

Invoking Lemma 1.1, J can be rewritten as

J∗(x) = min
y

min
z∈D y

f (x, y)+ g (y, z)

= min
y

( f (x, y)+min
z∈D y

g (y, z))

The minimization has been divided into two steps and that is why we call it a twostage minimization

problem. In the first step, y is fixed, and we minimize g (y, z) over D y to get a functionϕ(y) = minz∈D y g (y, z).

The second step is to minimize the function f (x, y)+ϕ(y).

3limk→∞ ak ↘ a means that ak is decreasing and converges to a.
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For multistage minimization, we consider

J (x0) =
N∑

k=1
gk (xk−1, xk ) (1.27)

J∗(x0) = min
(x1,···xN )

J (x0, x1, · · · , xN )

This is a multistage minimization problem. Using Lemma 1.1, we know

Ji (x) =
N∑

k=i
gk (xk−1, xk )

∣∣∣∣∣
xi−1=x

J∗i (x) = min
(xi ,··· ,xN )

Ji (x), 1 ≤ i ≤ N

rewrite J as

J∗1 (x0) = min
x1

min
(x2,··· ,xN )

N∑
k=1

gk (xk−1, xk )

= min
x1

[
g1(x0, x1)+ min

(x2,··· ,xN )

N∑
k=2

gk (xk−1, xk )

]
= min

x1

[
g1(x0, x1)+ J∗2 (x1)

]
Similarly,

J∗m(x) = min
xm

[gm(x, xm)+ J∗m+1(xm)], 1 ≤ m ≤ N −1

J∗N (x) = min
xN

gN (x, xN )

The above algorithm is nothing but the Bellman equation that we derived earlier using Bellman’s

principle of optimality. Hence in the discrete time case, everything that we have done so far can be ap-

proached alternatively via multi-stage optimization. In case you feel a bit uncomfortable with Bellman’s

principle, which we didn’t prove rigorously, then the multi-stage optimization provides you a rigorous

framework that should dispel all your doubts.

1.2 Continuous time systems

1.2.1 Bellman principle and the HJB equation

Bellman principle

In this section, we begin to study dynamic programming in the setting of continuous time systems:

ẋ = f (x,u),

x(t0) = x0
(1.28)

where x(t ) ∈ X ⊆ Rn , u(t ) ∈Ut ⊆ Rm and u(·) ∈ U , and U is called the space of admissible control input.

To avoid pathological cases, we assume that the solution to this equation exists and is unique for each

u(·) ∈ U . When the initial condition is clear from the context or is not important to us, we simply write

x(t ) as the solution to system. If however we want to highlight the initial condition, we may write x(t , x0)

(when the initial time instant is unimportant) or x(t ; t0, x0). If, further more, we want to include the input,

we can write x(t ; t0, x0,u) for u ∈U .
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Recall that in the discrete time setting, the cost function for finite horizon problem is defined as

ϕ(xN )+∑N−1
k=1 L(xk ,uk ), i.e., a sum of the cost at each stage plus a boundary cost. Naturally, we can con-

sider a similar cost in the continuous time setting by changing the sum to integration. More precisely, we

will consider cost functions in Bolza form

J (u(·)) =ϕ(x(T ))+
∫ T

0
L(x(s),u(s))ds (1.29)

where ϕ and L are both non-negative functions. Likewise, we can consider infinite horizon cost

J (u(·)) =
∫ ∞

0
L(x(s),u(s))ds

As before, the objective of optimal control is to seek for an admissible control u∗(·) such that

u∗(·) ∈ argmin
u∈U

J (u(·)). (1.30)

Remark 1.2. The discrete cost can be seen as a special case of the Bolza form cost since the sum is simply

an integration w.r.t. the counting measure.

To apply Bellman’s principle, as before, we should define cost-to-go and value functions. Again, these

are done by simply changing the summation to integration in the discrete time setting. In words, the

cost-to-go function from t = s with x(s) = y to T is

J (s, y ;u(·)) :=ϕ(x(T ))+
∫ T

s
L(x(t ),u(t ), t )d t ,

and the value function is defined as the optimal value of the cost-to-go under admissible control on the

interval [s,T ]:

J∗(s, y) := min
u(·)∈U |[s,T ]

J (s, y ;u(·)). (1.31)

Here, the set U |[s,T ] is the set of admissible controls that can be implemented on the interval [s,T ]. More

rigorously, U |[s,T ] = {u1[s,T ] : u ∈U }, where 1[s,T ] stands for the characteristic function of the set [s,T ].

Recall that the Bellman principle says: an optimal policy has the property that no matter what the

previous decision have been, the remaining decisions must constitute an optimal policy with regard to

the state resulting from those previous decisions. Thus for any time instant r , there must hold

J∗(s, y) = min
u(·)∈U |[s,r ]

{∫ r

s
L(x(t , s, y,u),u(t ))dt + J∗(r, x(r ; s, y,u)

}
, ∀r ∈ [s,T ]. (1.32)

As we have seen, in the discrete time setting, the correctness of the corresponding formula of (1.32)

can be justified rigorously via multi-stage optimization. In the continuous time setting, the following

lemma, which can be equally called Bellman’s principle of optimality, legitimates the formula (1.32).

Lemma 1.2. Let J (u(·)) be a cost function, with u(·) ∈U |[t0,t1]. Assume that

1. J (u(·)) is separable for any time t ∈ [t0, t1] in the sense that there exist functions J1 : U ×R→ R,

J2 : U →R such that

J (u(·)) = J1(u1(·), J2(u2(·)))

where u1 = u1[t0,t ) and u2 = u1[t ,t1] for all t ∈ [t0, t1], i.e., the truncations of u on the interval [t0, t )

and [t , t1] respectively;
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2. J1 is nondecreasing with respect to the second argument.

Then Bellman’s principle of optimality holds for the cost function J (u(·)):

J∗ = min
u(·)∈U |[t0,t1]

J (u(·)) = min
u1(·)∈U |[t0,t )

J1

(
u1(·), min

u2(·)∈U |[t ,t1]
J2(u2(·))

)
, ∀t ∈ (t0, t1]

Proof. For any u1(·),u2(·), we have

J∗ ≤ J1(u1(·), J2(u2(·)))

hence

J∗ ≤ J1

(
u1(·), min

u2(·)∈U |[t ,t1]
J2(u2(·))

)
and

J∗ ≤ min
u1(·)∈U |[t0,t )

J1

(
u1(·), min

u2(·)∈U |[t ,t1]
J2(u2(·))

)
.

On the other hand,

min
u1(·)∈U |[t0,t )

J1

(
u1(·), min

u2(·)∈U |[t ,t1]
J2(u2(·))

)
≤ min

u1(·)∈U |[t0,t )
J1 (u1(·), J2(u2(·))) (monotonicity)

≤ min
u2(·)∈U |[t ,t1]

min
u1(·)∈U |[t0,t )

J1 (u1(·), J2(u2(·)))

= min
u2(·)∈U |[t ,t1]

min
u1(·)∈U |[t0,t )

J (u(·))

= min
u(·)∈U |[t0,t1]

J (u(·)) = J∗.

This completes the proof.

To verify (1.32), let

J1(u1, y) = y +
∫ t

0
L(x(s),u(s))d s

J2(u2) =ϕ(x(T ))+
∫ T

t
L(x(s),u(s))d s

then obviously J (u(·)) = J1(u1, J2(u2)) and J1 is nondecreasing with respect to the second argument.

(Note that J2 is nothing but the cost-to-go function!)

The Hamilton-Jacobi-Bellman equation

Let’s recall the central result from the previous subsection: if J∗ is the value function defined for the

optimal control problem defined by (1.28), (1.29) and (1.30), then it satisfies the following equation:

J∗(s, y) = min
u(·)∈U |[s,r ]

{∫ r

s
L(x(t ; s, y,u),u(t ))dt + J∗(r, x(r ; s, y,u)

}
, ∀r ∈ [s,T ]. (1.33)

This equation looks too implicit and is hard to use in practice. The main task of this subsection is to

derive the celebrated Hamilton-Jacobi-Bellman equation based (1.33), a more tractable form than (1.33).

The key is to note that (1.33) is satisfied for all r ≥ s and hence one can take derivatives when J∗ are

assumed to be smooth.
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On the one hand, for any give u ∈U , and r > s, we have

J∗(s, y)− J∗(r, x(r ; s, y,u))

r − s
− 1

r − s

∫ r

s
L(x(t ; s, y,u),u(t ))dt ≤ 0, ∀u ∈U

Suppose that J∗ is continuously differentiable, and that L, u are continuous, then the above implies

−∂J∗

∂s
(s, y)− ∂J∗

∂y
(s, y) f (y,u(s))−L(y,u(s)) ≤ 0, ∀u(s) ∈Us

resulting in

−∂J∗

∂s
(s, y)+ sup

u∈Us

H

(
y,u,−∂J∗(s, y)

∂y

)
≤ 0. (1.34)

where

H(x,u, p) = p⊤ f (x,u)−L(x,u) (1.35)

On the other hand, for any pair (r,ϵ), with r > s, ϵ> 0, there exists a control uε,r such that

J∗(s, y) ≥
∫ r

s
L(x(t , s, y,uε,r (·)),uε,r (t ))dt + J∗(r, x(r ; s, y,uε,r ))−ε(r − s)

or

−ε≤ J∗(s, y)− J∗(r, x(r, s, y,uε,r )

r − s
− 1

r − s

∫ r

s
L(x(t , s, y,uε,r ),uε,r (t ), t )dt

=− 1

r − s

∫ r

s

[
∂J∗

∂s
(t , x(t , s, y,uε,r )+ ∂J∗

∂y
(t , x(t , s, y,uε,r ) f (x(t , s, y,uε,r ),uε,r (t ))

]
dt

− 1

r − s

∫ r

s
L(x(t , s, y,uε,r ),uε,r (t ), t )dt

= 1

r − s

∫ r

s

[
−∂J∗

∂s
(t , x(t , s, y,uε,r )+H

(
x(t , s, y,uε,r ),uε,r (t ),−∂J∗

∂y
(t , x(t , s, y,uε,r )

)]
dt

Let r → s+ while keeping ϵ fixed, we get

−ε≤−∂J∗

∂s
(s, y)+H

(
y,uε,r (s),−∂J∗

∂y
(s, y)

)
≤−∂J∗

∂s
(s, y)+ sup

u∈Us

H

(
y,u,−∂J∗

∂y
(s, y)

)
(1.36)

Since ε is arbitrary, (1.36) and (1.34) together imply

−∂J∗

∂s
(s, y)+ sup

u∈Us

H

(
y,u,−∂J∗

∂y
(s, y)

)
= 0, ∀s ∈ [0,T ], ∀y ∈ X

or equivalently

∂J∗

∂s
(s, y)+ inf

u∈Us

{
∂J∗

∂y
(s, y) f (y,u)+L(y,u)

}
= 0, ∀s ∈ [0,T ], ∀y ∈ X

This is a partial differential equation with dependent variable (s, y). By the definition of value function

(see (1.31)), the PDE is accompanied with boundary condition

J∗(T, y) =ϕ(y), ∀y ∈ X .

Summarizing, we have:
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Proposition 1.8. Suppose that J∗(s, x) defined as (1.31) is continuously differentiable. Then J∗(t , x) is a

solution to the following Hamilton-Jacobi-Bellman (HJB) PDE on [0,T ]×X :

−Vt (t , x)+ sup
u∈Ut

H (x,u,−Vx (t , x)) = 0, (1.37)

or its equivalent form

Vt (t , x)+ inf
u∈Ut

{
Vx (t , x) f (x,u)+L(x,u)

}= 0, (1.38)

with boundary condition

V (t , x) =ϕ(x),

where H is defined in (1.37) and we have adopted the notations ∂V
∂t =Vt and ∂V

∂x =Vx .

� Although the optimal control problem is a �minimization�, the HJB equation (1.37) may involve a

maximization, see (1.37).

Suppose that Ut =U for all t ≥ 0. To obtain the optimal control law based on the solution of the HJB

equation (1.37), we can follow Algorithm 1.1 (called the verification rule).

Algorithm 1.1 The verification rule

1. Solve the optimization problem

u∗(x, p) = argsup
u∈U

H(x,u,−p).

2. Find a continuously differentiable solution V (t , x) to

−Vt (t , x)+H
(
x,u∗(x,Vx (t , x)),−Vx (t , x)

)= 0, (1.39)

V (T, x) =ϕ(x),

for (t , x) ∈ (0,T ]×X .

3. Solve for the solution x∗(t ) =: x∗(t ; s, x) to the Cauchy problem of the following ODE:

ẋ∗ = f (x∗(t ),u∗(t ,Vx (t , x∗(t ))))
x∗(s) = x

Then
u∗(t ,Vx (t , x∗(t )))

is an optimal control and x∗(t ; t0, x) is the corresponding optimal process.

As the discrete time optimal control problem on finite horizon, solving the Bellman equation (1.37)

(when the solution has some regularities) is sufficient to obtain the optimal control. For continuous

problems, we have a similar result.

Proposition 1.9. If the verification rule Algorithm 1.1 admits a C 1 solution V , then u∗ obtained from the

algorithm is an optimal control.
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Proof. Let V be a C 1 solution to the Bellman equation. Let u(·) be any admissible control and x(·) the

corresponding trajectory. Then for initial condition x0,

V (t , x(t ))−V (0, x0) =
∫ t

0

dV (s, x(s))

d s
ds

=
∫ t

0
Vt (s, x(s))+Vx (t , x(s)) f (x(s),u(s))ds

≥
∫ t

0
−L(x(s),u(s))ds (use(1.38))

from which it follows that

V (0, x0) ≤ϕ(x(T ))+
∫ t

0
L(x(s),u(s)ds.

Since u(·) is arbitrary, we conclude that V (0, x0) is the optimal value function. On the other hand, it is

readily checked that u∗ is a control that achieves the optimal value.

Apparently, the most challenging part of the algorithm is the second step, i.e., solving a PDE of the

form F (x, v, vx ) = 0. But even numerically solving the HJB is quite difficult, which normally incurs curse

of dimensionality after discretization.

�
The above two main results both have a drawback: they require the value function to be con-

tinuously di�erentiable, which is almost never met in real applications. What's worse, the HJB

equation may not have continuously di�erentiable solutions! This problem turns out be non-

negligible and must be handled with care. We will come back to this issue later.

1.2.2 Example: Continuous LQR on finite horizon

We study the system

ẋ = A(t )x +B(t )u

with x ∈Rn , u ∈Rm and cost function

J = x(T )⊤Q f x(T )+
∫ T

t0

x(t )⊤Q(t )x(t )+u(t )⊤R(t )u(t )dt

where Q f , Q(t ) ≥ 0 and R(t ) > 0 for all t ≥ 0. In addition, we assume A(·), B(·), Q(·) and R(·) are continu-

ous. The objective is to find an optimal control u∗ such that J is minimized.

The Hamiltonian function is

H(x,u, p, t ) = p⊤(A(t )x +B(t )u)−x⊤Q(t )x −u⊤R(t )u

We implement the first two steps of the verification rule:

Step 1: solve the minimization minu H(x,u, p, t ), resulting in

u∗ = argmax
u

H(x,u, p, t ) = 1

2
R(t )−1B(t )⊤p

and

H(x,u∗, p, t ) = p⊤A(t )x −x⊤Q(t )x + 1

4
p⊤B(t )R(t )−1B(t )⊤p
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Step 2: solve the HJB

−Vt −Vx A(t )x −x⊤Q(t )x + 1

4
Vx B(t )R(t )−1B(t )⊤V ⊤

x = 0.

Consider a candidate V (t , x) = x⊤P (t )x, in this case

u∗ = 1

2
R(t )−1B(t )⊤P (t )x

Substitute into the above HJB equation we get

−x⊤Ṗ (t )x −x⊤[P (t )A(t )+ A(t )⊤P (t )]x −x⊤Q(t )x +x⊤P (t )B(t )R(t )−1B(t )⊤P (t )x = 0

Since this equation must be satisfied for all x, it follows that

−Ṗ (t ) =Q(t )+P (t )A(t )+ A(t )⊤P (t )−P (t )B(t )R(t )−1B(t )⊤P (t ). (1.40)

with boundary condition

P (T ) =Q f .

The first order ODE (1.40) is called differential Riccati equation (DRE). Thus the continuous LQR prob-

lem on finite horizon reduces to solving the DRE (1.40).

Proposition 1.10. Suppose that A(·), B(·), Q(·) and R(·) are continuous and Q f ≥ 0, Q(t ) ≥ 0, R(t ) > 0 for

all t ∈R. Then the differential Riccati equation has a unique semi-positive definite solution on any interval

(t0,T ] for all t0 ∈R.

Proof. Notice that the right hand side of (1.40) is quadratic in P (thus locally Lipschitz!) and that A(·),

B(·), Q(·) and R(·) are continuous, therefore local existence and uniqueness of solutions are guaranteed.

This also implies that the solution to (1.40) is symmetric: if P (t ) is a solution, so is P (t )⊤, while both have

the same terminal condition, thus P (t ) = P (t )⊤.

We show next that there is no finite escape time. Suppose that the solution exists on (t1,T ] for some

finite t1 ∈R. Then by construction, for any t2 ∈ (t1,T ], and x(t2) ∈Rn ,

x(t2)⊤P (t2)x(t2) ≤ x(T )⊤Q f x(T )+
∫ T

t2

x(t )⊤Q(t )x(t )+u(t )⊤R(t )u(t )dt , ∀u(·).

(The inequality becomes equality for u = u∗, thus we also get P (t2) ≥ 0.) In particular, this is true for

u ≡ 0, implying that one can find a constant c > 0 such that P (t2) < cI for all t2 ∈ (t1,T ] (no blow-up!).

It is then routine to show that when t2 is sufficiently close to t1, the solution can be extended outside

(t1,T ].

Remark 1.3. Note that the DRE (1.40) has a terminal condition instead of an initial condition. If one

wants to solve a true ODE in forward time, one can introduce a change of variables

τ= T − t , P̃ (τ) = P (T −τ), R̃(τ) = R(T −τ)

Ã(τ) = A(T −τ), B̃(τ) = B(T −τ)

Then it becomes equivalent to solving

˙̃P (τ) = Q̃(τ)+ P̃ (τ)Ã(τ)+ Ã(τ)⊤P̃ (τ)− P̃ (τ)B̃(τ)R̃(τ)−1B̃(τ)P̃ (τ),

P̃ (0) =Q f .
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1.2.3 Method of characteristics and the Hamiltonian equation

Method of characteristics

A well-known approach to solving PDE of the form

F (x, v, vx ) = 0, x ∈Ω⊂Rn . (1.41)

with boundary condition

v(x) = ṽ(x), x ∈ ∂Ω,

is via the so-called method of characteristics. Here v is a real valued function and F is assumed to be

a continuous mapping from Rn ×R×Rn to R. In addition, we assume Ω to be compact with smooth

boundary.

The idea of the method of characteristics is to turn the first order PDE (1.41) into a set of ODEs. Given

a point y ∈ ∂Ω and a curve x : [0,1] → Ω̄, with x(0) = y . W examine the values of v(x) along this curve, see

Figure 1.2.3.

U

T:O;

Figure 1.2: Method of characteristics.

Introduce the notation

(p1, · · · , pn) = (vx1 , · · · , vxn ).

For convenience, denote

v(s) =: v(x(s))

p(s) =: p(x(s)) = vx (x(s)).

Differentiating v and p w.r.t. s, we find

v̇ =
n∑

i=1
vxi ẋi =

n∑
i=1

pi ẋi

ṗi =
n∑

j=1
vxi x j ẋi

where ẋi stands for the derivative of xi w.r.t. s. Further, differentiating (1.41) w.r.t. xi , we get

∂F

∂xi
+ ∂F

∂v
vxi +

n∑
i=1

∂F

∂pi
vxi x j = 0.
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Now if the curve x(s) is chosen such that ẋi = ∂F /∂pi (this time, we call x a characteristic curve), one can

easily obtain the following

v̇ =
n∑

i=1
pi

∂F

∂pi
,

ṗi =− ∂F

∂xi
− ∂F

∂v
pi , i = 1, · · · ,n

or in more compact form 
ẋ = F⊤

p

v̇ = p⊤ ∂F

∂p

ṗ =−F⊤
x −F⊤

v p

(1.42)

The above equation is a system of ordinary differential equations with boundary condition

x(0) = y, v(0) = v̄(y), p(0) = vx (y)

for y ∈ ∂Ω. Thus by varying the initial condition y , we can obtain local solutions near ∂Ω of the PDE

(1.41). In general, however, the solution cannot be extend globally to the entire region Ω. For example,

when two characteristic curves meet in Ω, singularity occurs.

To solve the HJB using method of characteristics, we first need to write the equation (1.39) into the

standard form F (x, v, vx ) = 0 for some F . For that, let xn+1 = t and x̃ = (x, xn+1). Then (1.39) can be

written as −vxn+1 +H(x,u∗(x, vx ),−vx ) = 0, or −vxn+1 + H̃(x, vx ) = 0 for some scalar function H̃ , in which

Dv stands for the gradient of v w.r.t. x (not x̃!). Let p̃ = (p1, · · · , pn , pn+1), then F takes the form

F (x̃, v, p̃) =−pn+1 + H̃(x, p).

Hence the first line of (1.42) reads
ẋ = F⊤

p = H̃⊤
p

ẋn+1 = ∂F

∂pn+1
=−1

(1.43)

Notice that ∂F /∂v = 0, the third line of (1.42) reads

ṗ =−H̃x

ṗn+1 =− ∂H̃

∂xn+1
= 0

(1.44)

and the second line of v̇ = p⊤H̃p −pn+1. In the above formulas, the only relevant ones are the first lines

of (1.43) and (1.44), i.e., ẋ = H̃⊤
p

ṗ =−H̃⊤
x

(1.45)

This equation is the celebrated Hamiltonian equation which plays a fundamental role in analytic me-

chanics and modern physics. In next subsection, we mention some well-know properties of the Hamil-

tonian equation.
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The Hamiltonian equation

For the moment, the tilde above H in equation (1.45) is superfluous. We consider insteadẋ = H⊤
p

ṗ =−H⊤
x

(1.46)

for x, p ∈Rn . In the sequel, we introduce some well-know properties of the Hamiltonian equation (1.46).

Energy conservation. In physics, for example in mechanics, the function H is often some form of

energy of the system. If we calculate the time evolution of the energy, we discover that

d H

d t
= ∂H

∂p

⊤
ṗ + ∂H

∂x
ẋ = ẋ⊤ṗ − ṗ⊤ẋ = 0.

That is, along the trajectory of the system (1.46), the energy function keeps constant.

Volume preservation (Liouville theorem). Another remarkable property of the Hamiltonian equation

is volume preservation. Consider a bounded measurable set D on the phase space R2n . Starting from

t = 0, the set D is mapped to φt (D) by the flow of Hamiltonian equation at time instant t . Denote vol(Ω)

the volume of a measurable set Ω. Then the transport equation4 tells us that

d

d t
vol(φt (D)) =

∫
D

div

(
∂H

∂p
,−∂H

∂x

)
dvol.

But

div

(
∂H

∂p
,−∂H

∂x

)
=

n∑
i=1

∂2H

∂xi∂pi
−

n∑
i=1

∂2H

∂pi∂xi
= 0

Thus

vol(φt (D)) = constant, ∀t ≥ 0

as expected.

The Liouville theorem has many interesting consequences:

• Assume that D is a bounded forward invariant set of the system (1.46). Then the system does

not admit asymptotic stable point. Otherwise there exists an equilibrium point (x∗, p∗) ∈ D and a

compact set U ⊆ D , which contains both (x∗, p∗) and φt (D) for t sufficiently large. But in this case,

the volume of φt (D) would be strictly smaller than that of D , a contradiction.

• Poincaré recurrence theorem: Assume that there exists a bounded forward invariant set D ⊆ R2n of

the system (1.46). Then for any open set U ⊆ D , and any s > 0, there exists at least one point x ∈U

which returns to the set after some time t ≥ s. To prove this, assume that φs (U )∩U =;, otherwise

there’s nothing to prove. Consider the sequence

φs (U ), φ2s (U ), · · · ,φks (U ), · · ·

Since φ j s (U ) has the same volume for all j ≥ 1, there must exists some integers k > j , such that

φ j s (U )∩φks (U ) ̸= ;

otherwise, the above sequence generates infinite volume inside the set D , which is impossible.

Thus U ∩φ(k− j )s (U ) ̸= ; since as claimed.

4The transport equation: consider a system ẋ = f (x), and let φt :Rn →Rn be its flow, then for any bounded set D ⊆Rn ,

d

d t
vol(φt (D)) =

∫
φt (D)

div f dx.
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1.2.4 Viscosity solution of HJB equation

Our next aim is to show that the value function defined in (1.31) is a viscosity solution of the HJB equation

(1.37).

Define the set of super-differentials of a function g :Ω⊂Rn →R at x as

D+g (x) =:

{
p ∈ (Rn)∗ : lim sup

y→x

g (y)− g (x)−p(y −x)

|y −x| ≤ 0

}
and the set of sub-differentials at x as

D−g (x) =:

{
p ∈ (Rn)∗ : lim inf

y→x

g (y)− g (x)−p(y −x)

|y −x| ≥ 0

}
As shown in the following figures.

𝑥

𝑓

Figure 1.3: Super-differential.

𝑥

𝑓

Figure 1.4: Sub-differential.

The crucial characterization of super- and sub-differentials for us is the following.

Lemma 1.3. Let g ∈C (Ω). Then

1. p ∈ D+g (x) iff there exists a functionϕ ∈C 1(Ω) such that ∇ϕ(x) = p and g −ϕ has a local maximum

at x;
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2. p ∈ D−g (x) iff there exists a functionϕ ∈C 1(Ω) such that ∇ϕ(x) = p and g −ϕ has a local minimum

at x.

The proof of this lemma is easy and hence omitted. Notice that the mere regularity assumption on g is

only continuity! Now we are ready to give the definition of the celebrated viscosity solution. One should

keep in mind that there is no differentiability assumption on the solution.

Definition 1.1. Consider the first order PDE (1.41), in which F is continuous. A function g ∈ C (Ω) is a

viscosity sub-solution of the PDE if

F (x, g (x), p) ≤ 0, ∀x ∈Ω, p ∈ D+g (x).

It is a viscosity super-solution if

F (x, g (x), p) ≥ 0, ∀x ∈Ω, p ∈ D−g (x).

It is a viscosity solution if it is both a viscosity supersolution and a viscosity subsolution.

Due to Lemma 1.3, g is a viscosity sub-solution if, for each ϕ ∈ C 1(Ω) such that u −ϕ has a local

maximum at x, there holds

F (x, g (x),∇ϕ(x)) ≤ 0

and it is a viscosity super-solution if, for each ϕ ∈C 1(Ω) such that u −ϕ has a local minimum at x, there

holds

F (x, g (x),∇ϕ(x)) ≥ 0.

Theorem 1.1. Consider the system ẋ = f (x,u) with x ∈ Rn and u ∈ U ⊂ Rm compact. Let V (s, y) be the

value function defined as (1.31). Suppose that there exists a constant C > 0, such that

| f (x,u)|, |L(x,u)|, |ϕ(x)| <C

| f (x,u)− f (y,u)|, |ϕ(x)−ϕ(y)|, |L(x,u)−L(y,u)| <C |x − y |

for all x ∈Rn and u ∈U . Then V is the unique viscosity solution of the HJB equation

−Vt + sup
u∈U

H(x,u,−Vx ) = 0, (t , x) ∈ (0,T )×Rn

with boundary condition V (T, x) =ϕ(x).

Proof. (We follow [6].) Let γ ∈C 1((0,T )×Rn). We need to show

1) If V −γ attains a local maximum at (t0, x0) ∈ (0,T )×Rn , then

−γt (t0, x0)+ sup
u∈U

{−∇γ(t0, x0) f (x0,u)−L(x0,u)} ≤ 0

or

γt (t0, x0)+ inf
u∈U

{∇γ(t0, x0) f (x0,u)+L(x0,u)} ≥ 0 (1.47)

2) If V −γ attains a local minimum at (t0, x0) ∈ (0,T )×Rn , then

−γt (t0, x0)+ sup
u∈U

{−∇γ(t0, x0) f (x0,u)−L(x0,u)} ≥ 0
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or

γt (t0, x0)+ inf
u∈U

{∇γ(t0, x0) f (x0,u)+L(x0,u)} ≤ 0. (1.48)

To prove 1), assume that V (t0, x0) = γ(t0, x0) and V (t , x) ≤ γ(t , x) for all t , x. If (1.47) is not true, then there

exist ω ∈U , θ > 0 such that

γt (t0, x0)+ inf
u∈U

{∇γ(t0, x0) f (x0,u)+L(x0,u)} <−θ.

By continuity, this inequality implies

γt (t , x)+ {∇γ(t , x) f (x,ω)+L(x,ω)} <−θ−L(x,ω) (1.49)

when

|t − t0| < δ, |x −x0| < δ,

for some δ> 0. Call x(t ) := x(t ; t0, x0,ω) the solution to

ẋ = f (x(t ),ω), x(t0) = x0.

We then have

V (t0 +δ, x(t0 +δ))−V (t0, x0) ≤ γ(t0 +δ, x(t0 +δ))−γ(t0, x0)

=
∫ t0+δ

t0

d

d t
γ(t , x(t ))d t

=
∫ t0+δ

t0

{
γt (t , x(t ))+∇γ(t , x(t )) f (x(t ),ω)

}
d t

≤−
∫ t0+δ

t0

L(x(t ),ω)d t −δθ. (due to (1.49)).

On the other hand, by the definition of value function,

V (t0 +δ, x(t0 +δ))−V (t0, x0) ≥
∫ t0+δ

t0

L(x(t ),ω)d t

which induces a contradiction. Thus V (t , y) is indeed a viscosity sub-solution. Part 2) can be proved

similarly.

To prove the uniqueness, one needs more effort. Interesting readers are referred to [6, Theorem 8.5.3].

Relation to stochastic optimal control

Let us consider two systems

S1 : d x(t ) = f (x(t ),u(t ))d t

S2 : d x(t ) = f (x(t ),u(t ))d t +p
2εdBt

where t 7→ Bt is a standard Brownian motion. Note that S2 is obtained by adding a stochastic termp
2εdBt on S1.
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Consider the cost function for the two systems

J1 =
∫ T

0
L(x(t ),u(t ))d t +ϕ(x(T )), x(t ) solves S1

J2 = E

[∫ T

0
L(t , x(t ),u(t ))d t +ϕ(x(T ))

]
, x(t ) solves S2

respectively.

The HJB for the two systems are

0 =Vt + inf
u

(
∂V (t , x)

∂x
f (t , x,u)+L(t , x,u)

)
(1.50)

0 =Wt + inf
u

(
∂W (t , x)

∂x
f (t , x,u)+L(t , x,u)

)
+ε∂

2W (x, t )

∂x2 (1.51)

We observe that the stochastic HJB can be obtained from the deterministic HJB by adding the term

ε∆W . It is reasonable to expect that when ε→ 0, W ε (the solution to (1.51) with a given ε) converges to V

in certain sense (in fact, uniformly) since the term ε∆W ε vanishes as ε→ 0. From parabolic PDE theory,

(1.51) admits smooth solutions (while (1.50) doesn’t!). Thus the term ε∆W regularizes the HJB (1.50)).

Since the convergence of W ε is uniform, V should be continuous. One can show that this V is indeed

the viscosity solution. On the other hand, the construction of the viscosity solution in this section has

nothing to do with the discussion here. It is indeed a more intrinsic way of construction.

1.2.5 Infinite horizon problems

Consider the time-invariant system ẋ = f (x,u)

x(0) = x0

with cost

J =
∫ ∞

0
L(x(t ),u(t ))dt

where L ≥ 0, u(t ) ∈ U ⊆ Rm for all t ≥ 0. It is easy to notice that the value function in this case is time

independent and thus can be written as J∗(x). Further more, the HJB equation reads

sup
u∈U

H(x,u,−Vx ) = 0

where H(x,u, p) = p⊤ f (x,u)−L(x,u), or equivalently

inf
u∈U

{Vx f (x,u)+L(x,u)} = 0. (1.52)

In the LQR setting, for the system

ẋ = Ax +Bu (1.53)

and cost

J =
∫ ∞

0
x⊤Qx +u⊤Rudt (1.54)

the HJB equation (1.52) reads

inf
u∈U

{Vx (Ax +Bu)+x⊤Qx +u⊤Ru} = 0
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As before, choose V = x⊤P x, then the above formula turns into infu∈U {2x⊤P (Ax+Bu)+x⊤Qx+u⊤Ru} =
0. The minimum on the left hand side is achieved at

u∗ =−R−1B⊤P x

with minimum zero if

A⊤P +PA+Q −PBR−1B⊤P = 0. (1.55)

This equation in P is called algebraic Riccati equation (ARE).

Proposition 1.11. Consider the LTI system (1.53) and cost function (1.54) with Q ≥ 0, R > 0. Assume (A,B)

is controllable, (A,C ) is observable, where C is full row rank satisfying C⊤C =Q. Then the ARE has a unique

symmetric solution P which is positive definite. Further more, the optimal control is given by a static state

feedback u =−R−1B⊤P x and the optimal cost is x⊤
0 P x0.

Proof. The proof of this proposition is essentially the same as the discrete time case and is thus left as an

exercise.
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2
MAXIMUM PRINCIPLE

In Chapter 1, we studied optimal control via dynamic programming. The are some notable features of

this method.

• It is applicable to various types of problems, discrete time as well as continuous time, finite time

horizon or infinite time horizon, deterministic or stochastic.

• Although the optimal control problem formulations are somewhat different, the key element used

to derive the optimal controls is the same, i.e., Bellman’s principle of optimality, a principle which

is simple, intuitive but powerful.

• Dynamic programming provides not only necessary conditions, it also provides sufficient condi-

tions under some mild assumptions.

• On the other hand, there are also some issues which haven’t been well addressed. For example,

in dynamic programming, the task is finally reduced to solving the Bellman equation (for discrete

time systems), or the HJB equation (for continuous time systems). But solving these equations

often runs into a generic issue: the curse of dimensionality. Even worse, for HJB equations, the

existence of (classical) solutions is a subtle issue. One needs to resort to very advanced techniques

from PDE theory, e.g., viscosity solution, in order to have conclusions on the existence and regu-

larities of the solutions.

In this chapter, we are going to study a totally different approach of optimal control, which has its

origin in calculus of variation. A salient feature of this approach is that it does not involve solving partial

differential equations! It is hard to explain how powerful and this approach is at the current stage. We

will leave the discussions to the end of this chapter.
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2.1 Calculus of variation

Remember that in the beginning of this course, we mentioned one basic methodology in optimal control:

fix an optimal policy and then study the property of this optimal policy. The calculus of variation adopts

the same methodology, but it goes one step further. Consider an optimal control problem with input u

and cost functional J (u). The calculus of variation works as this:

1) fix an optimal policy u;

2) adjust slightly the optimal policy, representing by a scalar parameter ϵ: uϵ, with the optimal

policy corresponding to ϵ= 0;

3) by definition, the optimal policy should minimize the one-parameter cost functionals J (uϵ).

Thus, if Jϵ is differentiable w.r.t ϵ, there must hold d Jϵ
dϵ

∣∣∣
ϵ=0

= 0.

At the beginning, one may think that a variation using only a scalar parameter is not very useful, after

all, in optimal control, the optimal policy lies in certain function space which is usually infinite dimen-

sional. Thus it seems that one can only obtain very limited information about the optimal policy. But

this conclusion is based on the fact that we use only generic variations. Later we will realize that this is

not the case. In fact, by cleverly choosing some special class of variations, one may obtain very rich infor-

mation of the optimal policy. It is even not rare to see that the information derived from variation is also

sufficient to guarantee optimality. In optimal control, such class of variations is the “needle variations”,

which lie in the heart of maximum principle.

2.1.1 Motivating example: principle of least action

Assume that L : Rn ×Rn → R is a non-negative continuously differentiable function. Here we call L the

Lagrangian, named after the mathematician Lagrange, who laid the foundation of analytic mechanics. It

is custom to write

L = L(q, q̇) = L(q1, · · · , qn , q̇1, · · · , q̇n)

in which q̇i is only an independent variable rather than the derivative of q . Let x, y be two points in Rn

and define the action on the interval [0,T ] as

A (q) =
∫ T

0
L(q(t ), q̇(t ))dt (2.1)

(this time q̇ is the time derivative of q ! I have to admit that the notation is a bit misleading but it has been

widely adopted) where q :R→Rn belongs to the set

Ω= {q ∈C 2([0,T ];Rn) : q(0) = x, q(T ) = y}.

The problem of least action is to find q ∈Ω which minimizes the action A (q).

We follow the three steps in the methodology of calculus of variation.

1) Assume q is the optimal solution.

2) Choose a class of variation. For any function y ∈C 2([0,T ];Rn) with vanishing endpoints, i.e., y(0) =
y(T ) = 0, the one-parameter family of functions q +ϵy ∈Ω, ∀ϵ ∈R constitute a variation of q .
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3) Since L is differentiable, we can take the derivatives:

d

dϵ

∣∣∣∣
ϵ=0

∫ T

0
L(q(t )+ϵy(t ), q̇(t )+ϵẏ(t ))dt

=
∫ T

0

∂L

∂q
(q(t ), q̇(t ))y(t )+ ∂L

∂q̇
(q(t ), q̇(t ))ẏ(t )dt

=
∫ T

0

∂L

∂q
(q(t ), q̇(t ))y(t )dt + ∂L

∂q̇
(q(t ), q̇(t ))y(t )

∣∣∣∣T

0
−

∫ T

0

d

d t

[
∂L

∂q̇
(q(t ), q̇(t ))

]
y(t )dt

=
∫ T

0

{
∂L

∂q
(q(t ), q̇(t ))− d

d t

[
∂L

∂q̇
(q(t ), q̇(t ))

]}
y(t )dt

where we have used integration by parts in the third line. The last line should vanish for all smooth y with

compact support in (0,T ). It is then readily checked that the term in the brace also vanishes (fundamental

lemma), i.e.,
d

d t

(
∂L

∂q̇
(q(t ), q̇(t ))

)
− ∂L

∂q
(q(t ), q̇(t )) = 0, ∀t ∈ [0,T ], (2.2)

or briefly
d

d t

∂L

∂q̇
− ∂L

∂q
= 0. (2.3)

�
The system of equations (2.3) really mean (2.2).

Equation (2.3) is called the Lagrangian equation. If one expand (2.3), then (2.3) is easily seen to be a

second-order ordinary differential equations.

In mechanics, the Lagrangian L is defined as the difference between the total kinetic energy and

potential:

L(q, q̇) = 1

2
q̇⊤M(q)q̇ −V (q).

The principle of least action in mechanics states that

The path taken by the system between times t1 and t2 and configurations q1 and q2 is the one for

which the action is optimal.

Thus, the mechanical systems evolve according to the Lagrangian equation (2.3). If we expand (2.3),

then it will look like

M(q)q̈ +C (q, q̇)q̇ =−∇V (q)

where C (q, q̇)i j corresponds to Coriolis and centrifulal forces.

An important property of the Lagrangian equation for mechanical systems is energy conservation.

Indeed

dL

d t
= ∂L

∂q
q̇ + ∂L

∂q̇
q̈ = d

d t

∂L

∂q̇
+ ∂L

∂q̇
q̈ , (by (2.3))

= d

d t

(
∂L

∂q̇
q̇

)
= d

d t
(q̇⊤M(q)q̇)

= d

d t
(2L+2V )
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from which it follows that
d

d t
(L+2V ) = 0.

That is, the quantity L +2V =: E , the sum of kinetic energy and potential energy, is constant during the

evolution of the system.

Consider a coordinate change p = ∂L
∂q̇ , called canonical transform and define the Hamiltonian

H(q, p) = p⊤q̇ −L(q, q̇)

in which q̇ is understood as a function of q and p. Differentiating H w.r.t. q and p, we get

∂H

∂q
= ∂q̇

∂q
p − ∂L

∂q
− ∂q̇

∂q

∂L

∂q̇
=−∂L

∂q
=− d

d t

∂L

∂q̇
=−ṗ

and
∂H

∂p
= q̇ + ∂q̇

∂p
p − ∂q̇

∂p

∂L

∂q̇
= q̇ .

Thus along the system, we obtain again the Hamiltonian equation (c.f. (1.46))

q̇ = ∂H

∂p
(q, p)

ṗ =−∂H

∂q
(q, p)

(2.4)

Notice that for mechanical systems, the Hamiltonian H is simply E = 1
2 q̇⊤M(q)q̇+V (q), i.e., the total

mechanical energy of the system, which we have shown to be a constant. The Hamiltonian equation (2.4)

is another justification of this fact.

The canonical transform p = ∂L
∂q̇ and the definition of Hamiltonian seem a bit mysterious. It has an

interesting interpretation by the so called Legendre transform. Given a function f :Rn →R, the Legendre

transform of f is a mapping f 7→ f ∗ defined by

f ∗(x∗) = sup
x

{x⊤x∗− f (x)}.

Replace f (x) by L(q, q̇) by viewing q̇ as the independent variable while keeping q constant, we get

L∗(q, p) = sup
q̇

{p⊤q̇ −L(q, q̇)}.

The supremum in the above formula is achieved at the point such that p = ∂L
∂q̇ , which is the canonical

transform. Thus we see H = L∗. Recall that the Legendre transform is involutive when f is convex. It

follows that L = H∗ if L is convex in q̇ , which is true for mechanical systems.

2.1.2 Euler-Lagrangian equation

In this section, we use the Euler-Lagrangian equation to solve some classical problems in calculus of

variation.
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Brachistochrone problem

The most well-known example in calculus of variation is probably the problem of Brachistochrone (prob-

lem of minimal time) which is stated as follows. Consider a bead which slides down a frictionless wire

that connects two fixed points under the influence of gravity. The wire is kept in the vertical plane con-

taining the two endpoints. The objective is find the optimal shape of the wire such that the travel time is

minimal. Due to the conservation of energy

1

2
mv2 = mg y

thus ẋ = vx =
p

g yp
1+(y ′)2

and the travel time is

∫ a

0

√
1+ (y ′(x))2

g y(x)
dx

Thus the the Lagrangian for this problem is L(y, y ′) =
√

1+(y ′)2

g y and the Lagrangian equation reads

d

d x

(
y ′√

g y(1+ (y ′)2

)
=−1

2

√
1+ (y ′)2

g y3

or

2y y ′′+ (y ′)2 +1 = 0

after simplification.

Riemannian geodesic

Remember that in Euclidean spaces, the length of a piecewise smooth curve γ : [0,1] →Rn is the integral

A (γ) =
∫ 1

0
|γ′(s)|ds

and the distance between two fixed points is defined as the minimum of ℓ(γ) when γ runs over all piece-

wise smooth curves. The curve that minimizes the length between the two points is called the geodesic

(may not be unique) between the them.

To measure distance on a curved space, e.g., sphere, torus, we follow the same spirit. More precisely,

the distance between two points is the minimum length of curves joining the two points. The only issue is

how to define |γ′(s)|, i.e., the norm of the velocity vector of the curve. In Riemannian geometry, the norm

of the velocity is defined as the square root of an inner product |γ′(s)| =
√〈

γ′(s),γ′(s)
〉

. For example,

on a Euclidean space, define a smooth positive definite function G : Rn → Rn×n , and claim that |γ′(s)| =√
γ′(s)⊤G(γ(s))γ′(s). The function G is called a Riemannian metric on the space Rn . The very case G(x) ≡

I corresponds to the standard Euclidean metric. Let us derive the Euler-Lagrangian equation for the

geodesic.

Fix two points x, y ∈ Rn and a smooth (for simplicity, we remove the generality of piecewise smooth-

ness) curve γ : [0,1] →Rn joining x and y , i.e., γ(0) = x, γ(1) = y . We are to minimize the action

A (γ) =
∫ 1

0
L(γ(s),γ′(s))ds
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where L(q, q̇) = |q̇ | =
√

q̇⊤G(q)q̇ =
√∑n

i , j=1 gi j (q)q̇i q̇ j . Let τ(t ) = ∫ t
0 L(γ(s),γ′(s))ds, then dτ

d t = L. This

transform will largely simplify our calculation. We calculate (using Einstein summation notation):

∂L

∂qk
= 1

2L

∂gi j

∂qk

d qi

d t

d q j

d t
= L

2

∂gi j

∂qk

d qi

dτ

d q j

dτ

and
∂L

∂q̇k
= 1

L
gi k

d qi

d t
= gi k

d qi

dτ
,

then

d

d t

∂L

∂q̇k
= L

d

dτ

(
gi k

d qi

dτ

)
= L

(
1

2

∂gi k

∂q j

d q j

dτ

d qi

dτ
+ 1

2

∂gk j

∂qi

d qi

dτ

d q j

dτ
+ gi k

d 2qi

dτ2

)
Combining those equations, we get

d 2qk

dτ2 +Γk
i j

d qi

dτ

d q j

dτ
= 0

in which

Γk
i j =

1

2
g kr

(
∂gi r

∂q j
+ ∂gr j

∂qi
− ∂gi j

∂qr

)
.

The coefficients Γk
i j are called the Christoffel symbols.

If G is constant everywhere, then Γk
i j = 0, thus geodesics are straight lines. Let us consider a non-

trivial example.

Example 2.1 (Poincaré half upper plane model ). Consider the upper half plane {(x, y) ∈ R2 : y > 0} with

the Riemannian metric

G =
 1

y2 0

0 1
y2

 .

There are only four non-zero Christoffel symbols, i.e., Γ1
12 = Γ1

21 = − 1
y , Γ2

11 = 1
y , Γ2

22 = − 1
y . Thus the

geodesic equation reads

ẍ − 2

y
ẋ ẏ = 0

ÿ + 1

y
(ẋ2 − ẏ2) = 0

from which one can verify that ẋ = ay2 and ẋ2+ ẏ2 = by2 for some constants a,b > 0. Then
(

d y
d x

)2 =
(

ẏ
ẋ

)2 =
by2−a2 y4

a2 y4 = b
a2 y2 −1. Therefore (x − c)2 + y2 = b/a2 for some c. That is, geodesics are parts of half circles.

Multi-dimension EL equation and minimal surface problem

Although we derived the Euler-Lagrangian equation under the assumption that the action is an integra-

tion over a scalar variable, it is straightforward to extend to multi-dimensional variable. In that case, the

Euler-Lagrangian equation will naturally become partial differential equations.

Instead of considering the general case, we study a specific problem, i.e., the well-known minimal

surface problem. Consider a surface D ∋ (x, y) 7→ (x, y,u(x, y)) ∈R3, whose surface is calculated as

A (u) =
∫

D

√
1+u2

x +u2
y dxdy
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with boundary condition u = g on ∂D .

For any smooth function ψ ∈C∞
c (D), uϵ = u +ϵψ forms a variation of u. Now

A (uϵ) =
∫

D

√
1+ (ux +ϵψx )2 + (uy +ϵψy )2)dxdy

and
d

dϵ
A (uϵ)ϵ=0 =

∫
D

uxψx +uyψy√
1+u2

x +u2
y

dxdy = 0

Integrating by parts and noticing that ψ has compact support in D , we get

∫
D

uxψx +uyψy√
1+u2

x +u2
y

dxdy =−
∫

D
ψ

 d

d x

 ux√
1+u2

x +u2
y

+ d

d y

 uy√
1+u2

x +u2
y


dxdy

=−
∫

D
ψ

uxx (1+u2
y )−2ux uy ux y +uy y (1+u2

x )

(1+u2
x +u2

y )3/2
dxdy = 0

Invoking again the fundamental lemma, we arrive at the Euler-Lagrangian equation

uxx (1+u2
y )−2ux uy ux y +uy y (1+u2

x ) = 0. (2.5)

which is a second-order partial differential equation.

This equation (2.5) turns out to have many solutions.

Exercise. Derive the general Euler-Lagrangian equation in multi-dimension.

2.1.3 Other conditions

Legendre necessary condition

For a smooth function f : U ⊆ Rn → R, where U is open, if f has a local minimum at a point x∗, then f

must satisfy two necessary conditions, i.e., the first order condition

D f (x∗) = 0 (2.6)

and the second order condition.

D2 f (x∗) ≥ 0 (2.7)

The Euler-Lagrangian equation is a first order condition similar to (2.6). Here we introduce another

necessary condition, namely, Legendre necessary condition, which is a reminiscent of the second order

condition (2.7).

To derive this condition, let us first calculate the second-order variation along an optimal solution.

Consider again the action (2.1) and suppose that q(·) is an optimal solution and y ∈C∞
c (0,T ). Then

∂2

∂ϵ2

∣∣∣∣
ϵ=0

∫ T

0
L(q(t )+ϵy(t ), q̇(t )+ϵẏ(t ))dt

=
∫ T

0
y⊤(Dqq L)y + ẏ⊤(Dqq̇ L)y + y⊤(D q̇q L)ẏ + ẏ⊤(D q̇ q̇ L)ẏdt

=
∫ T

0

[
y⊤

(
Dqq L− d

d t
(Dqq̇ L)

)
y + ẏ⊤(D q̇ q̇ L)ẏ

]
dt
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which should be non-negative. We assert that D q̇ q̇ L(q, q̇) must be semi-positive definite, i.e.,

D q̇ q̇ L(q, q̇) ≥ 0 (2.8)

along the optimal solution (q, q̇). To see this, it is sufficient to note that there exist functions with small

magnitude but with rather large derivatives; the converse is false, thus it may happen that Dqq L− d
d t Dqq̇ L

is non semi-positive definite (it is not even symmetric!).

Sufficient condition

When the optimal solution exists and is continuously differentiable, it necessarily satisfies the Euler-

Lagrangian equation. On the other hand, the solutions to the Euler-Lagrangian equation may be mini-

mizing, maximizing or neither. One good example to illustrate this is the geodesic problem on a sphere

S2 ⊆ Rn . For any two points x ̸= −y on the sphere, there exist exactly two geodesics joining them, both

satisfying the Euler-Lagrangian equation, but only one of them is minimizing – the one that does not

contain two antipodal points. When the two points are exactly antipodal, then there are infinitely many

geodesics joining them and all of them have the same length. In conclusion, a geodesic on the sphere is

strictly minimizing if and only if the geodesic does not contain two antipodal points. It turns out that this

is a general phenomenon and antipodal points on the sphere are a special case of a more general notion:

conjugate points.

Proposition 2.1. If [a,b] ∋ t 7→ (q(t ), q̇(t )) is a C 1 solution to the Euler-Lagrangian equation and D q̇ q̇ L >
0 along the solution, then q(·) is a strict minimum of the action restricted to [a,b] if [a,b] contains no

conjugate points of a.

We are not going to give the precise definition of conjugate points nor are we going to prove the above

result. After all, analyzing conjugate points is a daunting task and is out of the scope of this course. It is

enough to remember the sphere example to be aware of such phenomenon.

2.1.4 Optimal control via calculus of variation

In Chapter 1, we studied optimal control using dynamic programming. In this subsection, we use a

primary example to show how calculus of variation can be used to study optimal control. For that, we

consider the system

ẋ = f (x,u)

with fixed initial condition x0 and cost function

J =ϕ(x(T ))+
∫ T

0
L(x(t ),u(t ))dt .

We impose no constraints on the input u. Fix a control u∗(·) and corresponding trajectory x∗(·). Let us

construct a one-parameter family of variations of u∗(·). Let v(·) be another control input and consider

uϵ = u∗+ϵv . Then, we need to calculate J (uϵ). Denote by xϵ the trajectory of the system under the control

uϵ, i.e., ẋϵ = f (xϵ,uϵ). Then

J (uϵ) =ϕ(xϵ(T ))+
∫ T

0
L(xϵ(t ),uϵ(t )dt
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To find the first-order necessary condition, we may differentiate J (uϵ) directly by brutal force, see the

footnote1. But here we use a little trick to reduce our computational work.

Define a function H(x,u, p) = p⊤ f (x,u)−L(x,u) (the Hamiltonian!), and fix a C 1 curve t 7→ p(t ), then

J (uϵ) =ϕ(xϵ(T ))+
∫ T

0
L(xϵ,uϵ)dt

=ϕ(xϵ(T ))+
∫ T

0
p⊤(t ) f (xϵ,uϵ)−H(xϵ,uϵ, p)dt

=ϕ(xϵ(T ))+
∫ T

0
p(t )⊤dxϵ(t )−H(xϵ,uϵ, p)dt

1For notational ease, write X (t ) := X (x∗(t ),u∗(t )) where X can be L, ∂L
∂x , ∂L

∂u and so on. Now since

∂J (uϵ)

∂ϵ

∣∣∣∣
0
= ∂ϕ(x∗(T ))

∂x

∂xϵ(T )

∂ϵ

∣∣∣∣
0
+

∫ T

0

(
∂L(t )

∂x

∂xϵ(t )

∂ϵ

∣∣∣∣
0
+ ∂L(t )

∂u
v(t )

)
dt

we are led to calculate ∂xϵ(t )
∂ϵ

. Differentiate the relation ẋϵ = f (xϵ,uϵ) w.r.t. ϵ, we get

d

d t

∂xϵ
∂ϵ

= ∂ f

∂x

∂xϵ
∂ϵ

+ ∂ f

∂u
v

Thus ∂xϵ(t )
∂ϵ

satisfies the ODE: ż = ∂ f
∂x z + ∂ f

∂u v with zero initial condition, from which it follows that ∂xϵ(t )
∂ϵ

= ∫ t
0 Φ(t , s)

∂ f (s)
∂u v(s)ds in

which Φ(t , s) is the state transition matrix of ż = ∂ f
∂x (t )z. Thus

∂J (uϵ)

∂ϵ

∣∣∣∣
0
=

∫ T

0

∂ϕ(x∗(T ))

∂x
Φ(T, t )

∂ f (t )

∂u
v(t )dt

+
∫ T

0

[
∂L(t )

∂x

∫ t

0
Φ(t , s)

∂ f (s)

∂u
v(s)ds + ∂L(t )

∂u
v(t )

]
dt

=
∫ T

0

{(
∂ϕ(x∗(T ))

∂x
Φ(T, t )+

∫ T

t

∂L(s)

∂x
Φ(s, t )ds

)
∂ f (t )

∂u
+ ∂L(t )

∂u

}
v(t )dt

where we have applied Fubini’s theorem to the last line:∫ T

0

∂L(t )

∂x

∫ t

0
Φ(t , s)

∂ f (s)

∂u
v(s)dsdt =

∫ T

0

[(∫ T

t

∂L(s)

∂x
Φ(s, t )ds

)
∂ f (t )

∂u

]
v(t )dt .

Invoking the fundamental lemma, we conclude that(
∂ϕ(x∗(T ))

∂x
Φ(T, t )+

∫ T

t

∂L(s)

∂x
Φ(s, t )ds

)
∂ f (t )

∂u
+ ∂L(t )

∂u
= 0 (2.9)

for all t ≥ 0. Denote

−p(t ) = ∂ϕ(x∗(T ))

∂x
Φ(T, t )+

∫ T

t

∂L(s)

∂x
Φ(s, t )ds

then it is obvious that p (a row vector) satisfies the ODE

ṗ =−p
∂ f

∂x
+ ∂L

∂x

with terminal condition p(T ) =− ∂ϕ(x∗(T ))
∂x . The equation (2.9) now reads

p
∂ f

∂u
− ∂L

∂u
= 0 (2.10)

along the system

ẋ = f

ṗ =−p
∂ f

∂x
+ ∂L

∂x

This equation is obviously the Hamiltonian equation if we define H(x,u, p) = p f (x,u)−L(x,u). The stationary condition (2.10)

reads ∂H
∂u = 0.
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Denote ηϵ(t ) := ∂xϵ(t )
∂ϵ , then it is readily calculated

∂J (uϵ)

∂ϵ
=ϕx (xϵ(T ))ηϵ(T )+

∫ T

0
(p(t )⊤dηϵ(t )−H⊤

x ηϵ(t )−H⊤
u v)dt

=ϕx (xϵ(T ))ηϵ(T )+p(T )⊤ηϵ(T )−
∫ T

0
(ṗ(t )⊤+H⊤

x )ηϵ(t )+H⊤
u vdt . (2.11)

Let p be such that ṗ = −H⊤
x with terminal condition p(T ) = −ϕ⊤

x (x(T )), the above evaluating at ϵ = 0

results in

∂J (uϵ)

∂ϵ

∣∣∣∣
ϵ=0

=−
∫ T

0
H⊤

u vdt

but then this implies H⊤
u ≡ 0 if ∂J (uϵ)

∂ϵ |ϵ=0 = 0 since v is arbitrary. To conclude, we have the following

proposition:

Proposition 2.2. Consider the system ẋ = f (x,u), x(0) = x0 fixed, with the cost J =ϕ(x(T ))+∫ T
0 L(x(t ),u(t ))dt ,

where f , ϕ and L are C 1 functions and u ∈ Rm is constraint free. Define H(x,u, p) = p⊤ f (x,u)−L(x,u).

Then along the optimal process (x∗(·),u∗(·)), there hold

1) the Hamiltonian equation  ẋ = H⊤
p

ṗ =−H⊤
x

(2.12)

with initial and terminal conditions x(0) = x0, p(T ) =−ϕx (x∗(T )) and

2) the stationary condition

Hu = 0. (2.13)

To derive a Legendre type second order necessary condition, we continue calculation based on (2.11):

∂2 J (uϵ)

∂ϵ2 = ηϵ(T )⊤ϕxxηϵ(T )+ [ϕx (xϵ(T ))+p(T )⊤]η′ϵ(t )

−
∫ T

0
(ṗ(t )⊤+H⊤

x )η′ϵ(t )dt −
∫ T

0

[
ηϵ(t )

v

]⊤[
Hxx Hxu

Hux Huu

][
ηϵ(t )

v

]
dt

evaluating at ϵ= 0, we get

∂2 J (uϵ)

∂ϵ2

∣∣∣∣
ϵ=0

= η0(T )⊤ϕxxη0(T )−
∫ T

0

[
η0(t )

v

]⊤[
Hxx Hxu

Hux Huu

][
η0(t )

v

]
dt

Using similar argument as in deriving the Legendre necessary condition, we can conclude that Huu ≤ 0

in order to guarantee ∂2 J (uϵ)
∂ϵ2

∣∣∣
ϵ=0

≥ 0. (Remember η̇0 = ∂ f
∂x η0 + ∂ f

∂u v , then v 7→ η0 can be seen as a low pass

filter. If we choose v as some spiking signals, then the output η0 will be kept relatively small. Thus the

integrand in the above equation is indeed dominated by v⊤Huu v).

Now the first and second conditions Hu = 0 and Huu ≤ 0 together seem to imply that along the op-

timal solution at each time instant, u should maximize H(x(t ),u, p(t )). This conjecture turns out to be

correct; indeed it is the essential part of the celebrated maximum principle, whose proof is far from ob-

vious. Our main objective in the next section is to prove this result.
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Limitations of calculus of variation

In deriving the first and second order necessary condition. We have assumed that the variation can be

arbitrary. This is a very restricted assumption. In practice, the admissible control set is often constrained,

e.g., |u| ≤ 1. In this case, when u is at the boundary, say u ≡ 1, the variation cannot be arbitrary.

Another assumption we have imposed is the smoothness of the function f and L. It is quite often

the case that L is not differentiable. Thus we cannot talk about Hx , Huu etc. It turns out to prove the

maximum principle, it is indispensable to develop some non-smooth techniques. What lies in the heart

of these techniques is the so-called tent method.

2.2 The maximum principle

Consider the system model

ẋ = f (x,u), (2.14)

with initial condition x(0) = x0 and cost function

J (u) =ϕ(x(t f ))+
∫ t f

0
L(x(t ),u(t ))dt (2.15)

where ϕ, L are continuously continuously differentiable in x and ϕ≥ 0, L ≥ 0. The terminal time instant

t f can be either free or fixed. The control input u(t ) ∈Ut ⊆ Rm for every t ≥ 0. The objective is to find u

which drives the initial state to a target set S ⊆Rn with the minimum cost.

2.2.1 Statements of the maximum principle

Proposition 2.3. Consider the system (2.14) with cost function (2.15). Let (x∗(·),u∗(·)) be the optimal

process and define the Hamiltonian function H(x,u, p, p0) = p⊤ f (x,u)− p0L(x,u). Then there exists a

function p∗ : [0, t f ] →Rn and a constant p∗
0 ≤ 0, satisfying (p∗

0 , p∗(t )) ̸≡ (0,0) such that

1) (x∗(·), p∗(·)) satisfies the canonical equation

ẋ = Hp

ṗ =−Hx

with initial condition x∗(0) = x0. The second equation is called the costate equation, and p is the costate.

2) The transversality condition holds:

p∗(t f )+ϕ⊤
x (x(t f )) ⊥ S

3) The maximum principle holds:

H(x∗(t ),u∗(t ), p∗(t ), p∗
0 ) = max

u∈Ut
H(x∗(t ),u, p∗(t ), p∗

0 ) = constant (2.16)

for all t ∈ [0, t f ]. This constant is zero if t f is free.

� Although the optimal control problem seeks for a minimizing control, equation (2.16) says that the

optimal control should maximize the Hamiltonian function, thus the name maximum principle.
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The following observations are in order:

1) Unlike the dynamic programming method, there is no partial differential equation to solve. Only

ordinary differential equations, i.e., the Hamiltonian equation are present.

2) There is no smoothness assumption on f (x,u), L(x,u) as functions of u. This allows the maximum

principle extremely useful for applications.

3) The first-order and second-order necessary conditions are replaced by the elegant maximum prin-

ciple (2.16) which is only a finite dimensional maximization of a scalar function.

4) For the transversality condition, when S = Rn , it reduces to p∗(t f ) = −ϕ⊤
x (x(t f )). When S is a sin-

gleton, i.e., x(t f ) is fixed, then there is no information about p∗(t f ) (note also that in this case it suffices

to consider cost J = ∫ t f

0 L(x,u)dt ). When S is described by constraint S = {x :ψ(x) = 0} for some smooth,

constant rank (on S) mapping ψ, then the transverse condition can be expressed as

p∗(t f )+ϕ⊤
x (x(t f )) ⊥ kerDψ

or equivalently

p∗(t f )+ϕ⊤
x (x(t f )) ∈ Im(Dψ)⊤.

To see how to apply the maximum principle, we study some examples in next subsection.

2.2.2 Some examples

Dido’s problem, t f free, x(t f ) ∈ S

Suppose we have a string with fixed length. One end of the string is fixed at the origin, the other end point

is to be placed somewhere on the x-axis. The task is to find the optimal shape which maximizes the area

encircled by the string and the x-axis. See figure 2.1.

𝑐𝑐

𝑥𝑥

𝑦𝑦

Figure 2.1: Dido’s problem

Assume that the curve lies in the upper half plance (otherwise reduce to this case by reflection and

translation). Let the curve be parameterized by c : [0, t f ] → R2. Assume that the curve is continuously

differentiable with respect to the parametrization. The the length of the curve is

ℓ(c) =
∫

c
ds =

∫ t f

0

√
ẋ2 + ẏ2dt .
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Let D be the set enclosed by c and the x-axis. Then the area of the set D is Φ(c) = ∫
D dx ∧d y . Define

α= 1
2 (xdy − ydx), then dx ∧dy = dα. Notice that α= 0 along the x-axis, thus by Stoke’s theorem

Φ(c) =
∫

c
α.

Now we reformulate the problem a bit. Instead of maximize Φ(c) while fixing ℓ(c), we may consider

minimizing ℓ(c) while fixing Φ(c), since the form of ℓ(c) seems more suitable for applying maximum

principle. Introduce the dynamics

ẋ = u1

ẏ = u2

then the cost becomes

ℓ(c) =
∫ t f

0

√
u2

1 +u2
2dt (2.17)

under the constraint Φ(c) = constant. W.l.o.g., assume Φ(c) = 1. To cope with this integration constraint,

we use a small trick. Introduce another state z, satisfying ż = 1
2 (−yu1+xu2) with initial condition z(0) = 0.

To see the reason behind this, we integrate the dynamics of z:

z(t f ) =
∫ t f

0

1

2
(−y ẋ +x ẏ)dt

=
∫ t f

0

1

2
(−ydx +xdy)

=
∫

c
α.

Thus the problem has been shifted into the following form

ẋ = u1

ẏ = u2

ż = 1

2
(−yu1 +xu2)

with initial condition (x(0), y(0), z(0)) = (0,0,0) and terminal condition x(t f ) > 0, y(t f ) = 0, z(t f ) = 1. This

system is also known as the Heisenberg system. The objective is to find (u1,u2) that minimizes the cost

(2.17).

Assume p0 ̸= 0. The Hamiltonian is H = p1u1 + p2u2 + 1
2 p3(−yu1 + xu2)−

√
u2

1 +u2
2. The costate

equation is

ṗ1 =−1

2
p3u2 =−1

2
p3 ẏ

ṗ2 = 1

2
p3u1 = 1

2
p3ẋ

ṗ3 = 0

with p1(t f ) = 0 since S = {x(t f ) > 0, y(t f ) = 0, z(t f ) = 1}. Integrating the costate equation, we get: p3 is a

nonzero constant, p1(t ) =− 1
2 p3 y(t ) (recall that y(t f ) = 0), and p2(t ) = p2(0)+ 1

2 p3x(t ).
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To maximize H , it suffices to find ∂H
∂u , which gives

p1 − 1

2
p3 y = u1√

u2
1 +u2

2

,

p2 + 1

2
p3x = u2√

u2
1 +u2

2

.

Note that this also implies

(x + p2(0)

p3
)2 + y2 = 1

p2
3

.

Thus the optimal shape is a half circle with center (− p2(0)
p3

,0) and radius − p2(0)
p3

. Since the area of the circle

is 1, it follows that − p2(0)
p3

=
√

1
π . Thus p3 =±pπ and p2(0) =∓1.

Exercise 2.1. Find the explicit form of u1 and u2 (may not unique).

Planar elastic rod

See [7], [14].

Swtiching system

[12].

Moon lander, t f free, x(t f ) fixed

Suppose that we are to land a lunar rover on the moon. The dynamics of this model is described by

ÿ =−g +u

where y is the height of the lander, g ≥ 0 the gravitational acceleration, and u the trust, which can be up

or down and is bounded |u| ≤ 1, and 0 < g < 1 Note that here we assume the mass of the lander is 1 (fuel

loss is neglected). The initial height of the lander is y(0) = h and initial velocity ẏ(0) = v < 0. In order

the problem to be feasible, assume h is sufficiently large, otherwise the lander may never be able to land

with zero velocity.

Find an optimal control law which minimizes the fuel consumption

J =
∫ t f

0
|u|dt

with t f free, and which drives the system to the final state y(t1) = ẏ(t f ) = 0.

Rewrite the system model as

ẋ1 = x2

ẋ2 =−g +u

with initial and terminal conditions (x1(0), x2(0) = (h, v), (x1(t f ), x2(t f )) = (0,0). The Hamiltonian is

H(x,u, p) = p1x2 +p2(−g +u)+p0|u|, and the costate equation

ṗ1 = 0

ṗ2 =−p1
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Then p1(t ) = c1 and p2(t ) =−c1t +c2 for some constants c1 and c2. Since there the terminal state is fixed,

for the moment we don’t know the terminal condition of the costate equation.

First we need to exclude abnormal extremal – left as an exercise. Henceforth let p0 =−1. In this case,

u∗(t ) =


−1, p2 <−1

0, −1 ≤ p2 < 1

1, p2 ≥ 1

Note that when x1 is near zero, u must be positive, i.e., it must be in the phase p2 = −c1t + c2 ≥ 1, for

all t near t f . This implies c1 < 0 (check c1 = 0 is not possible). On the other hand, since t f is free,

H(x∗(t ),u∗(t ), p∗(t )) ≡ 0. In particular, (−c1t f + c2)(−g + 1)− 1 = 0, from which we can solve for t f =
1/(1−g )−c2

−c1
. Thus c2 < 1

1−g .

If 1 ≤ c2 < 1
1−g , then u∗ ≡ 1, then h = v2

2(1−g ) , a contradiction since h is sufficiently large.

If c2 <−1, then there will be two switches: t1 = 1+c2
c1

, t2 = c2−1
c1

, and

u∗(t ) =


−1, 0 ≤ t ≤ t1

0, t1 < t ≤ t2

1, t2 < t ≤ t f

.

Using x2(t f ) = 0, we can obtain the equality

v + (−g −1)t1 − g (t2 − t1)+ (1− g )(t f − t2) = 0,

from which we can solve for c2 = c1v−1
1+g >−1 since v < 0 as assumed, a contradiction.

Thus −1 ≤ c2 < 1, and there is only one switch at ts = c2−1
c1

. The corresponding optimal control is

u∗(t ) =
0, 0 < t ≤ ts

1, ts < t ≤ t f

.

To find ts , use the terminal condition x1(0) = x2(0) = 0:

v − g ts + (1− g )(t f − ts ) = 0

v ts − 1

2
g t 2

s +
1

2
(1− g )(t f − ts )2 = h

from which we find solve for ts , t f and then c1,c2 (exercise). See Figure 2.2.
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height

velocity < 0 

free fall: 𝑢𝑢 = 0

𝑢𝑢 = 1

Figure 2.2: Moon lander

Insect control, t f fixed, x(t f ) free

Let w(t ) and r (t ) denote, respectively, the worker and reproductive population levels in a colony of in-

sects, e.g. wasps. At any time t , 0 ≤ t ≤ T in the season the colony can devote a fraction u(t ) of its effort

to enlarging the worker force and the remaining fraction u(t ) to producing reproductives. The per capita

mortality rate of workers is µ and the per capita natality rate is b when full effort is put on the worker

population. Assume µ< b. The two populations are governed by the equations

ẇ = (bu −µ)w

ṙ = c(1−u)w

with (w(0),r (0) = (1,0), where u satisfies the constraint 0 ≤ u(t ) ≤ 1. The objective is to maximize r (T ) or

minimize

J =−r (T ).

Since L = 0, the Hamiltonian for this problem is H = p1(bu−µ)w+p2c(1−u)w . The costate equation

ṗ1 = p1(bu −µ)+p2c(1−u)

ṗ2 = 0

with terminal condition p1(T ) = 0, p2(T ) = 1. Thus p2(t ) ≡ 1 and

H = (p1b − c)wu + (c −p1µ)w.

Since w > 0 for all t ≥ 0, the optimal control law is

u(t ) =
1, p1(t )b ≥ c

0, p1(t )b < c
.

Since p1(T ) = 0, then near T , u should be taken as 0. Moving backward, assume ts is the first time

instance that p1(ts )b = c. Then on [ts ,T ],

ṗ1 =−µp1 + c
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which results in

p1(t ) = e−µ(t−ts )p1(ts )+ c

µ
(1−eµ(ts−t )) = c

b
e−µ(t−ts ) + c

µ
(1−eµ(ts−t ))

at t = T ,

0 = 1

b
e−µ(T−ts ) + 1

µ
(1−e−µ(T−ts ))

from which it follows that

ts = T − 1

µ
ln

(
1− µ

b

)
.

Continuing moving backward, the costate equation becomes

ṗ1 = p1(b −µ)

with terminal condition p1(ts ) = c
b > 0. Thus p1 increases as t decreases. Hence

u∗(t ) =
1, 0 ≤ t < ts

0, ts ≤ t ≤ T
.

2.2.3 Time optimal control

Time optimal control is an important problem in engineering, which seeks for the optimal control that

renders the system from current state to the target in minimal time under given constraints. The cost

function for time optimal control is

J = t f =
∫ t f

0
1dt .

Thus this is an optimal control problem with free t f and x(t f ) ∈ S. In this subsection, we focus on the

case when S is a singleton. The general case is essentially similar.

It is clear that the problem described above is closely related to the problem of stabilization. Loosely

speaking, the system is stabilizable (to the target) if and only if min J <∞.

In this subsection, we focus on affine control systems:

ẋ = f (x)+ g (x)u

where u ∈Rm . The constraint for u is |ui | ≤ 1 for all i = 1, · · ·m. The Hamiltonian for the system is

H = p⊤( f (x)+ g (x)u)+p0

and the costate equation is

ṗ =−( f ⊤
x +

m∑
i=1

ui g⊤
i x )p.

Recall that |ui | ≤ 1, then the optimal control should has the following form:

u∗
i (t ) =


1, p⊤(t )gi (x∗(t )) > 0

−1, p⊤(t )gi (x∗(t )) < 0

? p⊤(t )gi (x∗(t )) = 0

.

Thus typically, the optimal control switches between 1 and −1, except at those time instants such that

p⊤(t )gi (x∗(t )) = 0. Such control is named bang-bang control (a control whose components are either 1
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Figure 2.3: Normal control and singular control

or −1). If the function γ(t ) = p⊤(t )gi (x∗(t )) has only finite zeros, we say that the system is normal. If γ is

zero on some interval [t1, t2], then the optimal control on [t1, t2] is called singular, and the corresponding

trajectory x∗|[t1,t2] is called a singular arc.

Example 2.2 (Double integrator, normal system). Consider a double integrator

ẋ1 = x2

ẋ2 = u

with unknown initial condition (ξ,η). The objective is to drive the initial condition to the origin x(0) =
(0,0) in minimal time under the constraint |u| ≤ 1. The Hamiltonian is H = p1x2 +p2u +p0. The costate

equation reads

ṗ1 = 0

ṗ2 =−p1

Thus p1 = c1, p2 =−c1t + c2 for some constants c1 and c2. Thus the input u switches at most once at ts ,

when −c1ts + c2 = 0. Singular control exists only if c1 = c2 = 0, which is not possible. Thus the optimal

control with switch should have the following form

u∗(t ) =
−1, −c1t + c2 < 0

1, −c1t + c2 > 0

If c1 < 0, then c2 < 0 and u∗|[0,ts ] =−1 and u∗|(ts ,t f ) = 1. Under this control, we can calculate

x2(t ) = t − t f

x1(t ) = 1

2
(t − t f )2

for t ∈ (ts , t f ] and

x2(t ) = η− t

x1(t ) = ξ+ηt − 1

2
t 2
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for t ∈ [0, ts ]. By continuity of the state trajectory, we know

η− ts = ts − t f

ξ+ηts − 1

2
t 2

s = 1

2
(ts − t f )2

from which we can solve for ts = η+
√
ξ+ 1

2η
2, t f = η+2

√
ξ+ 1

2η
2 provided that ξ+ 1

2η
2 > 0, η+

√
ξ+ 1

2η
2 >

0, or

ξ+ 1

2
η2 > 0, if η> 0

ξ− 1

2
η2 > 0, if η≤ 0

and

c1 = −1√
ξ+ 1

2η
2

, c2 =−

1+ η√
ξ+ 1

2η
2


(here p0 ̸= 0 otherwise c1 = c2 = 0). The situation for c1 > 0 can be discussed in the same fashion.

𝑢𝑢 = −1

𝑢𝑢 = 1

𝑥𝑥1

𝑥𝑥2

𝑢𝑢 = 1

Figure 2.4: Minimal time double integrator

Exercise 2.2. Finish the case for c1 > 0.

Example 2.3 (Singular control). Consider the time optimal control of the system

ẋ1 = x2
2 −1

ẋ2 = u

with initial condition x = (1,0) and target x(t f ) = (0,0), u ∈ [−1,1]. We argue that the unique optimal

control is u∗(t ) ≡ 0. Indeed, when u∗ ≡ 0, x1 decreases to 0 in time 1, while keeping x2(t ) ≡ 0. If u is not

zero, then the decay of x1 should be slower and the time to go to 0 is longer. Thus we have a singular

control u∗ ≡ 0 on [0,1].
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Singular optimal controls are generally hard to compute. It is natural to ask when can we exclude the

existence of singular controls beforehand. To that end, let’s reexamine the singularity condition

γi (t ) = p⊤(t )gi (x∗(t )) = 0, ∀t ∈ [t1, t2]. (2.18)

For simplicity, consider single input system, i.e., m = 1 and gi = g . Differentiate γi (t ) again,

γ̇i = ṗ⊤g +p⊤ ġ

=−p⊤( fx +ugx )g +p⊤gx ( f +ug )

= p⊤(gx f − fx g )

= p⊤[ f , g ]

Denote adi ( f )(g ) := [adi−1( f ), g ] and ad1( f )(g ) = [ f , g ], then it is easily seen that

d kγi

d t k
= p⊤adk ( f )g .

Now, the singularity condition for single input system would imply

p ⊥ span{ad1( f )g ,ad2( f )g , · · · , }, ∀t ∈ [t1, t2].

Thus a sufficient condition which guarantees no existence of singular control is that the

rank{span{ad1( f )g ,ad2( f )g , · · · , }} = n, ∀x (2.19)

since this implies p = 0, a contradiction.

For single input linear system, the rank condition (2.19) reads

rank{b, Ab, · · · } = n

which is the controllability condition.

� Although for single input LTI systems, controllability is su�cient to exclude singular controls, this

is not true for multi-input LTI systems as we will see in next subsection.

2.2.4 LQR with constraints

In Chapter 1, we studied LQR under several circumstances, all of which didn’t consider input constraints.

In this subsection, we study optimal LQR controller under input constraints.

Stabilization via time optimal control

Consider the LTI system

ẋ = Ax +Bu (2.20)

with initial condition x0. The objective is to find an optimal control u which drives x0 to the origin under

the constraint |ui | ≤ 1 for all i in minimum time. The system is assumed to be controllable.
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Proposition 2.4. Let B = [b1, · · · ,bm] be full rank and assume that the system has no abnormal extremals.

Then the time optimal control problem of the system (2.20) admits no singular arcs if and only if

rank{bi , Abi , · · · , An−1bi } = n, ∀i = 1, · · · ,m. (2.21)

Proof. The Hamiltonian is H = p⊤(Ax+Bu)−1, which is zero along the optimal solution. From previous

subsection, we know that singularity appears when

γi (t ) = p⊤(t )bi = 0, ∀t ∈ [t1, t2]

for some interval [t1, t2]. Notice that the costate equation for the LTI system is

ṗ =−A⊤p

thus d kγi

d t k = (−1)k Ak bi . Thus singular control exists if and only if

p(t ) ⊥ span{bi , · · · , An−1bi }

which is equivalent to saying that either p(t ) ≡ 0 or the rank condition (2.21) holds. But p(t ) ≡ 0 can never

happen since p⊤(Ax +Bu) = 0 along the optimal process and p satisfies a linear system.

We say that the linear system (2.20) is normal if it satisfies the rank condition (2.21). Note that this

requirement is stronger than controllability.

Note that the above results does not imply that non-normal system has no bang-bang optimal con-

troller. In fact, we have the following theoretical result:

Proposition 2.5. Consider the system (2.20) with control |ui | ≤ 1, ∀i . If x0 ∈ Rn is reachable from the

origin, and T > 0 a real number, then there exists a bang-bang control that steers x0 to 0 at time T .

Example 2.4 (Harmonic oscillator). Consider a harmonic oscillator ẍ + x = u whose control is con-

strained in the interval [−1,1]. It is desired to find a control u which drives the system to the origin in

minimal time. Write the system in standard form

ẋ1 = x2

ẋ2 =−x1 +u.

The Hamiltonian is H = p1x2 +p2(−x1 +u)+p0 and the costate equation is

ṗ1 = p2

ṗ2 =−p1

which is again a harmonic oscillator. Thus p2 = r cos(t +α0) for some constants r > 0 and α0 ∈ (−π,π)

and the control input switches exactly once for every π elapsed time. Since u is piece-wise constant,

along the optimal process, d
d t [(x1−u)2+x2

2] = 2(x1−u)ẋ1+2x2ẋ2 = 0, thus (x1−u)2+x2
2 is also piece-wise

constant. These constitute arcs on a circle, whose radius are determined by the initial condition. We can

draw these circles on the plane as in Figure 2.5.
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𝑢𝑢 = 1

𝑢𝑢 = −1

𝑥𝑥1

𝑥𝑥2

1−1

Figure 2.5: The phase plot for u =±1.

Write x1 = u+cosθ and x2 = sinθ and substitute in to the system dynamics, we get θ̇ =−1. Hence the

system trajectories travel clockwise with velocity 1. But to due switches, the state cannot be kept on the

same circle for angle more than π rad.

Let us trace back from t = t f . At the final stage, in order to reach the origin, only two arcs are possible,

see Figure 2.6.
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𝑢𝑢 = 1

𝑢𝑢 = −1

𝑥𝑥1

𝑥𝑥2

1−1

Figure 2.6: The phase plot at the final stage.

To find the previous arc, choose a point A as in Figure 2.7, then draw a line passing through A and

(−1,0). The intersection of this dashed line with the circle determined by A and center (−1,0) is denoted

A′, which lies on the circle (x1 +3)2 + x2
2 = C 2. Thus for all initial states on the arch between A′ and A,

they should flow along the arch and then reach point A and goes to zero following the final stage arc.

Continuing this procedure, we can find the optimal trajectory for all for arbitrary initial condition.

Singular control

Singular optimal control of linear system (2.20) considers minimizing the cost of the following form

J = x(t f )⊤Q f x(t f )+
∫ t f

0
x(t )⊤Qx(t )dt (2.22)

where Q and Q f are symmetric non-negative definite matrices. The control is constrained by |ui | ≤ 1, for

all i = 1, · · ·m.

Note that the cost function (2.22) is different from the standard one in LQR control, where the inte-

grand in the cost is of the form x⊤Qx +u⊤Ru with Q semi-positive definite and R positive definite. In

other words, in the standard LQR problem, the control u is penalized through the term u⊤Ru whereas

in singular control, the control u is penalized by direct constraint |ui | ≤ 1. Note also that here Q is not

required to be semi-positive definite.

For this problem, the Hamiltonian is

H = p⊤(Ax +Bu)−x⊤Qx
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Figure 2.7: The phase plot of the last two stages.

and the costate equation is

ṗ =−A⊤p +Qx

Similar to time optimal control, the optimal control should satisfy

u∗
i (t ) =


−1, p⊤(t )bi < 0

1, p⊤(t )bi > 0

?, p⊤(t )bi = 0

.

thus the optimal policy may be singular. However, different from time optimal control, for singular con-

trol, it is generally more difficult to exclude the existence of singular controls.

Example 2.5. Consider the system

ẋ = u

with initial condition x(0) = 1 and cost function

J = 1

2

∫ 2

0
x(t )2dt

Find an optimal control u which drives the system to x(2) = 0 under the constraint |u| ≤ 1.

The Hamiltonian is H = pu+ 1
2 p0x2. The costate equation is ṗ = p0x. If p0 = 0, then p must a nonzero

constant. Thus u is either 1 or −1 on the interval [0,2], but in either case the control cannot bring x(0) to

the origin. Thus assume p0 =−1. Applying maximum principle yields

u∗(t ) =


1, p(t ) > 0

−1, p(t ) < 0

?, p(t ) = 0

59



Thus when at the time instant when p(t ) = 0, the maximum principle provides no information about the

optimal control u∗(t ).

𝑡𝑡

𝑥𝑥(𝑡𝑡)

𝑢𝑢(𝑡𝑡)

1

−1

1 2

𝑝𝑝(𝑡𝑡)
0.5

Figure 2.8: Singular control

When p(t ) < 0, ẋ =−1, then

ẋ =−1,

ṗ =−x.

Suppose that the first switch happens at ts . There are two possible cases.

Case 1: p(t ) < 0 on [0, ts ] with p(ts ) = 0. Then

x(t ) = 1− t

p(t ) = p(0)− t + 1

2
t 2

for t ∈ [0, ts ]. Suppose that [ts , tr ] is a singular arch, i.e., p(t ) ≡ 0 for t ∈ [ts , t f ]. Thus x =−ṗ ≡ 0 and u∗ = 0

on [ts , t f ]. In particular, 1− ts = 0 and p(0)− ts + 1
2 t 2

s = 0, which yields ts = 1, p(0) = 1
2 , and x(1) = 0.

Case 2: p(t ) > 0 on [0, ts ] with p(ts ) = 0. One can they verify that ts =−1, a contradiction.

To conclude, the first switch happens at ts = 1, and p(t ) < 0 on [0,1] while p(1) = 0. Obviously, for the

rest of the time t ∈ (1,2], no control should be added, i.e., u∗(t ) = 0 for t ∈ (1,2]. Thus x∗|(1,2] is a singular

arc with singular control u∗|(1,2) ≡ 0. See Figure 2.8.

For singular control problem, it may happen that the bang-bang control law switches infinitely many

times and that the law fails to be piece-wise constant. Such phenomenon is called Fuller’s phenomenon.

Example 2.6 (Fuller’s problem). Consider the double integrator

ẋ1 = x2

ẋ2 = u

with constraint |u| ≤ 1 and cost function

J =
∫ t f

0
x2

1(t )dt
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where t f is free. The objective is to drive the system to the origin with minimal cost. The Hamiltonian is

H = p1x2 +p2u +p0x2
1 and the costate equation is

ṗ1 =−2p0x1

ṗ2 =−p1

One can check easily that there is no singular arcs. Therefore, the control is bang-bang. It remains to

compute the switching condition. A. T. Fuller showed that 1) the switching curve for this problem is

x1 +γx2|x2| = 0 for some constant γ> 0; 2) there are infinitely many switches for along this curve; 3) the

time intervals between two consecutive switches decrease geometrically. For details, see [9].

2.2.5 State constraints

State constraints appear quite naturally in many practical applications, such as in obstacle avoidance

problems and medical/biological systems (many biological states are required to be positive).

There are two main classes of state constraints that arise frequently applications:

A. pure state constraints: s(x(t )) ≤ 0, ∀t ≥ 0 for some function s :Rn →Rp .

B. mixed state-control constraints: s(x(t ),u(t )) ≤ 0, ∀t ≥ 0 for some function s :Rn ×Rm →Rp .

We state the maximum principle under smooth pure state constraints.

Theorem 2.1 (MP under pure state constraints). Consider the system ẋ = f (x,u), where u(t ) ∈U and the

state is constrained according to s(x(t )) ≤ 0 for some smooth function s : Rn → Rp . If u∗ is an optimal

control that minimize the cost function J =ϕ(x(t f ))+∫ t f

0 L(x,u)dt , then

1) There exists a costate function p∗(·) and a function λ : [0, t f ] →Rp such that

ṗ =−H⊤
x − s⊤x λ

where H = p⊤ f (x,u)−p0L(x,u), p0 ∈ {0,−1} and (p0, p(t )) ̸≡ 0.

2) The maximum principle holds: H(x∗(t ),u∗(t ), p∗(t )) = maxu∈U H(x∗(t ),u, p∗(t )).

Optimal control problems with state constraints are generally quite difficult to solve. In most cases,

one should not expect to derive analytic solutions and should resort to numerical methods instead.

The following academic example shows how to use the maximum principle under constraints.

Example 2.7. Consider the system ẋ = x2 −u with initial condition x(0) = 1 and cost function

J =
∫ 2

0
x2 +u2dt .

The control has not constraint. The objective is to find an optimal control u such that x(2) = 1 while

keeping x(t ) ≥ a with minimal cost. Here a is some real constant.

The state constraint can be equally described by s(x) := a−x ≤ 0. The Hamiltonian is H = p(x2−u)+
p0(x2 +u2) and the costate equation is

ṗ =−2(p +p0)x +λ.

If p0 = 0, then |u| = +∞, which is impossible; thus p0 = −1 and u∗(t ) = − 1
2 p(t ). When the system stays

on the boundary a = x, then ṡ must also vanishes, in which case x2 −u = 0, or u = x2 = a2. It follows that

p(t ) =−2a2 on the boundary. Hence λ=−2a(2a2 +1). Now the costate equation can be rewritten as

ṗ =−2(p −1)x −2a(2a2 +1)
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To determine the initial condition of p, substitute the relation p = 2ẋ − 2x2 into the costate equation

which yields a second order ODE

ẍ = (2x2 +1)x −a(2a2 +1)

with boundary condition x(0) = x(2) = 1. Thus the problem reduces to solving a boundary value problem,

which can be done via numerical methods.

2.2.6 Infinite horizon problem

2.2.7 Appendix: reachability and controllability

(This subsection is largely taken from [5].) Reachability and controllability are closely to Lie algebra of

vector fields, which we recall briefly. Let Ω ⊆ Rn be an open set, F (Ω) the space of smooth real value

functions on Ω and X (Ω) the space of smooth vector fields on Ω. For two vector fields f , g ∈ X (Ω), the

Lie bracket [ f , g ] is defined as (Dg ) f − (D f )g , where D f represents the Jacobian of f . Some immediate

observations of the Lie bracket: 1) [ f , f ] = 0; 2) [ f , g ] =−[g , f ]; 3) [λ f +µg ,h] =λ[ f ,h]+µ[g ,h].

Note that both F (Ω) and X (Ω) are (infinite dimensional) real vector spaces. The following definition

plays a fundamental role in nonlinear controllability theory.

Definition 2.1. A Lie algebra of vector fields on Ω is a linear subspace A ⊆ X (Ω) which is closed under

Lie bracket operation, i.e., [ f , g ] ∈ A if f , g ∈ A . For any set S ⊆ X (Ω), the Lie algebra generated by S is

the smallest Lie algebra containing S, denoted by Lie(S). We say that S is Lie bracket generating at point

x if the dimension of Liex (S) = { f (x) | f ∈ Lie(S)} is n.

� The dimension of Lie(S) is in general in�nite, but Liex (S) is a linear subspace of the tangent space

at x, which is �nite dimensional.

It is routine to verify that Lie(S) can be constructed through the following procedure. Let A1 =
spanRS, then construct Ak recursively via

Ak+1 = {[ f , g ] : f ∈Ak , g ∈ S}, k = 1, · · · .

Then

Lie(S) = ⋃
k≥1

Ak .

For example, if S = { f1, · · · , fm], then S is spanned by all brackets of the form

[[· · · [ fi , f j ], fk ], · · · , fℓ]

for fi s in S.

Consider a forward complete system defined by vector field f :

ẋ = f (x)

We use a more suggestive notation to denote the flow of the system: e t f (x) :=φ(t , x). It is then immediate

to note

• e(t+s) f = e t f ◦e t s , ∀t , s ∈R;
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• e t f is a diffeomorphism whose inverse is e−t f , ∀t ∈R;

• d
d t e t f (x) = f (e t f x), ∀t ∈R.

Definition 2.2 (Reachability). Consider the system ẋ = f (x,u), u ∈U . Define

1) the reachable set from x0 at time t ≥ 0 is

A (t , x0) := {φ(t , x0;u) : ∃u : [0, t ] →U };

2) the reachable set from x0 within time t ≥ 0 is

A (≤ t , x0) := ⋃
τ∈[0,t ]

A (τ, x0);

3) the reachable set from x0 is

A (x0) = ⋃
t≥0

A (t , x0).

We say that the system is completely controllable if A (x0) =Rn for all x0 ∈Rn .

The following lemma shows how Lie bracket is related to reachability.

Lemma 2.1. For any two vector fields f and g ,

e t [ f ,g ]x = e−
p

t g e−
p

t f e
p

t g e
p

t g x +o(t )

for |t | sufficiently small.

This lemma can be proved easily by Taylor expansion and is left as an exercise. The lemma can be

understand through the driftless control system

ẋ = u1 f (x)+u2g (x)

Then the lemma suggests that it is possible, by switching the input u1 and u2, to reach points that is

reachable by the system ẋ = [ f , g ].

From now on, we will focus our attention on affine control systems

ẋ = f0(x)+
m∑

i=1
ui fi (x), (2.23)

where fi are smooth vector fields and u = (u1, · · · ,um) : R≥0 → U ⊆ Rm . We assume that U contains an

open neighbourhood of the origin. Define

Σ := Lie{ f0 +
m∑

i=1
ui fi : u ∈U }

then it is easy to show that

Σ= Lie{ f0, f1, · · · fm}.

We call Σ the Lie algebra associated with the system (2.23).

Exercise 2.3. Consider the single input LTI system ẋ = Ax +bu, x ∈Rn . Show that the Lie algebra associ-

ated with the system is

Lie{Ax,b} = span{Ax,b, Ab, · · · , An−1b}.
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Proposition 2.6 (Krener). If the Lie algebra associated with the system (2.23) is Lie bracket generating at

x0, then for every t > 0, x0 belongs to the closure of the interior of A (≤ t , x0).

Krener Theorem says that A (≤ t , x0) contains an open set O having x0 in its closure.

Definition 2.3. A family of vector fields S is said to be symmetric if f ∈ S implies − f ∈ S.

For example, for driftless system ẋ =∑
ui fi , if both u and −u are admissible controls, then the system

is symmetric.

The following is the fundamental theorem regarding nonlinear controllability.

Theorem 2.2 (Chow-Rashevskii). For the system (2.23), if { f0, f1, · · · , fm} is Lie bracket generating and sym-

metric, then the system is completely controllable, i.e., for every x0 ∈Rn , A (x0) =Rn .

Example 2.8 (Dubins car). Consider a model for a two wheel cart on the plane

ẋ = u1 cosθ

ẏ = u1 sinθ

θ̇ = u2

where (x, y) represents the position of the cart and θ the heading angle. There are two controls, u1 the

driving speed, and u2 the turning rate. Suppose that the cart can be driven either back and forward and

the turning rate can be either negative or positive. Thus the system is symmetric. Let f1 = [cosθ, sinθ, 0]

and f2 = [0, 0, 1]. Then [ f1, f2] = −[sinθ, −cosθ, 0]. It follows that rank{ f1, f2, [ f1, f2]} = 3 for all (x, y,θ).

Thus the system is completely controllable.

Exercise 2.4 (Nelson’s car). Consider a front-wheel drive car shown in Figure 2.9. The control input are:

1) the front wheel turning rate; 2) the driving speed. Derive the motion dynamics of this model and check

its controllability.

𝜑𝜑

𝜃𝜃

𝑥𝑥1

𝑥𝑥2

Figure 2.9: Nelson’s car

64



2.3 Proof of the maximum principle

In this section, we prove the maximum principle following Boltyanskii [4].

2.3.1 Nonlinear optimization

Motivating example

The methodology that we are going to use to prove the maximum principle can be illustrated through

static nonlinear optimization problem:

min g0(x)

subject to gi (x) ≤ 0, i = 1, · · · ,m
(LM)

in which {gi }m
i=0 ∈C 1(Rn ;R). Assume rank(Dg (x)) = m on the set S = {x : gi (x) = 0, i = 1, · · · ,m}, where g =

[g1, · · · , gm]⊤. Suppose that the problem is feasible, i.e., there exists an admissible x∗ which minimizes

g0(x).

To solve this optimization problem, it is standard practice to use the so called Lagrangian multiplier

method. Other than that, one may use calculus of variation that we have introduced previously to derive

first order necessary conditions.

Exercise 2.5. Derive the first order necessary condition of the (LM) problem using calculus of variation.

Here, we adopt a completely new approach, which bears the name method of tent introduced by

Boltyanskii and his colleagues when proving the maximum principle.

Define the following sets:

Ωi = {x ∈Rn : gi (x) ≤ 0}, i = 1, · · · ,m

and for x1 ∈Rn , let

Ω0 = {x : g0(x) < g0(x1)}∪ {x1}.

Take the intersection of all these sets

Σ :=Ω0 ∩Ω1 ∩·· ·∩Ωm

We claim that x1 is a minimizer if and only if Σ = {x1}. To see this, suppose x1 is a minimizer, then

gi (x1) = 0 for i ≥ 1 and g0(x1) ≤ g0(x) for all x ∈ S. Thus x1 ∈ Σ. If there is another point x2 ∈ Σ, then

x2 is feasible and g0(x2) < g0(x1), a contradiction, thus if x1 is a minimizer, there must hold Σ = {x1}.

Conversely, suppose that Σ = {x1}, if x1 is not a minimizer, then either x1 is not feasible or there exists

x2 ̸= x1, both feasible such that g0(x2) < g0(x1). For the first case, x1 ∉ Ω1 ∩ ·· · ∩Ωm , thus x1 ∉ Σ, a

contradiction. For the second case, {x1, x2} ⊆Σ, a contradiction.

As an example, let m = 1 and Figure 2.12 is a sketch of the sets Ω0 and Ω1. In this figure, Ω1 and Ω0

intersects on the curve γ. In order that Ω0 ∩Ω1 = {x1}, then the two sets must separate in the sense that

they intersect only at point x1. To go one step further, let us recall the definition of a tangent cone.

Given a set Ω⊆Rn (may be non-convex), the tangent cone at x ∈Ω is defined as

TxΩ :=
{

v ∈Rn

∣∣∣∣∣ ∃{xi }∞i=1 ⊆Ω, ∃{ti }⊤i=1 ⊆R>0, s.t.

ti ↓ 0, xi → x, and (xi −x)/ti → v

}
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see Figure 2.10.

Ω
𝐾𝐾

𝑥𝑥0

Ω

𝐾𝐾

𝑥𝑥0

Figure 2.10: Tangent of convex and non-convex sets Ω.

A convex cone K ⊆ TxΩ with apex x is called a tent. Note that although a tangent cone may be non-

convex, a tent is required to be convex. In Figure 2.11, K0 represents the tangent cones while K1 some

tents.

𝐾𝐾1

𝑥𝑥0
𝐾𝐾0

𝐾𝐾1

Ω

𝑥𝑥0

𝐾𝐾0

Ω

Figure 2.11: Tents.

Intuitively, to be able to “separate” Ω0 and Ω1, the tangent cone of the two sets should be separable

in the sense that they intersect only at the apex. Or equivalently, there is a hyperplane passing through

x1 which separates Tx1Ω0 and Tx1Ω1, see Figure 2.13.
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Ω0

Ω1

𝑥𝑥1
𝛾𝛾

Figure 2.12: The setsΩ0 and Ω1.

In Figure 2.13, let us choose two arbitrary nonzero vectors a0 and a1 perpendicular to the separating

hyperplane such that a0 +a1 = 0, and it is easy to see that such vectors always exist. Furthermore, we see

that

a⊤
i (x −x1) ≥ 0, ∀x ∈ Ki , i = 0,1. (2.24)

separating hyperplane

𝐾𝐾0𝐾𝐾1
𝑎𝑎1

𝑎𝑎0𝑥𝑥1

Figure 2.13: Separating 2-dim tents.

Thus if we can find out K0 and K1, we can obtain a necessary condition based on the relation (2.24).

For problem (LM), this is easy since g0 and g1 are smooth:

Ki = {x : ∇gi (x1)(x −x1) ≤ 0}, i = 0,1

That is, Ki are half spaces, see Figure 2.14.
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𝑥𝑥1

𝐾𝐾𝑖𝑖

∇𝑔𝑔𝑖𝑖 𝑥𝑥1

Ω𝑖𝑖

𝑎𝑎𝑖𝑖

Figure 2.14: The tents are half spaces.

Therefore, ai must be of the form

ai =λi∇gi (x1)

for λi ≤ 0. Since λi cannot be zero at the same time, λi < 0 for i = 0,1. Thus the relation (2.24) becomes

∇g0(x1)+λ∇g1(x1) = 0

for some λ> 0. This is a special case of the famous KKT (Karush-Kuhn-Tucker) condition which we will

be able to prove once we have generalize the above reasoning.

The separability of tents

We generalize our previous discussions to arbitrary finite many tents.

Definition 2.4 (Separability). Let K0, · · · ,Kp be some closed, convex cones with a common apex x in Rn .

They are said to be separable if there exists a hyper plane Γ through x that separates one of the cones

from the intersection of the others.

Lemma 2.2. Let K0, · · · ,Kp be some closed, convex cones with a common apex x in Rn . Then they are

separable if and only if there exist dual vectors ai , i = 0,1, · · · , p fulfilling2

a⊤
i (y −x) ≤ 0, ∀y ∈ Ki

and at least one of which is not zero and such that

a0 +·· ·+ap = 0.

Lemma 2.3. Let Ω0, · · · ,Ωp be sets in Rn satisfying

Ω0 ∩·· ·∩Ωp = {x},

and K0, · · · ,Kp be tents of these sets at x. If all the tents are convex and that at least one of the tents is

distinct from its affine hull. Then K0, · · · ,Kp is separable.

2Note that we can also use a⊤
i (y −x) ≥ 0 by reversing the sign of ai , see (2.24).
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The proofs of the above two results are quite technical and are hence omitted. Interested readers are

referred to [4].

We now have all the ingredients to derive the KKT condition. First, recall the problem formulation:

Problem. Let f , gi , h j be continuously differentiable real functions. Derive the necessary condition for

the following minimization problem:

min f (x)

subject to gi (x) ≤ 0, i = 1, · · · , p

h j (x) = 0, j = 1, · · · , q

(2.25)

To solve this problem, let x∗ be a minimizer and define

Ωi = {x : gi (x) ≤ 0}, i = 1, · · · , p

Ξ j = {x : h j (x) = 0}, j = 1, · · · , q

Θ= {x : f (x) ≤ f (x∗)}∪ {x∗}

then

Σ :=⋂
i
Ωi

⋂
j
Ξ j

⋂
Θ= {x∗}.

The tents of the defined sets are

KΩi = {x : ∇gi (x∗)(x −x∗) ≤ 0}

KΞ j = {x : ∇h j (x∗)(x −x∗) = 0}

KΘ = {x : ∇ f (x∗)(x −x∗) ≤ 0}

By Lemma 2.3, there exists non-negative vectors ωi , ξi , θ satisfying

ω⊤
i (x −x∗) ≤ 0, ∀x ∈ KΩi

ξ⊤j (x −x∗) ≤ 0, ∀x ∈ KΞ j

θ⊤(x −x∗) ≤ 0, ∀x ∈ KΘ

and ∑
i
ωi +

∑
j
ξ j +θ = 0 (2.26)

Since KΩi and KΘ are half spaces, it follows that

ωi =µi∇gi (x∗), ξ j = ν j∇h j (x∗), θ = θ0∇ f (x∗)

in which µi ≥ 0, θ0 ≥ 0 and the signs of ν j are undetermined. Plugging into (2.26), we get the KKT condi-

tion:

θ0∇ f (x∗)+∑
i
µi∇gi (x∗)+∑

j
ν j∇h j (x∗) = 0.
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2.3.2 Proof of the maximum principle

Problem statement

We start by introducing the optimal control problem under fixed terminal time. First, let us recall our

optimal control problem. We focus on time-invariant control systems:

ẋ = f (x,u), (2.27)

where x(t ) ∈Rn , u(t ) ∈U ⊂Rm for all t ∈ [0, t f ], the initial condition x(0) = x0 is assumed to be fixed. The

cost function is

J (u(·)) =ϕ(x(t f ))+
∫ t f

0
L(x(s),u(s))d s,

where ϕ(·), f (·,u), L(·,u) are continuously differentiable for all u. The optimal control problem amounts

to finding a process u∗(t ), x∗(t ), 0 ≤ t ≤ t f , with a (measurable) controller u∗(t ) such that x∗(t f ) ∈ M for

some manifold M , and J (u∗(·)) attains a minimum. We say that the problem is in 1) Mayer form if L = 0;

2) Lagrange form if ϕ= 0; 3) Bolza form if neither L nor ϕ is zero.

We claim that the preceding three types of optimal control problems can all be reduced to Mayer

form. In fact, let

xn+1(t ) =
∫ t

0
L(x(s),u(s))d s

the system becomes ẋ = f (x,u)

ẋn+1 = L(x,u)
(2.28)

\with initial condition (x0,0), and the cost function becomes

J =ϕ(x(t f ))+xn+1(t f ). (2.29)

This is an optimal control problem of the Mayer form of a time-invariant system. Due to this reason, it

suffices to study the optimal control problem with cost function:

J =ϕ(x(t f )).

Introduce the following notations which will be used in the proof:

x1 := x∗(t f )

Ω0 = {x1}∪ {x :ϕ(x) <ϕ(x1)}

Ω1 : reachability set from x0

Ω2 = M : the terminal manifold

Let u∗(t ), x∗(t ), 0 ≤ t ≤ t f be an optimal process. Then it is easily seen that

Ω0 ∩Ω1 ∩Ω2 = {x1}. (2.30)

The reader should immediately realize that such type of condition implies separability of tents of the

three sets, this is the content of Lemma 2.3. Denote Ki the tent of Ωi at x1. It thus remains to find the

tents Ki . The tents K0 and K2 can be easily computed:

K0 =
{

x ∈Rn : ∇ϕ(x1)(x −x1) ≤ 0
}

K2 = Tx1Ω2
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(note that Ω2 is a fixed manifold).

Therefore, our problem boils down to calculating the tent of Ω1 at x1: K1. By definition, a tent is only

a convex subcone of the tangent cone ofΩ1 at x0, we should however, try to find a tent as big as possible,

since the bigger the tent, the more necessary information it conveys. This is the main non-trivial step in

proving the maximum principle (if we already know Lemma 2.2, 2.3) and was first achieved by Boltyanskii

and his colleagues using the so called needle variation.

Needle variation

Suppose at the moment that the optimal control u∗ : [0, t f ] →U is continuous. Fix τ ∈ (0, t f ] and consider

the following needle shaped variation of u∗ for small ε> 0:

uε(t ) =
{

w, t ∈ (τ−ε,τ]

u∗(t ), otherwise

where w ∈U is some constant, see Figure 2.15.

𝑤𝑤

𝜏𝜏𝜏𝜏 − 𝜀𝜀

𝑢𝑢∗(𝑡𝑡)

Figure 2.15: Needle variation.

Denote t 7→ xε(t ) the solution to ẋ = f (x,uε). Obviously, uϵ(·) is admissible, thus xϵ(t f ) belongs to the

reachable set at t f , i.e., xϵ(t f ) ∈Ω1 for all ϵ chosen above. Thus by definition,
∂xε(t f )
∂ε

∣∣∣
ε=0+ must belong to

the tangent cone of Ω1. Denote

v(t ) = ∂xε(t )

∂ε

∣∣∣∣
ε=0+

, t ∈ [τ, t f ]

then it remains to find v(t f ). We call v(t f ) a deviation vector. To find the deviation vector, first we need

to characterize xϵ(t ). Denote vϵ(t ) = ∂xε(t )
∂ε , since uϵ(t ) = u∗(t ) for t ≥ τ, it follows that

d vϵ(t )

d t
= ∂

∂ϵ
f (xϵ(t ),u∗(t )) = ∂ f

∂x
(xϵ(t ),u∗(t ))

∂xϵ(t )

∂t

= ∂ f

∂x
(xϵ(t ),u∗(t ))vϵ(t ), ∀t ∈ (τ, t f ]
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Evaluating at ϵ= 0+, we get v̇(t ) = ∂ f
∂x (x∗(t ),u∗(t ))v(t ). That is, v(t ) satisfies a linear ODE. It still remains

to find the initial condition v(τ). Note that

xε(τ) = x∗(τ−ϵ)+
∫ τ

τ−ϵ
f (xϵ(s), w)ds,

= x∗(τ−ϵ)+
∫ τ

τ−ϵ
f (x∗(s),u∗(s))ds +

∫ τ

τ−ϵ
[ f (xϵ(s), w)− f (x∗(s),u∗(s))]ds

= x∗(τ)+
∫ τ

τ−ϵ
[ f (xϵ(s), w)− f (x∗(s),u∗(s))]ds

thus

v(τ) = lim
ε→0+

xε(τ)−x∗(τ)

ε

= lim
ε→0+

1

ε

[∫ τ

τ−ε
f (xε(t ), w)d t − f (x∗(t ),u∗(t ))dt

]
(2.31)

= f (x∗(τ), w)− f (x∗(τ),u∗(τ)).

To summarize, v(·) is the solution to the following Cauchy problemv̇ = ∂ f

∂x
(x∗(t ),u∗(t ))v, ∀t ∈ [τ, t f ]

v(τ) = f (x∗(τ), w)− f (x∗(τ),u∗(τ)).

To construct more deviation vectors, let v1(t f ), · · · , vr (t f ) be some different deviation vectors ob-

tained as above corresponding to some distinct time instants τ1 < ·· · < τr and constant inputs w1, · · · , wr .

Consider the combined needle variation

uε,k (t ) =
{

wi , t ∈ (τi −kiε,τi ] for some i ∈ {1, · · · ,r }

u∗(t ), otherwise

where ki are non-negative constants satisfying
∑r

i=1 ki = 1. One can show that

r∑
i=1

ki vi (t f ) = ∂x(t f ,uε,k )

∂ε

∣∣∣∣
ε=0+

which implies that
∑r

i=1 ki vi (t f ) are again in Tx1Ω1. Still call these vectors deviation vectors and define

K1 to be the set of all deviation vectors, i.e.,

K1 =


r∑

i=1
ki vi (t f )

∣∣∣∣∣
∃r ∈Z+, τi ∈ [0, t f ), wi ∈U , ki ≥ 0,

∑r
i=1 ki = 1,

vi (t f ) the deviation vector obtained from needle

variation atτi with spike wi


Then K1 is a tent ofΩ1 at x1.

Final step: the costate equation and the maximum principle

Condition (2.30) implies that K0,K1,K2 are separable. Invoking Lemma 2.2 and Lemma 2.3, we deduce

that there exist three vectors ai , at least one of which is nonzero, satisfying

a⊤
i v ≤ 0, v ∈ Ki , i = 0,1,2 (2.32)

and

a0 +a1 +a2 = 0. (2.33)
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In particular, a⊤
1 v(t f ) ≤ 0 for any deviation vector v(t f ). Now we introduce a small trick: if we are able

to construct some function p : [0, t f ] → Rn such that p(t )⊤v(t ) ≡ constant with p(t f ) = a1, then we ob-

tain immediately p(t )⊤v(t ) = a⊤
1 v(t f ) ≤ 0 for all t ∈ [0, t f ]. In particular, if v is the deviation vector ob-

tained by needle variation at time τ with spike w , then v(τ) = f (x∗(τ), w)− f (x∗(τ),u∗(τ). Thus at t = τ,

p(τ)⊤[ f (x∗(τ), w)− f (x∗(τ),u∗(τ))] ≤ 0 or

p(τ)⊤ f (x∗(τ),u∗(τ)) ≥ p(τ)⊤ f (x∗(τ), w)) (2.34)

For convenience, define

H(x,u, p) := p⊤ f (x,u)

which is the Hamiltonian associated with the system . Now that the spike can be any w ∈U and t ∈ [0, t f ),

it follows from (2.34) that

H(x∗(t ),u∗(t ), p(t )) = max
u∈U

H(x∗(t ),u, p(t )) = constant, ∀t ∈ [0, t f ). (2.35)

This is the maximum principle that we have been looking for! Except two things: the interval [0, t f )

doesn’t include the endpoint t f and the function p hasn’t been determined yet. The first issue can be

fixed if everything is continuous in the above formula, which is indeed true as long as we have shown p

is, since f , x∗ and u∗ are continuous as assumed. For the second issue, let us recall the following simple

fact:

Lemma 2.4. Consider two linear ODE

ẋ = A(t )x

ṗ =−A(t )⊤p

where x, p ∈Rn . Then p(t )⊤x(t ) = p(t ′)⊤x(t ′) for any t , t ′ ∈R.

With this lemma, we can now construct p to be the solution of the following ODE

ṗ =−
[
∂ f

∂x
(x∗(t ),u∗(t ))

]⊤
p

=−H⊤
x (x∗,u∗, p) (2.36)

with terminal state p(t f ) = a1 (note that this is exactly the costate equation).

Recall that

K0 =
{

x ∈Rn : ∇ϕ(x1)(x −x1) ≤ 0
}

K2 = Tx1Ω2

For a0, since K0 is a half space, a⊤
0 v ≤ 0 for v ∈ K0 implies a0 =λ∇ϕ(x1)⊤ for some constant λ≥ 0. For a2,

since K2 is a sub-manifold, a2 ⊥ K2. It follows from (2.33) that (recall a1 = p(t f )):

λ∇ϕ(x∗(t f ))⊤+p(t f ) ⊥Ω2 (2.37)

for some constant λ≥ 0.

Up to now, we have prove the maximum principle for the Mayer problem under the assumption that

u∗ is continuous.

For u not continuous, only the condition (2.35) needs to be modified by noticing that the limits in

(2.31) exist for almost all t ∈ [0, t f ]. Summarizing, we have proved the following.
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Theorem 2.3. Suppose that the Mayer form optimal control problem admits an admissible measurable

optimal law u∗(·) with corresponding trajectory x∗(·). Then there is a solution to the costate equation

(2.36), such that the triple (x∗(t ),u∗(t ), p(t )) satisfies the maximum principle (2.35) for almost all t (all t

on the interval on which u∗(·) is continuous) and the transversality condition (2.37).

Some variants

We have so far considered the optimal control problem under the condition that t f is fixed. It can be

easily extended to the case of free terminal time: it is obvious that all the necessary conditions of Theorem

2.3 still need to be hold. The mere difference is that now one can also make the variation of the terminal

time. For example, consider a needle variation at τ, let v(t f ) be the corresponding deviation vector. Fix

some µ> 0, since xϵ(t f +ϵµ) ∈Ω1,
∂xε(t f +εµ)

∂ε

∣∣∣
0+ must also lie in the tangent cone ofΩ1, but

∂xε(t f +εµ)

∂ε

∣∣∣∣
ε=0+

= ∂xε(t f )

∂ε

∣∣∣∣
ε=0+

+ ∂x∗(t f +ϵµ)

∂ϵ

∣∣∣∣
ε=0+

= v(t f )+µ f (x∗(t f ),u∗(t f ))

Thus we can construct another tent of Ω1 at x1 as

K ′
1 = {v(t f )+µ f (x∗(t f ),u∗(t f )) : v(t f ) ∈ K1, µ ∈R}.

It follows that one can obtain a finer condition than (2.35):

H(x∗(t ),u∗(t ), p(t )) = max
u∈U

H(x∗(t ),u, p(t )) = 0, ∀t ∈ [0, t f ).

Indeed, take v(t f ) = 0 (no needle variation), then a⊤
1 (µ f (x∗(t f ),u∗(t f ))) ≤ 0 for any µ ∈ R implies that

a⊤
1 f (x∗(t f ),u∗(t f )) = 0.

Let us use Theorem 2.3 to derive the maximum principle for Bolza form. Recall that the system model

and cost function of the Bolza problem can be equally written as (2.28) and (2.29). Suppose that the

terminal manifold Ω2 = M , then for the augmented system (2.28), the terminal manifold is Ω̃2 =Ω2 ×R.

The Hamiltonian becomes

H(x,u, p, p0) = p⊤ f (x,u)+p0L(x,u)

and the costate equation still reads ṗ = −Hx , and ṗ0 = 0 since H doesn’t depend on xn+1. Thus p0 is a

constant. The transversal condition reads

λ

[
∇ϕ(x∗(t f ))⊤

1

]
+

[
p(t f )

p0

]
⊥ Tx1Ω2 ×R

for some λ ≥ 0, from which it follows that p0 = −λ ≤ 0 and p(t f ) +λ∇ϕ(x∗(t f ))⊤ ⊥ Ω2. When p0 is

nonzero, one can take p0 =−1 by modifying λ. Thus we are done with the general Bolza form problem.

2.4 Some advanced topics

2.4.1 Maximum principle on manifolds

The Poisson bracket and symplectic geometry

We include a short introduction to symplectic geometry. The main reference of this subsection is [13].
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Definition 2.5 (Poisson bracket). Let M be a manifold and F (M) the set of smooth real-valued functions

on M (an R-algebra under piecewise product and sum). A Poisson bracket is a binary operation

{, } : F (M)×F (M) →F (M)

which satisfies the following properties for all f , g ,h ∈F (M):

1. bilinearity: { f , g } is R-bilinear in f and g ;

2. anticommutativity: { f , g } =−{g , f };

3. Jacobi’s identity: {{ f , g },h}+ {{h, f }, g }+ {{g ,h}, f } = 0;

4. Leibnitz’ rule { f g ,h} = f {g ,h}+ g { f ,h}.

The manifold M is said to be a Poisson manifold if it is equipped with a Poisson bracket.

Definition 2.6. Let (M1, {, }1) and (M2, {, }) be two Poisson manifolds. A mapping ϕ : M1 → M2 is called

Poisson if for all f ,h ∈F (M2), we have

{ f ,h}2 ◦ϕ= { f ◦ϕ,h ◦ϕ}1.

Definition 2.7 (Symplectic manifold). Let M be a manifold and Ω is a 2-form ((0,2)-tensor). The pair

(M ,Ω) is called a symplectic manifold if Ω satisfies

1. dΩ= 0 (i.e., Ω is closed) and

2. Ω is nondegenerate in the sense thatΩ(v, w) = 0 for all w implies that v is a zero tangent vector.

Definition 2.8 (Hamiltonian vector field). Let (M ,Ω) be a symplectic manifold and let f ∈F (M). Let X f

be the unique vector field on M satisfying

Ωz (X f (z), v) = d f (z)(v), for all v ∈ Tz M .

We call X f the Hamiltonian vector field of f . Hamilton’s equations are the differential equations on M

given by

ż = X f (z).

Remark 2.1. The existence and uniqueness of X f is guaranteed by the non-degeneracy of Ω.

If (M ,Ω) is a symplectic manifold. Then one can define a Poisson bracket as

{ f , g } =Ω(X f , Xg )

which we call the Poisson bracket associated with the symplectic manifold (M ,Ω). Therefore, every sym-

plectic manifold is also Poisson. The converse is not true. However, Hamiltonian vector fields can still be

defined on Poisson manifold.

Definition 2.9. Let (M , {, }) be a Poisson manifold and let f ∈F (M). Define X f be the unique vector field

on M satisfying

dk(X f ) = {k, f } for all k ∈F (M)

we call X f the Hamiltonian vector field of f .
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This definition coincides with Definition 2.8 when the Poisson manifold is symplectic. Now given

H ∈F (M), the Hamilton’s equation is ż = XH (z). By the chain rule, for any f ∈F (M), we have d f (z(t ))
d t =

d f (XH (z)) = { f , H }. Thus the Hamilton’s equation can be written in the following three (equivalent) ways:

1. ż = XH (z);

2. ḟ = d f (XH (z)) for all f ∈F (M);

3. ḟ = { f , H } for all f ∈F (M).

The following is a basic fact about Hamiltonian system.

Proposition 2.7. Let φt : M → M be the flow of the Hamilton’s equation ż = XH (z). Then

1. φt is a Poisson map;

2. H ◦φt = H (conservation of energy).

The cotangent bundle

We now come to one of the most important constructions of symplectic manifold, namely, the cotangent

bundle.

Consider an n dimensional manifold Q and its cotangent bundle T ∗Q. Let (qi ) be the coordinates on

Q and (q i , p j ) the induced coordinate on T ∗Q. More precisely, for any ω ∈ T ∗Q, p j (ω) = ω
(

∂
∂q j

)
. Next,

define a 2-form ω on T ∗Q by

ω=
n∑

i=1
d q i ∧d pi (2.38)

One can check that ω is well-defined (coordinate-free). As an alternative, we consider the 1-form

Θ=
n∑

i=1
pi d q i

andω=−dΘ. Thus, it suffices to show thatΘ is coordinate-free. (The notation pi d q i is a little ambiguous

since it may also be understood as a dual vector in T ∗Q instead of in T ∗T ∗Q ! We adopt this notation

anyway since it is standard. The function pi in front of d q i should remind the reader that it is a dual

vector in T ∗T ∗Q.) To show that Θ is well-defined, let (q̃ i , p̃ j ) be another coordinate, where pi = p̃ j
∂q̃ j

∂q i .

Since d q i =∑n
j=1

∂q i

∂q̃ j d q̃ j , we have

Θ=
n∑

i=1
pi d q i =

n∑
i , j ,r=1

p̃ j
∂q̃ j

∂q i

∂q i

∂q̃r d q̃r =
n∑

j ,r=1
δr

j p̃ j d q̃r =
n∑

i=1
p̃i d q̃ i

The 1-form Θ is the tautological form or Liouville 1-form and the 2-form ω = −dΘ is the canonical

symplectic form. To summarize:

Proposition 2.8. Let Q be a smooth manifold. Then (T ∗Q, ω) is a symplectic manifold, whereω is defined

as (2.38).
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Let’s calculate in coordinates. Let H ∈F (T ∗Q), and XH = X i ∂
∂q i +X n+i ∂

∂pi
(we use Einstein summa-

tion natation: the repeated index is summed). By definition, for any v = v i ∂
∂q i + vn+i ∂

∂pi
, there holds

d q i ∧d pi (XH , v) = d H(v),

or

X i vn+i −X n+i v i = ∂H

∂q i
v i + ∂H

∂p i
vn+i ,

from which it follows that

X i = ∂H

∂p i
, X n+i =− ∂H

∂q i

Hence

XH (q, p) =
n∑

i=1

(
∂H

∂p i

∂

∂q i
− ∂H

∂q i

∂

∂pi

)
.

And the Hamilton’s equation reads

q̇ i = ∂H

∂p i
, ṗi =− ∂H

∂q i
.

Further more, for H1, H2 ∈F (T ∗Q), the Poisson bracket reads

{H1, H2} = d H1(XH2 ) =
n∑

i=1

(
∂H1

∂q i

∂H2

∂p i
− ∂H1

∂p i

∂H2

∂qi

)
.

In the context of canonical symplectic manifold T ∗Q, definition 2.8 defines a map f 7→ X f from

F (T ∗Q) to X (T ∗Q), where X (T ∗Q) stands for the set of smooth vector fields on T ∗Q. We define a

map from X (Q) to F (T ∗Q).

Definition 2.10 (Momentum function). Given a smooth vector field X on Q, i.e., X ∈ X (Q), define the

momentum function of X as as the unique function PX ∈F (T ∗Q) satisfying

PX (q, p) = p(Xq )

for all p ∈ T ∗
q Q.

In coordinates, the momentum function reads

PX (pi d qi ) = pi X i

where X = X i (q) ∂
∂q i .

The momentum function has the following important property: let X , Y be two smooth vector fields,

then

{PX ,PY } =−P[X ,Y ] (2.39)

this property is called the anti-homomorphism (from the Lie bracket to the Poisson bracket) of the mo-

mentum function.

Exercise 2.6. Verify the formula (2.39).

With these preparations, we are ready to state the maximum principle on manifolds.Consider the

optimal control problem in Mayer form. The maximum principle can be stated as follows (we omit the

transversal condition as they are the same as before).
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Theorem 2.4. Equip T ∗M with the canonical symplectic structure. Let u∗ : [t0, t f ] → U be the optimal

control and x∗ : [t0, t f ] → M the optimal process of the Mayer problem. Define a Hamiltonian H : T ∗M ×
U →R by

H(x,λ,u) = 〈
λ, f (x,u)

〉
.

Then there exists a curve Λ : [t0, t f ] → T ∗M, with Λ(t ) = (x∗(t ),λ(t )) for t ∈ [t0, t f ] such that Λ is the

solution to the Hamilton’s equation

Λ̇= XH (Λ)

Moreover, along Λ the Hamiltonian H satisfies the maximum principle

H(x∗(t ),λ(t ),u∗(t )) = max
u∈U

H(x∗(t ),λ(t ),u).

2.4.2 Nonholonomic systems and sub-Riemannian geometry

There is a large class of control systems which can be written as

ẋ =
m∑

i=1
ui fi (x) (2.40)

where x ∈ Rn , m < n, fi some C 1 vector fields and ui (t ) ∈U ⊆ R, ∀t ≥ 0 the inputs. We assume that the

input space U is symmetric in the sense that ui ∈U implies −ui ∈U . We call (2.40) a kinematic control

system or a control system without drift. The term kinematic control system originates from mechanical

systems, which is in contrast with dynamics control system, where the system is of second order and

the input (force) is imposed on the acceleration. Thus we can think of (2.40) as controlling directly the

velocity of a mechanical system. We have already seen example of kinematic control system in Section

2.2.2 – Dido’s problem and Section 2.2.7 – Dubins car.

For system (2.40), we are interested in those that are completely controllable. According to Chow-

Rashevskii’s Theorem (Theorem 2.2), this occurs when the set of vector fields { f1, · · · , fm} is Lie bracket

generating, or the linear span of the set of vector fields of the form [[· · · [ fi , f j ], fk ], · · · , fℓ] has rank n, for

more details, see Section 2.2.7. When the system (2.40) satisfies the Lie bracket generating property, we

call it a kinematic holonomic system, or in short holonomic system (we are not going to cover mechanical

holonomic systems, interested readers are referred to [3]). One can verify that both Dido’s system (the

one with state (x, y, z)) and Dubins car are holonomic systems and hence are completely controllable.

The optimal control problem regarding nonholomic system (2.40) that we are going to study is to

minimize the following cost:

J0(u) =
∫ t f

0

√
m∑

i=1
u2

i (t )dt

for x(0) and x(t f ) fixed.3 This optimal control problem is the content of the so called sub-Riemannian

geometry. To gain some insight, let γ : [0, t f ] → Rn be a state trajectory of the system (2.40) under some

control input u(t ) – such a curve is called a horizontal curve – then we define the length of the curve γ as

ℓ(γ) =
∫ t f

0
||γ′(t )||dt

3For this problem, the Euler-Lagrangian equation is degenerate as L. Thus the usual calculus of variation does not tell us useful
information.
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where the “norm” ||γ′(t )|| is defined as
√∑m

i=1 u2
i (t ). The curve with the minimal length is called a

geodesic. Thus, the optimal control problem is equivalent to finding the geodesic between two given

points. Clearly, when m = n, sub-Riemannian geometry becomes Riemannian geometry.

We remark that J0 is invariant under time reparametrization in the following sense: if t = t (τ) such

that t (0) = 0 and d t/dτ> 0, then

J ′0 =
∫ τ f

0

√
m∑

i=1
ũ2

i (τ)dτ= J0

where t (τ f ) = t f and ũi is the the new input for the system d x
dτ =∑m

i=1 ũi (τ) fi (x(t (τ)). To see this, calculate

directly: d x
d t = d x

dτ
dτ
d t =∑m

i=1 ui (t (τ)) fi (x(t (τ)), from which we deduce that ũi (τ) = ui (t (τ)) d t
dτ . On the other

hand, by change of variable, J0 =
∫ τ f

0

√∑m
i=1 u2

i (t (τ)) d t
dτdτ= ∫ τ f

0

√∑m
i=1[ui (t (τ)) d t

dτ ]2dτ= J ′0. In particular,

choose τ(t ) = ∫ t
0

√∑m
i=1 u2

i (s)ds, then
∑m

i=1 ũ2
i (τ) = 1. Thus we may conclude that for any input u, one can

find another input ũ such that
∑m

i=1 ũ2
i (t ) is constant and ũ generates the same cost as u.

For this reason, we claim that:

Claim. Let t f be fixed, then u minimizes J0 if and only if u minimizes

J = 1

2

∫ t f

0

m∑
i=1

u2
i (t )dt .

To see this, by Cauchy-Schwarz inequality, we have J 2
0 (u) ≤ 2t f J (u) with equality holds if and only∑m

i=1 u2
i (t ) is constant for all t ∈ [0, t f ].4 Suppose now that u minimizes J , and let û be any other admis-

sible controller, by previous discussion, there exists ũ satisfying J0(u) = J0(ũ) and
∑m

i=1 ũ2
i (t ) = constant.

Hence 2t f J (u) ≤ 2t f J (ũ) = J 2
0 (ũ) = J 2

0 (û). Thus J0(u) ≤ J0(û), as desired. Conversely, suppose that u

minimizes J0, then we can find ũ such that
∑m

i=1 ũ2
i (t ) = constant, then for any other û,

J (u) = 1

2t f
J 2

0 (u) = 1

2t f
J 2

0 (ũ) ≤ J (û),

as desired. As we will see, it is analytically more convenient to work with J rather than J0, which we adopt

hereafter.

Let us now apply the maximum principle to the optimal control problem of nonholomic systems.

The Hamiltonian is (we assume there is no abnormal extremal):

H(x,u, p) =
m∑

i=1
ui (p⊤ fi )− 1

2
u⊤u

where we have denoted u = (u1, · · · ,um)⊤. For convenience, denote Hi (x, p) = p⊤ fi (x). Using the mo-

mentum function introduced in previous subsection, Hi (x, p) can also be written as P fi (p). Then

u∗
i = (argmax

u
H(x,u, p))i = Hi

and along the optimal trajectory,

H(x∗(t ),u∗(t ), p∗(t )) = 1

2

m∑
i=1

H 2
i (x∗(t ),u∗(t )) = constant.

4Cauchy-Schwarz inequality: for f , g ∈ L2, we have∫
f g ≤

√∫
f 2 ·

√∫
g 2

with equality holds if and only if f =λg for some constant λ.
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By the way, this again justifies that minimizing J is equivalent to minimizing J0 since along the optimal

solution
∑m

i=1 u∗2
i =∑m

i=1 H 2
i is a constant.

Unlike in the usual case, we do not write the costate equation, instead, we propose another more use-

ful type of equations which are equivalent to the costate equation. Since by Theorem 2.4, (x, p) satisfies

the Hamiltonian equation, thus Hi satisfies the Poisson equation:

Ḣi = {Hi , H }, ∀i = 1, · · ·m.

To see how these equation can be used, we revisit Dido’s problem.

Revisit of Dido’s problem

Remember that the equation for Dido’s problem reads (the Heisenberg system)

d

d t


x

y

z

= u1 f1 +u2 f2

where f1 = [1, 0, − 1
2 y], f2 = [0, 1, 1

2 x]. Let us consider the equivalent cost

J = 1

2

∫ t f

0
u2

1 +u2
2dt .

If we use the costate equation, what we get is

ṗ1 =−1

2
p3(p2 + 1

2
p3x)

ṗ2 = 1

2
p3(p1 − 1

2
p3 y)

ṗ3 = 0

However, the Poisson equations read Ḣ1 = {H1, H2}H2

Ḣ2 =−{H1, H2}H1

(2.41)

which is much simpler. Denote H3 = {H1, H2} and f3 = [ f1, f2], then

Ḣ3 = {H3, H } = {{H1, H2}, H }

= {−P f3 ,
1

2
(P f1 )2 + 1

2
(P f2 )2}

= P f1 P[ f3, f1] +P f2 P[ f3, f2] = 0

since [ f3, f1] = [ f3, f2] = 0, where P· is the momentum function, see Definition 2.10. Thus the Poisson

equation can be rewritten as 
Ḣ1 = H3H2

Ḣ2 =−H3H1

Ḣ3 = 0

(2.42)
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which look more promising than the costate equation. Moreover, the system dynamics along the optimal

trajectory has the form 
ẋ = H1

ẏ = H2

ż = 1

2
(−y H1 +xH2)

(2.43)

Claim. Let us now try to solve the equations (2.41, 2.42). The first observation is that H3 is constant.

Define w = H1 + i H2, where i 2 = −1. Then we find ẇ = −H2H3 + i H1H3 = i H3(H1 + i H2) = i H3w , thus

w(t ) = e i H3t w(0). On the other hand d
d t (x + i y) = w , thus (remember x(0) = y(0) = 0),

x(t )+ i y(t ) = w(0)
e i H3t −1

i H3
=−i

w(0)

H3
− i

w(0)e i H3t

H3

write −i w(0)/H3 = r0e iθ0 for r0 ≥ 0, then the above equation can be rewritten as

(x(t )+ c1)+ i (y(t )+ c2) = r0e i (H3t+θ0)

for some real constants c1 and c2. Thus (x(t ), y(t )) lies on a circle.

Dubins car

Dubins car model has the same form as Dido’s problem for with

f1 =


cosθ

sinθ

0

 , f2 =


0

0

1

 .

The only thing we need to modify in equation (2.42) is the third line. First, we calculate f3 = [sinθ, −cosθ, 0],

it follows that [ f3, f1] = 0 and [ f3, f2] =− f1. Thus

Ḣ3 = P f1 P[ f3, f1] +P f2 P[ f3, f2] =−H2H1.

Combining together, the Poisson equation reads

Ḣ1 = H3H2

Ḣ2 =−H3H1

Ḣ3 =−H1H2

this equation however, is much harder to solve than that of the Dido’s problem.

� Note carefully that although H 2
1 + H 2

2 is a constant along the optimal trajectory, H 2
1 + H 2

2 + H 3
3

needn't be .

2.5 Appendix: Maximum Principle of Discrete Time Systems

2.5.1 Fixed control region

Historically, the dynamic principle was first developped for continuous time systems. This however,

doesn’t mean that MP for discrete time system is harder. We will see now for fixed control region, the

problem is in fact easy.
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Consider the discrete time system

xk+1 = fk (xk ,uk ), (2.44)

with input sequence

(u1, · · · ,uN )

and resulting process

(x1, · · · , xN , xN+1).

Assume

ut ∈Ut ⊂Rm , t = 1, · · · , N (2.45)

in which Ut can be state dependent. But in this subsection, we assume that Ut ≡U is fixed. The state is

under constraint

xt ∈ Mt ⊂Rn , t = 1, · · · , N +1. (2.46)

Problem 1. The optimal control problem of the discrete time system (2.44) with cost function

J (u) =ϕ(xN+1)+
N∑

k=1
Lk (xk ,uk )

consists in finding a policy

u∗ = (u∗
1 ,u∗

2 , · · · ,u∗
N )

with u∗
i ∈U and N fixed, such that x∗

t ∈ Mt for t = 1, · · · , N +1, and J (u∗) attains a minimum. We say that

the problem is in

• Mayer form if L = 0,

• Lagrange form if ϕ= 0,

• Bolza form if neither L nor ϕ is zero.

Like in the continuous time case, we consider only the Mayer form as the other two forms are equiv-

alent to it.

For discrete time system, the sets Ω0, Ω2 and the tents K0, K2 are the same as before. The only differ-

ence is the reacheability regionΩ1 and its tent K1. To calculate K1, define a variation similar to the needle

variation of continuous signal at the instant i ∈ {1, · · · , N }:

u(i ,ε)
k =

{
u∗

k +εu, k = i ,

u∗
k , otherwise

where u ∈U . Let x(i ,ε)
k+1 be the solution to

x(i ,ε)
k+1 = fk (x(i ,ε)

k ,u(i ,ε)
k ), k = {i , · · · , N }.

x(i ,ε)
i = x∗

i .

Then
∂x(i ,ε)

k

∂ε

∣∣∣∣∣
ε=0

, k ∈ {i +1, · · · , N }
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is the solution to the discrete time variational system

vk+1 =
∂ fk

∂x
(x∗

k ,u∗
k )vk , k ∈ {i , · · · , N }

vi+1 = ∂ fi

∂ui
(x∗

k ,u∗
k )u

Similar to the continuous time case, we call vN+1 a deviation vector under the variation. Then the con-

vex cone K
′′
1 generated by the deviation vectors is a tent of the reacheability region. By Theorem 2.3,

there exist three covectors a0 ∈ K ∗
0 , a1 ∈ (

K ′′
1

)∗, a2 ∈ K ∗
2 , not all zero, such that a0 + a1 + a2 = 0 and

a0 =λgradϕ(xN+1) with λ≥ 0. To characterize K ′′
1 , introduce the adjoint system

pk = pk+1
∂ fk

∂xk
(x∗

k ,u∗
k ), k ∈ {i +1, · · · , N }

pN+1 = a1

The following lemma is obvious, which is the discrete time version of Lemma 2.4:

Lemma 2.5. Consider the system

xk+1 = Ak xk

pk = pk+1 Ak

where xk ∈Rn , pk ∈ (Rn)∗. Then pk xk = pk ′xk ′ for all integers k,k ′.

Then

0 ≤ a1vN+1 = pN+1vN+1 = pi+1vi+1 = pi+1
∂ fi

∂ui
(x∗

i ,u∗
i )u, ∀u ∈U .

which implies

pk+1
∂ fk

∂uk
(x∗

k ,u∗
k ) = 0, ∀k ∈ {1, · · · , N },

since U is open. Since x1 is not fixed, we can take ±v1 ∈ Tx∗
1

M0. Then 0 ≤ a1vN+1 = p1v1 ≤ 0, or p1v1 = 0,

which is equivalent to

p1 ⊥ M0

The transversal condition is

λgradϕ(xN+1)+pN+1 ⊥ M1

with λ≤ 0. If the terminal state is free, i.e., M1 =Rn , then pN+1 =−λgrad(xN+1).

2.5.2 Variable control region

In this subsection we consider the Mayer problem with J (u) = J (xN+1).

Let

Φt (x(t )) = ⋃
u∈Ut

{ ft (x(t ),u)} ⊂Rm , t = 1, · · · , N .

Assume that the sets Φt (x) are compact, convex and continuously dependent on x ∈ Rn for every t =
1, · · · , N . We say a trajectory

(x(1), · · · , x(N ))

83



admits a local section if for every t = 1, · · · , N , there is a smooth function σt : U ⊂Rm →Rm , where U is a

neighbourhood of x(t ), such that

σt (x) ∈Φt (x), ∀x ∈U and σt (x(t )) = x(t +1) = ft (x(t ),u(t ))

Introduce the following notations for each θ ∈ {1, · · · , N } in which n = (N +1)m:

z = (x1, · · · , xN+1) ∈Rn , with xθ ∈Rm , θ ∈ {1, · · · , N +1}

Ξθ = {z ∈Rn : xθ+1 ∈Φθ(xθ)}, θ ∈ {1, · · · , N }

Ω∗
θ = {z ∈Rn : xθ ∈ Mθ}, θ ∈ {1, · · · , N +1}

Pθ : a tent of Mθ at xθ , θ ∈ {1, · · · , N +1}

P∗
θ = {z ∈Rn : xθ ∈ Pθ} (then P∗

θ is a tent ofΩ∗
θ ), θ ∈ {1, · · · , N +1}

Assume that

z̄ = (x̄1, · · · , x̄N+1)

is the optimal process.

With these notations, the problem of finding an optimal trajectory for the system (2.44) reduces to

the problem of minimizing J (x(N +1)) on the set

Σ=
(

N⋂
k=1

Ξk

)
∩

(
N+1⋂
k=1

Ω∗
k

)
.

Since the tents ofΩ∗
θ

are known as P∗
θ

for θ = 1, · · · , N+1, it remains to calculate the tents ofΞθ . Define

Qθ =
{

z̄ +δz : x̄θ+1 +δxθ+1 −
∂σθ(x̄θ)

∂x
δxθ ∈ Lθ

}
,

θ = 1, · · · , N

where

Lθ : supporting cone of Φθ(x̄θ) at x̄θ+1, θ ∈ {1, · · · , N }

We claim that Qθ is a tent of Ξθ. Assume this fact, we would deduce the following.

There is a number ψ0 ≤ 0 and dual vectors

at ∈ D(P∗
t ) ⊂Rm(N+1), t = 1, · · · , N +1

bt ∈ D(Qt ) ⊂RmN , t = 1, · · · , N

such that

ψ0gradz J (x̄N+1)+
N+1∑
t=1

at +
N∑

t=1
bt = 0 (2.47)

If we write

at = (a1
t , · · · , aN+1

t )

bt = (b1
t , · · · ,bN

t )
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then ai
t ̸= 0 only when i = t , and bi

t ̸= 0 only when i = t , t +1. By assumption 〈bt ,δz〉 ≥ 0 for any δz ∈Qt .

Take a δz satisfying δxt+1 = ∂σt (x̄t )
∂x δxt and δxi = 0 for i ̸= t , then

bt
tδxt +bt+1

t
∂σt (x̄t )

∂x
δxt ≥ 0, δxt ∈Rm

Let ϕt = bt
t and ψt = bt+1

t , the above implies

ϕt +ψt
∂σt (x̄t )

∂x
= 0.

Hence the condition (2.47) can be written as

ψt−1 =−λt +ψt
∂σt (x̄t )

∂x
, t = 1, · · · , N

ψ0 = 0

ψN =−λN+1 −ψ0gradx J (x̄N+1)

since

gradz J (x̄N+1) = (0, · · · ,0,gradx J (x̄N+1))

N+1∑
t=1

at = (λ1, · · · ,λN+1)

N∑
t=1

bt =
(
ϕ1,ψ1 +ϕ2, · · · ,ψN−1 +ϕN ,ψN

)
where we have denoted λt = at

t .

Further, choose δz is such a way that xt+1 = x̄t+1 +δxt+1 ∈ Lt and δxi = 0 for i ̸= t +1. Therefore

0 ≤ψtδxt+1

In other words, the function ηt (v) =ψt v achieves minimum at the point x̄t+1. Since Φt (x̄t ) is contained

in Lt , it follows that

ψt x̄t+1 = min
x∈Φt (x̄t )

ψt x = min
u∈Ut

ψt ft (x̄t ,u), t = 1, · · · , N

Thus we are left to show that Qθ is a tent of Ξθ.

Choose z ∈Qθ arbitrary (xθ+1 is not necessarily in Φθ(xθ)). Define

ϕθ(z) the projection of xθ+1 to Φθ(xθ),

and

Ψθ(z) = (x0, · · · , xθ,ϕθ(z), xθ+2, · · · , xN ) ∈Rn

Then since ϕθ(z) ∈Φθ(xθ), Ψθ(z) ∈Ξθ for any z ∈Rn . It remains to show

Ψθ(z) = z +o(z − z̄)

or

ϕθ(z) = xθ+1 +o(z − z̄).

Consider the point

sθ(xθ) =σ(xθ)+δxθ+1 −
∂σθ(x̄θ)

∂x
δxθ.
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Figure 2.16: Illustration I of the proof.

By definition of Qθ , sθ(xθ) ∈ Lθ, the supporting cone of Φθ(x̄θ) at x̄θ+1. Since z is close to z̄, we have

sθ(δxθ) =σ(x̄θ+δxθ)+δxθ+1 −
∂σθ(x̄θ)

∂x
δxθ

=σ(x̄θ)+δxθ+1 +o(δxθ)

= x̄θ+1 +δxθ+1 +o(δxθ)

= xθ+1 +o(δxθ).

Suppose now that sθ ∈Φθ(xθ), then the conclusion would follow as |ϕθ(z)−xθ+1| ≤ |sθ−xθ+1| sinceϕθ(z)

is the projection of xθ+1 toΦθ(xθ). Unfortunately, sθ may not be inΦθ(xθ), therefore, it should be replaced

by some other point s′
θ

. For this, we notice that sθ(x̄θ) is in Lθ. We draw a ray emanating from x̄θ+1

passing through this point (sθ(x̄θ)) (see Figure 2.16), and then the rays emanating from x̄θ+1 with angle

ε> 0 (sufficiently small) form a cone, which we denote as Kε,θ(x̄θ) and that

IntKε,θ(x̄θ)∩Φθ(x̄θ) ̸=∅.

In the similar way, one can define a cone at σθ(xθ) with the direction of sθ(xθ) as axis and angle radius ε,

see Figure 2.17. By continuity and compactness, one can then show that

IntKε,θ(xθ)∩Φθ(xθ) ̸=∅.

Now we project sθ(xθ) to an interior point ofΦθ(xθ), say s′
θ

, and

|sθ(xθ)− s′θ| ≤
∣∣∣∣δxθ+1 −

∂σθ(x̄θ)

∂x
δxθ

∣∣∣∣sin(ε)

The conclusion follows by noticing that

|ϕθ(z)−xθ+1| ≤ |s′θ−xθ+1| ≤ |s′θ− sθ(xθ)|+ |s′θ(xθ)−xθ+1| =O(ε)+o(δxθ)

and ε> 0 is arbitrary.

To summarize, we have proven the following theorem.
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Figure 2.17: Illustration II of the proof.

Theorem 2.5. Consider the control system (2.44), with state constraint (2.46) and input constraint (2.45).

Assume thatΦt (x) are compact, convex and continuously dependent on x ∈Rm for all t = 1, · · · , N . Assume

Pt is a tent of Mt for each t = 1, · · · , N . Let (x1, · · · , xN+1) be an optimal process under control sequence

(u1, · · · ,uN ) which minimizes the cost J (u) = J (xN+1). Then there is a number λ0 ≥ 0 and vectors ψt ∈
(Rm)∗, λt ∈ D(Pt ) such that

ψt−1 =−λt +ψt
∂ ft (xt , xt )

∂x
, t = 1, · · · , N

ψ0 = 0

ψN =−λN+1 +λ0gradx J (xN+1)

and

H(t , xt ,ut ) = min
u∈Ut

H(t , xt ,u).

where H(t , x,u) =ψt ft (x,u).

Remark 2.2. It is immediately to see that when the initial state x1 is fixed, x2, · · · , xN+1 are not constraint

and Ut =U is an open set, then the above condition reduces to

ψt−1 =ψt
∂ ft (xt ,ut )

∂x
, t = 2, · · · , N

ψN =λ0gradx J (xN+1)

ψt
∂ ft (xt ,ut )

∂ut
= 0, t = 1, · · · , N

2.5.3 Discussions

Bolza form

Now we return to the general form of optimal control, i.e, the Bolza form

J (u) =ϕ(xN+1)+
N∑

k=1
Lk (xk ,uk ).

87



To transform it into the Mayer form, let yk+1 = yk + L̃k (xk ,uk ) where

L̃k (xk ,uk ) =
{

Lk (xk ,uk ), k = 1, · · · , N −1

LN (xN ,uN )+ϕ( fN (xN ,uN )) k = N

Therefore we obtain an augmented system in Rm+1:

xk+1 = fk (xk ,uk )

yk+1 = yk + L̃k (xk ,uk )

with y1 = 0. Let

zk =
[

xk

yk

]
∈Rm+1

The cost function becomes

J (u) = ϕ̃(zN+1) = yN+1

Suppose that x1 is fixed, invoking Theorem 2.5, there is a number λ0 ≥ 0, vectors ψt = (αt ,βt ) ∈
(Rm)∗× (R1)∗, λt ∈ D(Pt ) such that

(αt−1,βt−1) = (αt ,βt )

[
∂ ft (xt ,ut )

∂x 0
∂L̃t (xt ,ut )

∂x 1

]
, t = 2, · · · , N

(αN ,βN ) =λ0(0,1)

(αt ,βt )

[
∂ ft
∂u
∂Lt
∂u

]
= 0.

from which we see

αN−1 =λ0

(
gradxϕ(xN+1)

∂ fN (xN ,uN )

∂x
+ ∂LN (xN ,uN )

∂x

)
=λ0gradxϕ(xN+1)

∂ fN (xN ,uN )

∂x
+λ0

∂LN (xN ,uN )

∂x

Thus redefining αN =:λ0 gradϕ(xN+1) we obtain

αt−1 =αt
∂ ft (xt ,ut )

∂x
+λ0

∂Lt (xt ,ut )

∂x
= ∂Ht

∂x
, t = 2, · · · , N

αN =λ0gradxϕ(xN+1),

αt
∂ ft

∂u
+λ0

∂Lt

∂u
= ∂Ht

∂u
= 0, t = 1, · · · , N

(2.48)

The Hamiltonian function is Hk (x, y),=αk fk (x,u)+λ0(y +Lk (x,u)). But since y is independent of u,

one can also define Hk (x, y,u) =αk fk (x,u)+λLk (x,u) and the maximum condition becomes

Hk (xk , yk ,uk ) = min
u∈U

Hk (xk , yk ,u).

Connections to DP

To illustrate the connections to dynamic programming, we show that dynamic programming algorithm

(1.5) and discrete time maximum principle (2.48) give the same optimal control law. We consider only

the Mayer case as it is equivalent to Bolza form.
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(DP ⇒ MP): Assume that

ut (x) = argmin
u

[J∗t+1( ft (x,u))]

then we have

J∗t (x) = J∗t+1( ft (x,ut (x)))

from which it follows

∂J∗t
∂x

= ∂J∗t+1

∂x

(
∂ ft

∂x
+ ∂ ft

∂ut

∂ut

∂x

)
= ∂J∗t+1

∂x

∂ ft

∂x
+ ∂J∗t+1

∂x

∂ ft

∂ut

∂ut

∂x

= ∂J∗t+1

∂x

∂ ft

∂x

since
∂J∗t+1
∂u = 0. Letting λ0 = 1, αt = ∂J∗t+1

∂x , we deduce

αt−1 =αt
∂ ft

∂x

0 =αt
∂ ft

∂ut

Let Ht (x,u) = ∂J∗t+1(xt+1)
∂x ft (x,u). Since J∗t+1( ft (xt ,ut )) ≤ J∗t+1( ft (xt ,u)) or J∗t+1(vt ) ≤ J∗t+1(v), ∀v ∈ Vt =

∪u∈Ut { ft (xt ,u)} from which it follows

∂J∗t+1(xt+1)

∂x
(vt − v) ≤ 0, ∀v ∈Vt

or
∂J∗t+1(xt+1)

∂x vt ≤ ∂J∗t+1(xt+1)
∂x v (we have used the fact that Vt is convex). Hence Ht (xt ,ut ) = minu∈Ut Ht (xt ,u).

(MP ⇒ DP) It is sufficient to notice that
∂J∗t+1(xt+1)

∂x (vt −v) ≤ 0, ∀v ∈Vt implies J∗t+1(vt ) ≤ J∗t+1(v), ∀v ∈
Vt .

Remark 2.3. Notice that in the discrete time maximum principle, we need the assumption of convexity,

which is not the case for dynamic programming! Consider for example (a common case), when the input

set Ut is only a finite set, then Vt won’t be convex and the discrete time maximum principle does not say

anything!
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3
OPTIMAL FILTERING AND STOCHASTIC OPTIMAL CONTROL

3.1 Stochastic calculus: a modern construction of stochastic integral

3.1.1 Motivations

Consider the system ẋ = f (t , x(t )) with a noise v :R+ →Rn

ẋ = f (t , x)+ v, x ∈Rn , t ≥ 0

We sample the system under sample time ∆t , and let xk = x(k∆t ) for k ∈N.

Then

xk+1 = xk +
∫ (k+1)∆t

k∆t
f (s, x(s))+ v(s)d s

= xk +
∫ (k+1)∆t

k∆t
f (s, x(s))d s +

∫ (k+1)∆t

k∆t
v(s)d s

For discrete time system, it is custumary to model a system with noise as

xk+1 = f (k∆t , xk )+nk (3.1)

where nk is a “white noise” in the sense that nk ∼ N (0,σ2) and that n1, · · · ,nk , · · · are independent. If the

above is a sample system of the continuous time system, then the variance of the Gaussian variable nk

should be made to depend on the sample time since if∫ (k+1)∆t

k∆t
v(s)d s ∼ N (0,σ2)

then ∫ (k+2)∆t

k∆t
v(s)d s =

∫ (k+1)∆t

k∆t
v(s)d s +

∫ (k+2)∆t

(k+1)∆t
v(s)d s

= nk +nk+1 ∼ N (0,2σ2)
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which can be viewed as n j under sample time 2∆t for some j . Thus the variance of nk should be propor-

tional to the square root of the sample time. Hence we may assume nk ∼ N (0,c∆t ) for some c > 0. Now

that

N (0,c∆t ) ∼
∫ (k+1)∆t

k∆t
v(s)d s

it is reasonable to come up with a function w :R+ →Rn with d w(s)
d s = v(s) and that∫ (k+1)∆t

k∆t
v(s)d s =

∫ (k+1)∆t

k∆t

d w(s)

d s
d s = w((k +1)∆t )−w(k∆t )

:= wk+1 −wk ∼ N (0,c∆t ).

Thus a reasonable noise model could be written as

ẋ = f (t , x(t ))+ d w(t )

d t

where w should have the following property: w(tm)−w(tm−1), w(tm−1)−w(tm−2), · · · are independent

Gaussian variables and that w(t ) − w(s) ∼ N (0,c(t − s)). By doing this, we are in fact constructing a

stochastic process: namely, a Brownian motion. It is called a standard Brownian motion when c = 1.

The above equation is usually written in the following form

d x(t ) = f (t , x(t ))d t +d w(t ). (3.2)

Suppose now that in (3.1), the variance of nk is time dependent, namely nk ∼ N (0,σ2(k∆t )∆t ) for

some real function σ. Hence∫ (k+1)∆t

k∆t
v(t , x(t ))d t ∼ N (0,σ(k∆t , x(k∆t )))∆t )

which implies ∫ (k+1)∆t

k∆t
v(t , x(t ))d t =σ(k∆t , x(k∆t ))[w((k +1)∆t )−w(k∆t )], (3.3)

where w is the standard Brownian motion. Therefore it is suggestive to write∫ (k+1)∆t

k∆t
v(t , x(t ))d t =:

∫ (k+1)∆t

k∆t
σ(t , x(t ))d w(t )

when ∆t is small. We underscore that the integral on the right hand side is not a Stieltjes integral as the

Brownian motion does not have finite variation. Instead, the integral should be exactly understood as

the right hand side of (3.3). The above discussions motivate to write down the following equation as an

extension of (3.2) with a diffusion coefficient σ:

d x(t ) = f (t , x(t ))d t +σ(t , x(t ))d w(t ). (3.4)

We call the equation (3.4) a stochastic differential equation (SDE). The solution to this SDE is written

as

x(t ) = x(s)+
∫ t

s
f (r, x(r ))dr +

∫ t

s
σ(r, x(r ))d w(r )

and the integral of the last term on the right hand side is understood as (3.3) when |t − s| is small. Now

since ∫ t

s
σ(r, x(r ))d w(r ) =∑

k
σ(k∆t , x(k∆t ))(w((k +1)∆t )−w(k∆t )) (3.5)

the integral on the left hand side for arbitrary s < t should be defined as the limit (in certain sense) of the

right hand side when ∆t → 0.
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Remark 3.1. We call the integral defined above Itô integral of σ. It is important to keep in mind that the

Itô integral should always be evaluated at the left end points of the partitioned intervals, as in (3.3). One

would obtain a totally different integral if one evaluate at the right end points, which is a clear difference

between Rieman-Stietjes integral.

The rigorous constructions of Brownian motion and Itô integral are quite technical and out of the

scope of this note. We refer the reader to the excellent text [11]. In the next part, we review some impor-

tant notions from stochastic calculus, especially the Itô formula and the notion of Markov process.

3.1.2 Martingale

Throughout this subsection, we consider a probability space (Ω,F ,P ) with Ω the sample space, F the

sigmal algebra and P the probability measure.

Definition 3.1. A filtration on (Ω,F ,P ) is a collection (Ft )0≤t≤∞ indexed by [0,+∞] of sub-σ-algebras of

F , such that for every 0 ≤ s ≤ t

F0 ⊂Fs ⊂Ft ⊂F∞ ⊂F

Definition 3.2. A stochastic process (X t )t≥0 with values in a measurable space (E ,E ) (E is the σ-algebra

on E) is called adapted (to (Ft )0≤t≤∞) if for every t ≥ 0, X t is Ft -measurable. This process is progressive

if, for every t ≥ 0, the mapping

(ω, s) 7→ Xs (ω)

defined on Ω× [0, t ] is measurable w.r.t. the σ-algebra Ft ⊗B([0, t ]). (B([0, t ]) is the Borel algebra on

[0, t ])

Another important notion is stopping time.

Definition 3.3. A r.v. T :Ω→ [0,∞] is a stopping time of the filtration (F )t if {T ≤ t } ∈Ft for every t ≥ 0.

The σ-algebra of the past before T is then defined by

FT = {A ∈F∞ : ∀t ≥ 0, A∩ {T ≤ t } ∈Ft }.

As usual, for a r.v. X , we say that X ∈ Lp if E |X |p <∞. Given a process (X t )t≥0 adapted to (Ft )t≥0, we

adopt the notation Es [X t ] to mean E [X t |Fs ]. Next we introduce one of the most important notions in

stochastic calculus: martingale.

Definition 3.4. An adapted real-valued process (X t )t≥0 such that X t ∈ L1 for every t ≥ 0 is called

1. a martingale if, for every 0 ≤ s < t , Es [X t ] = Xs ; (implies E X t = E Xs ])

2. a supermartingale if, for every 0 ≤ s < t , Es [X t ] ≤ Xs ; (implies E X t ≤ E Xs )

3. a submartingale if, for every 0 ≤ s < t , Es [X t ] ≥ Xs (implies E X t ≥ E Xs )

Definition 3.5. A real-valued process B = (Bt )t≥0 is a Brownian motion started from 0 if

1. B0 = 0 almost surely (a.s.);
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2. for every 0 ≤ s < t , the r.v. Bt −Bs is independent of σ(Br , r ≤ s) and distributed according to

N (0, t − s);

3. all sample paths (t 7→ Bt (ω)) of B are continuous;

if additionally B is adapted to (Ft )t≥0, we say that B is an (Ft )-Browninan motion. Similarly, a process

B = (Bt )t≥0 with values in Rd is a d-dimensional (Ft )-Brownian motion if its components are indepen-

dent Brownian motion and B is adapted to (Ft ) and has independent increments with respect to (Ft ).

Obviously, a Brownian motion is a martingale. But one can construct many more martingales using

Brownian motion, among which the most important one is the stochastic integral that we will construct

later. For the moment, one can easily verify that both B 2
t − t and eθBt− θ2

2 t for any θ ∈R are martingales.

Given a stochastic process (X t ), there is an obvious way of constructing a filtration such that the

process is adapted: Ft =σ(Xs ; s ≤ t ). Hence, when not specified, one may always assume that a process

is adapted to the filtration constructed such. Due to this reason, in the rest of this note, a process is

always assume to be adpated.

Proposition 3.1. Consider a real process (X t )t≥0 and a convex function f :R→R+ such that E [ f (X t )] <∞
for every t ≥ 0.

1. If (X t ) is a martingale, then ( f (X t )) is a submartingale;

2. If (X t ) is a submartingale, and if f is nondecreasing, then f (X t ) is a submartingale.

3.1.3 Stochastic integration

As we know from integration theory, to define abstract integration, one starts with some kind of simple

functions. Then since the integration is a linear operator, there is a unique extension of this operator to

the closure (under certain topology) of simple functions. The stochastic integration is also defined in this

way. But what kind of “simple functions” should we start with? More generally, the stochastic integration

should be defined for what kind of functions?

To get some intuiation, we go back to the formula

x(t ) = x(s)+
∫ t

s
f (r, x(r ))dr +

∫ t

s
σ(r, x(r ))d w(r ).

The last term on the right hand side suggests that the stochastic integration should preserve certain prop-

erties of stochastic process. For example, take σ(r, x) = x, f = 0, and x(0) = 0, then x(t ) = ∫ t
0 x(r )d w(r ).

Then if x(t ) is a martingale,
∫ t

s x(r )d w(r ) should also be a martingale.

The goal of this subsection is to define stochastic integration for a rather general class of functions –

semimartingales.

Consider an “elementary process”

Hs (ω) =
p−1∑
i=0

Hi (ω)1(ti ,ti+1](s) (3.6)

where 0 = t0 < t1 < ·· · < tp and for each i ∈ {0, · · · , p −1}, Hi is bounded and Fti -measurable. Obviously,

H is a progressive process (Definition 3.2). Then invoking the formula (3.5), the integration of H w.r.t. a
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process M = (Mt )t≥0 should be defined as(∫
Hd M

)
t
=:

p−1∑
i=0

Hi (Mti+1∧t −Mti∧t ). (3.7)

Easy calculations show that
∫

Hd M so defined is a martingale (since Hi (Mti+1∧t −Mti∧t ) is for each i ).

It remains to extend the “elementary processes” to some closed set under certain norm. Some prepa-

rations are needed.

Definition 3.6. An adapted continuous process A = (At )t≥0 is called a finite variation process if all its

sample paths are finite variation functions 1 on R+. If in addition the sample paths are nondecreasing

functions, the process A is called an increasing process.

Given a process M = (Mt )t≥0 and a stopping time T , define the stopped process at T as

M T
t = Mt∧T

more precisely, letting X =: M T , then X t (ω) = Mt∧T (ω)(ω).

Definition 3.7. A continuous adpated process M = (Mt )t≥0 with M0 = 0 a.s. is called a continuous local

martingale if there exists a nondecreasing sequence (Tn)n≥0 of stopping times such that Tn ↑∞ and for

every n, the stopped process (M Tn ) is a uniformly integrable martingale. When M0 ̸= 0, M is called a

continuous local martingale if M −M0 is such. In both cases, we say that the sequence of stopping times

(Tn) reduces M .

Definition 3.8. A process X = (X t )t≥0 is a continuous semimartingale if it can be written in the form

X t = Mt + At

where M is a continuous local martingale and A a finite variation process.

The next lemma indicates that the decomposition above is unique up to indistinguishability.

Lemma 3.1. Let M be a CLM. Assume that M is also a FVP with M0 = 0. Then Mt = 0 for every t ≥ 0 a.s.

Now we go back to define a norm for the “elementary processes”, a crucial task toward to definition

of stochastic integration.

Theorem 3.1. Let M = (Mt )≥0 be a continuous local martingale. There exists an increasing process denoted

by (〈M , M〉t )t≥0, which is unique up to indistinguishability, such that M 2
t −〈M , M〉t is a continuous local

martingale. Furthermore, for every fixed t > 0, if 0 = t n
0 < t n

1 < ·· · < t n
pn

= t is an increasing sequence of

subdivisions of [0, t ] with mesh tending to 0, we have

〈M , M〉t = lim
n→∞

pn∑
i=1

(Mt n
i
−Mt n

i−1
)2 (3.8)

in probability. The process 〈M , M〉 is called the quadratic variation of M.

We can make the following observations.

1We say that a right continuous function a : [0,T ] → R with a(0) = 0 has finite variation if there exists a signed measure µ on
[0,T ] such that a(t ) =µ([0, t ]) for every t ∈ [0,T ].
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• It can be easily checked that for a standard Brownian motion B , we have 〈B ,B〉t = t .

• The quadratic variation of a process does not depend on the initial value M0 by (3.8). In fact, if

Mt = M0 +Nt , then 〈M , M〉 = 〈N , N〉.

• In the formula (3.8), if M is a finite variation process, then

pn∑
i=1

(Mt n
i
−Mt n

i−1
)2 ≤

(
sup

1≤i≤pn

|Mt n
i
−Mt n

i−1
|
)

pn∑
i=1

|Mt n
i
−Mt n

i−1
|

≤
(

sup
1≤i≤pn

|Mt n
i
−Mt n

i−1
|
)(∫ t

0
|d Ms |

)
→ 0

in probability as n →∞. Hence we can define quadratic variation for finite variation process. But

can we define it for semimartingales?

That is, if X = M + A, with M a local continuous martingale and A a finite variation process. Then

to define 〈X , X 〉 = 〈M + A, M + A〉, we shall define 〈M , A〉 (the impose linearlity on the bracket is

“natural”) i.e., the “bracket” between a local martingale and a finite variation process. But this can

be simply defined as

〈M , A〉 = lim
n→∞

pn∑
i=1

(Mt n
i
−Mt n

i−1
)(At n

i
− At n

i−1
).

But ∣∣∣∣∣ pn∑
i=1

(Mt n
i
−Mt n

i−1
)(At n

i
− At n

i−1
)

∣∣∣∣∣≤
(∫ t

0
|d As |

)
sup

1≤i≤pn

|Mt n
i
−Mt n

i−1
|→ 0

in probability as n →∞.

To go one step further, this motivates us to define the bracket between two local continuous mar-

tingale as

〈M , N〉 = lim
n→∞

pn∑
i=1

(Mt n
i
−Mt n

i−1
)(Nt n

i
−Nt n

i−1
)

with mesh tending to 0. The above discussions show that the finite variation parts of M and N do

not contribute to the bracket, i.e., if M = X + A, N = X ′+ A′, with X , X ′ CLM and A, A′ FVP. Then

〈M , N〉 = 〈
X , X ′〉.

Theorem 3.2. Given two CLMs M , N . Then

1. 〈M , N〉 is the unique (up to indistinguishability) FVP such that Mt Nt −〈M , N〉t is a CLM.

2. The mapping (M , N ) 7→ 〈M , N〉 is bilinear and symmetric.

3. For every stopping time T ,
〈

M T , N T
〉

t =
〈

M T , N
〉

t = 〈M , N〉t∧T .

4. If M and N are two continuous martingales bounded in L2, Mt Nt −〈M , N〉t is a uniformly inte-

grable martingale. Consequently, 〈M , N〉∞ is well defined as the almost sure limit of 〈M , N〉t as

t →∞ is integrable, and satisfies

E [M∞N∞] = E [M0N0]+E [〈M , N〉∞].
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Consider the space of all CLM bounded in L2 with 0 as initial distribution, which we denote asH. Define

an inner product onH as

(M , N )H = E [M∞N∞] = E [〈M , N〉∞]

then one can show that H is a Hilbert space under this inner product. Now fix a CLM M , define an inner

product on the space of progressive processs as

(H ,K )L2(M) = E

[∫ ∞

0
Hs Ks d 〈M , M〉s

]
(3.9)

where

L2(M) = {
H is progressive and (H , H)L2(M) <∞}

.

As usual, L2(M) is a Hilbert space. Note that in (3.9), because t 7→ 〈M , M〉t is a continuous increasing

function, the integral inside the expectation is Stieltjes integral and hence well-defined. Thus, we have

constructed two Hilbert spaces, namely, L2(M) andH. Recall that the RHS of (3.7) is a martingale. Further

more, it is bounded inH, more precisely(∫ ·

0
Hd M ,

∫ ·

0
Hd M

)
H

=
(

p−1∑
i=0

Hi (Mti+1∧·−Mti∧·),
p−1∑
i=0

Hi (Mti+1∧·−Mti∧·)

)
H

= E

[〈
p−1∑
i=0

Hi (Mti+1 −Mti ),
p−1∑
i=0

Hi (Mti+1 −Mti )

〉]

= E

[
p−1∑
i=0

H 2
i (〈M , M〉ti+1 −〈M , M〉ti )

]

=
∫ ∞

0
H 2

s d 〈M , M〉s

= (H , H)L2(M)

Thus the linear mapping

H 7→
∫ ·

0
Hd M

is an isometry (hence continuous) from the set of elementary processes ⊂ L2(M) into H. Then one can

extend the integral to L2(M) in a unique way if elementary processes are dense in L2(M), which is indeed

the case. Thus for any H ∈ L2(M), the integral
∫

Hd M is defined as the limit of
∫

Hnd M where H is

the limit of elementary processes in L2(M). (Note that since H is Hilbert (complete), the limit is still a

martingale!) For convenience,
∫ ·

0 Hd M is also written as H ·M .

The following are some properties of the stochastic integral:

• Let H ∈ L2(M), M , N ∈H. Then

〈H ·M , N〉 = H · 〈M , N〉
and H ·M is the unique element in H such that the above holds for all N ∈ H. From this formula,

we can deduce that

〈H ·M , H ·M〉 = H · 〈M , H ·M〉

= H ·
(∫ ·

0
Hs d 〈M , M〉s

)
= H 2 · 〈M , M〉 (3.10)
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where the equality (3.10) is justified first for elementary processes and then one extend it to L2(M).

Written out explicitly ,the above relation reads〈∫ ·

0
Hd M ,

∫ ·

0
Hd M

〉
t
=

∫ t

0
H 2

s d 〈M , M〉s .

More generally, for K ∈ L2(N ), we have

〈H ·M ,K ·N〉 = HK · 〈M , N〉 .

• Let M , N ∈H, and H ∈ L2(M), K ∈ L2(N ). Then since H ·M and K ·N are martingales in H, we have

for every t ∈ [0,∞],

E

[∫ t

0
Hs d Ms

]
= 0,

Es

[∫ t

0
Hr d Mr

]
=

∫ s

0
Hr d Mr , ∀0 ≤ s ≤ t

Es

[∫ t

s
Hr d Mr

]
= 0

• More over

E [(H ·M)t (K ·N )t ] = E [((HK ) · 〈M , N〉)t ]

or

E

[(∫ t

0
Hs d Ms

)(∫ t

0
Ks d Ns

)]
= E

[∫ t

0
Hs Ks d 〈M , N〉s

]
.

In particular

E

[(∫ t

0
Hs d Ms

)2
]
= E

[∫ t

0
H 2

s d 〈M , M〉s

]
In the above, we have defined stochastic integral for martingales bounded in L2, i.e. H. Now we generalize

the stochastic integral to CLMs.

Given a CLM M , define

L2
loc(M) =

{
H :

∫ t

0
H 2

s d 〈M , M〉s <∞, ∀t ≥ 0

}
a.s.

L2(M) =
{

H :
∫ ∞

0
H 2

s d 〈M , M〉s <∞
}

(Since 〈M , M〉 is FVP, both spaces are well defined). We point out that L2(M) is still a Hilbert space.

Theorem 3.3. Let M be a CLM. For every H ∈ L2
loc(M), there exists a unique CLM with initial value 0, which

is denoted by H ·M, such that, for every CLM N ,

〈H ·M , N〉 = H · 〈M , N〉 .

If H ∈ L2
loc(M) and K is a progressive process, we have K ∈ L2

loc(H ·M) if and only if HK ∈ L2
loc(M) and then

H · (K ·M) = HK ·M .

We write

(H ·M)t =
∫ t

0
Hs d Ms

and call it the stochastic integral of H w.r.t. M.
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Now that a semimartingale X can be decomposted as the sum of a CLM and a FVP, namely, X = M+V .

Then for any locally bounded progressive process H , one can define

H ·X := H ·M +
∫

Hs dVs

where
∫

Hs dVs is the usual Stieltjes integral.

As before, this integral has the following properties:

1. Let X be a continuous semimartingale, and K , H two locally bounded progressive processes. Then

K H ·X = K · (H ·X ).

2. Let H be a locally bounded progressive process. If X is a CLM or FVP, the same holds for H ·X .

3.1.4 Itô’s formula

Itô’s formula will be our most useful tool in this text. Even if one does not know the rigorous construction

of stochastic integral, Itô’s formula will be sufficient for the study of stochastic optimal control.

Theorem 3.4. Let X 1, · · · , X p be p continuous semimartingales, and let F be a twice continuously differ-

entiable real function on Rp . Then for every t ≥ 0,

F (X 1
t , · · · , X p

t ) = F (X 1
0 , · · · , X p

0 )

+
p∑

i=1

∫ t

0

∂F

∂xi
(X 1

s , · · · , X p
s )d X i

s

+ 1

2

p∑
i , j=1

∫ t

0

∂2F

∂xi∂x j
(X 1

s , · · · , X p
s )d

〈
X i , X j

〉
s

.

We mention a few consequences of Itô’s formula.

1. F (X 1
t , · · · , X p

t ) is a semimartingale. This is what we had expected in the beginning of the last sub-

subsection!

2. Let F (x, y) = x y . Then we see that

X t Yt = X0Y0 +
∫ t

0
Xs dYs +

∫ t

0
Ys d Xs +

∫ t

0
d 〈X ,Y 〉s

= X0Y0 +
∫ t

0
Xs dYs +

∫ t

0
Ys d Xs +〈X ,Y 〉t

This formula can be viewed as the formula of integration by parts. In particular, if Y = X ,

X 2
t = X 2

0 +2
∫ t

0
Xs d Xs +〈X , X 〉t .

We know that when X is a CLM, then 〈X , X 〉 is the unique FVP such that X 2 −〈X , X 〉 is a CLM. The

above formula tells us that

〈X , X 〉t = X 2
t −X 2

0 −2
∫ t

0
Xs d Xs .

3. Let X 1
t = t , X 2

t = Bt (standard Brownian motion), and F ∈C 2(R+×R). Then

F (t ,Bt ) = F (0,B0)+
∫ t

0

∂F

∂x
(s,Bs )dBs +

∫ t

0

(
∂F

∂t
+ 1

2

∂2F

∂x2

)
(s,Bs )d s.
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3.1.5 Theory of Markov process

Let (E ,E ) be a measurable space. A Markovian transition kernel from E into E is a mapping Q : E ×
E → [0,1] satisfying the following properties:

1. For every x ∈ E , the mapping E ∋ A 7→Q(x, A) is a probability measure on (E ,E ).

2. For every A ∈ E , the mapping E ∋ x 7→Q(x, A) is E -measurable.

Given a transition kernel Q, if f : E →R is bounded measurable, we define the function Q f : E →R by

Q f (x) =
∫

E
Q(x,d y) f (y) (3.11)

which is still bounded measurable.

Definition 3.9. A collection (Qs,t )0≤s≤t of transition kernels on E is called a transition semigroup if the

following properties hold.

1. For every x ∈ E and t ∈R, Qt ,t (x,d y) = δx (d y).

2. For all 0 ≤ s ≤ r ≤ t and A ∈ E ,

Qs,t (x, A) =
∫

E
Qs,r (x,d y)Qr,t (y, A) (3.12)

(Chapman-Kolmogorov identity).

3. For every A ∈ E , the function (s, t , x) 7→Qs,t (x, A) is measurable w.r.t. theσ-algebra B(R+)×B(R+)×
E .

When Qs,t =Qs+r,t+r for all r ∈R, we say that the transition semigroup is time independent and we simply

write Qt−s :=Qs,t . Now given f ∈ B(E), 0 ≤ s ≤ r ≤ t , by Chapman-Kolmogorov identity, we have

Qs,r Qr,t f (x) =
∫

E
Qs,r (x,d y)Qr,t f (y)

=
∫

E
Qs,r (x,d y)

∫
E

Qr,t (y,d w) f (w)

=
∫

E
f (w)

∫
E

Qs,r (x,d y)Qr,t (y,d w)

=
∫

E
f (w)Qs,t (x,d w)

=Qs,t f (x).

Hence we get the identity

Qs,r Qr,t =Qs,t , ∀0 ≤ s ≤ r ≤ t

which is equivalent to the Chapman-Kolmogorov identity when Qs,t is understood as operators from

B(E) to B(E). Since A 7→Qs,t (x, A) is a probability measure, it is easily seen from (3.11) that Qs,t : B(E) →
B(E) is non-expansive (i.e., ||Qs,t || ≤ 1) when B(E) is equipped with norm || f || = sup{| f (x)| : x ∈ E }.

Now we are ready to define Markov process.
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Definition 3.10. A process (X t )t≥0 with values in E is called a Markov process with transition semigroup

(Qs,t )0≤s≤t if

Es [ f (X t )] =Qs,t f (Xs ), ∀s, t ≥ 0 (3.13)

for each f ∈ B(E).

When the transition semigroup is time independent, the Markov property (3.13) becomes

Es [ f (Xs+t )] =Qt f (Xs ), ∀s, t ≥ 0.

Now take f = 1A , with A ∈ E . Then (3.13) implies

P (X t+s ∈ A|Fs ) =Qs,s+t 1A(Xs ) =Qs,s+t (Xs , A)

from which we deduce that

P (X t ∈ A|X t1 , · · · , X tm ) = P (X t ∈ A|X tm )

whenever t1 ≤ ·· · ≤ tm ≤ t . In other words, the conditional distribution of Xs+t knowing the past (Xr , 0 ≤
r ≤ s) before time s depends only on the present state Xs . In particular, when Xs = x, we get

Qs,t (x, A) = P (X t ∈ A|Xs = x)

Let C0(E) be the set of continuous real functions on E that vanish at infinity. It is common knowledge

that C0(E) is a Banach space for the norm || f || = sup{| f (x)| : x ∈ E }.

Definition 3.11. Let (Qs,t ) be a transition semigroup on E . We say that it is a Feller semigroup if

1. ∀ f ∈C0(E), Qs,t f ∈C0(E) for all 0 ≤ s ≤ t .

2. ∀ f ∈C0(E), ||Qs,s+h f − f ||→ 0 as h → 0.

Define the operators A(t ) by

A(t ) f = lim
h→0+

Qt ,t+h f − f

h

where the limit is taken in C0(E) and the domain of A(t ) is such that the above limit exists, i.e.,

D(A(t )) =
{

f ∈C0(E) :
Qt ,t+h f − f

h
converges in C0(E) when h → 0+

}
.

3.1.6 Stochastic differential equation

Let d and m be positive integers, and let σ and b be locally bounded measurable functions defined on

R+×Rd and taking values inRd×m and inRd respectively. We writeσ= (σi j )1≤i≤d ,1≤ j≤m and b = (bi )1≤i≤d .

A solution of the stochastic differential equation

d X t = b(t , X t )d t +σ(t , X t )dBt (3.14)

X0 is F0-measurable

consists of

1. a filtered probability space (Ω,F , (Ft )t∈[0,∞],P ) (where the filtration is always assumed to be com-

plete);
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2. an m-dimensional (Ft )-Brownian motion B = (B 1, · · · ,B m) started from 0;

an (Ft )-adapted process X = (X 1, · · · , X d ) with values in Rd , with continuous sample paths, such that

X t = X0 +
∫ t

0
b(s, Xs )d s +

∫ t

0
σ(s, Xs )dBs .

The solution is called a strong solution if (Ft )t∈[0,∞] is specified a priori. Otherwise it is called a weak

solution, i.e., the filtration is part of the solution. In this note, we are mainly interested in strong solution.

If for any two strong solutions X ,Y we have

P (X (t ) = Y (t ), 0 ≤ t <∞) = 1,

we say that the solution is unique.

Theorem 3.5. If there exists a constant K > 0 such that for every t ≥ 0, x, y ∈Rd ,

|b(t , x)−b(t , y)|+ |σ(t , x)−σ(t , y)| ≤ K |x − y |

then (3.14) has a unique strong solution.

We show that the solution of SDE is a Markov process (Definition 3.10).

To that end, define

Qs,t (x, A) := P (X (t ; s, x) ∈ A)

we show that

Qs,t f (Xs ) = Es [ f (X t )] (3.15)

(note that this would imply Qs,t f (x) = E [ f (X (t ; s, x))]).

In fact,

Qs,t 1A(Xs ) =Qs,t (Xs , A)

= P (X (t ; s, x) ∈ A)|x=Xs

(Xs is a r.v. so must be put outside P (·)!)

= Es 1A(X (t ; s, Xs ))

(Xs is Fs -measurable)

= Es 1A(X t ).

(uniqueness of the solution enforces that X (t ; s, Xs ) = X t for t ≥ s)

A standard argument using monotone class lemma will finalize the proof of the formula (3.15). It remains

to show that Qs,t is a transition group, i.e.,

Qs,r Qr,t =Qs,t . (3.16)
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But

Qs,t f (x) = E [ f (X (t ; s, x))

(see the remark after (3.15))

= E [Er [ f (X (t ; s, x))]]

= E [Qr,t f (Xr )]

(again, by (3.15))

=
∫

Qr,t f (y)P (Xr ∈ d y)

=
∫

Qr,t f (y)Qs,r (x,d y)

(since P (Xr ∈ A) = P (X (r ; s, x) ∈ A) =Qs,r (x, A))

=
∫

Qs,r (x,d y)Qr,t f (y)

which indeed verifies (3.16). For time dependent function, evidently we should define Qs,t f (s, t ) :=
E [ f (t , X (t ; s, x))].

In the literature, it is common to denote

P (s, x; t , A) :=Qs,t (x, A) = P (X t ∈ A|Xs = x)

and the property (3.16) can now be expressed as

P (s, x; t , A) =
∫

P (s, x;r,d y)P (r, y ; t , A).

Our next task is to find the generator of the Markov process (transition group) (Qs,t )0≤s≤t .

Since

X x
t = x +

∫ t

0
b(r, X x

r )dr +
∫ t

0
σ(r, X x

r )dBr .

we find the quadratic variation (when X is of one-dimension)

〈
X x , X x〉

t =
〈∫ ·

0
σ(r, X x

r )dBr ,
∫ ·

0
σ(r, X x

r )dBr

〉
t

=
∫ t

0
σ(r, X x

r )2dr.

More generally, we have d 〈X x , X x〉t =σ(t , X x
t )σT (t , X x

t )d t =: (ai j )d t .

Now given a functionϕ ∈C 1,2 (C 1 in w.r.t. to the first variable and C 2 w.r.t the second), by Itô’s formula

ϕ(t , X t ) =ϕ(s, Xs )+
∫ t

s

∂ϕ

∂t
(r, Xr )dr +

∫ t

s

∂ϕ

∂x
(r, Xr )d Xr + 1

2

∑
i , j

∫ t

s

∂2ϕ

∂x2 (r, Xr )ai j (r, Xr )dr

= Xs +
∫ t

s

∂ϕ

∂t
(r, Xr )dr +

∫ t

s

∂ϕ

∂x
(r, Xr )b(r, Xr )dr +

∫ t

s

∂ϕ

∂x
(r, Xr )σ(r, Xr )dBr

+ 1

2

∫ t

s
tr

(
∂2ϕ

∂x2 (r, Xr )σ(r, Xr )σT (r, Xr )

)
dr

Then

Es [ϕ(t , X t )−ϕ(s, Xs )] = Es

[∫ t

s

∂ϕ

∂t
(r, Xr )+ A(r )

(
ϕ(r, Xr )

)
dr

]
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in which

A(r )(ϕ(r, x)) := 1

2
tr

(
σσT∆ϕ

)+ (∇ϕ)b(t , x) (3.17)

= 1

2

∑
ai j (t , x)

∂2ϕ

∂xi∂x j
(t , x)+∑

bi (t , x)
∂ϕ

∂xi
.

Therefore, by fixing Xs = x, we obtain

Qs,s+hϕ(s, x)−ϕ(s, x)

h
= E [ϕ(s +h, X (s +h; s, x))]−ϕ(s, x)

h

= 1

h
E

[∫ s+h

s

∂ϕ

∂t
(r, Xr )+ A(r )

(
ϕ(r, Xr )

)
dr

]
→ϕs (s, x)+ A(s)

(
ϕ(s, x)

)
as h → 0+

Hence the generator of Qs,t is ϕs + A(s)ϕ where A is defined as (3.17). When considering only time inde-

pendent functions ϕ, then A(s) alone is the generator since ϕs = 0 for all s ≥ 0.

3.1.7 Girsanov theorem

M c
loc : continuous local martingale

M 2,c
loc : continuous local martingale s.t. sup

0≤s≤t
E |Xs |2 <∞, ∀t ∈R+

For X ∈M 2,c
loc with X0 = 0, define

E (X )t =: exp

(
X t − 1

2
〈X , X 〉t

)
(3.18)

where 〈X , X 〉 is the quadratic variation.

Lemma 3.2. E (X ) ∈M c
loc.

Proof. By Ito formula,

E (X )t = 1+
∫ t

0
E (X )s (d Xs − 1

2
d 〈X , X 〉s )

+ 1

2

∫ t

0
E (X )s d

〈
Xs − 1

2
〈X , X 〉s , Xs − 1

2
〈X , X 〉s

〉
but 〈

Xs − 1

2
〈X , X 〉s , Xs − 1

2
〈X , X 〉s

〉
= 〈X , X 〉s

therefore

E (X )t = 1+
∫ t

0
E (X )s d Xs

which is a local continuous martingale.

Theorem 3.6. Let X ∈M c
loc with X0 = 0. Consider the following properties:

1. E [exp 1
2 〈X , X 〉∞] <∞ (Novikov’s condition);

2. X is a uniformly integrable martingale, and E [exp 1
2 L∞] <∞ (Kazamaki’s condition);
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3. E (X ) is a uniformly integrable martingale.

Remark 3.2. When we consider local martingales on finte interval, say on [0,T ], the conditions in the

above theorem changes accordingly, e.g., the Novikov condition becomes E [exp 1
2 〈X , X 〉T ] <∞.

Theorem 3.7. Let (X t )t∈[0,T ] be a continous local martingale, and assume that E (X )t is a martingale on

[0,T ]. Define a process

D t =: E (X )t = E [E (X )T |Ft ]

then (D t ) is a uniformly integrable martingale. Further, define a probability measure Q by

dQ

dP
= DT

Then for any martingale Y on [0,T ], the process Ỹt = Yt −〈X ,Y 〉t is a martingale under Q on [0,T ].

Example 3.1. Let Y =W be a Brownian motion, and

X t =
∫ t

0
βs dWs

then

W̃t =Wt −
∫ t

0
βs d s

is a martingale under dQ = zT dP where

zT = E

(∫ ·

0
βs dWs

)
T
= exp

(∫ T

0
βs dWs − 1

2

∫ T

0
|βs |2d s

)
.

Clearly, E (X ) is a martingale if E exp 1
2 〈X , X 〉T = E exp 1

2

∫ T
0 |βs |2d s <∞. In fact, we can say more: (W̃t )[0,T ]

is a Brownian motion. In particular, W̃t is independent of F0.

Let G ⊂F , and P <<Q such that dP = MdQ, then

E P [X |G ] =
EQ [X dP

dQ |G ]

EQ [ dP
dQ |G ]

(3.19)

This is called the abstract Bayes formula.

3.2 Stochastic optimal control

3.2.1 Stochastic principle of optimality

The formulation of stochastic optimal control problem is somewhat the same as the deterministic case.

Given a filtered probability space (Ω,F , (Ft )t≥0,P ) on which an m-dimensional standard Brownian mo-

tion B is defined. Consider the following controlled SDE:

d x(t ) = b(t , x(t ),u(t ))d t +σ(t , x(t ),u(t ))dBt (3.20)

x(0) = x0 ∈Rn

where b : [0,T ]×Rn ×U → Rn , σ : [0,T ]×Rn ×U → Rn×m , with U being a given separable metric space

and u : [0,T ]×Ω→U is called the control. Define the feasible control set as

U [0,T ] = {u : [0,T ]×Ω→U | u(·) is (Ft )-adapted}.
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The cost functional for stochastic optimal control is defined as

J (u(·)) = E

{
h(x(T ))+

∫ T

0
L(t , x(t ),u(t ))d t

}
(3.21)

and call

Uad[0,T ] = {
u ∈U [0,T ] : the solution of (3.20) is unique and J (u(·)) <∞}

the s-admissible control set. It is also natural to consider state feedback control and call

Uf[0,T ] = {
u ∈Uad[0,T ] : u(t ) =φ(t , X t ) for some continuous function φ

}
the f-admissible control set.

As in the deterministic case, we derive the principle of optimality, i.e., the stochastic version of (??).

The stochastic optimal control problem is find ū(·) ∈Uf[0,T ] (if exists) such that

J (ū(·)) = inf
u(·)∈Uf[0,T ]

J (u(·))

Assumption 1. (A1) U is a Polish space (separable Banach space).

(A2) The maps b, σ, h, L are uniformly continuous, and there exists a constant K > 0, such that for

ϕ(t , x,u) = b(t , x,u),σ(t , x,u),h(x),L(t , x,u),

|ϕ(t , x,u)−ϕ(t , y,u)| ≤ K |x − y |, ∀t ∈ [0,T ], x, y ∈Rn , u ∈U

|ϕ(t ,0,u)| ≤ K , ∀(t ,u) ∈ [0,T ]×U

Let

J (s, y ;u(·)) = E

{
h(x(T ))+

∫ T

s
L(t , x(t ),u(t ))d t

}
and define the value function as

V (s, y) = inf
u(·)∈Uf[s,T ]

J (s, y ;u(·)), ∀(s, y) ∈ [0,T )×Rn ,

V (T, y) = h(y), ∀y ∈Rn .

We have the following proposition.

Proposition 3.2. Let (A1)-(A2) hold. Then for any (s, y) ∈ [0,T )×Rn and s ≤ ŝ ≤ T

V (s, y) = inf
u(·)∈Uf[s,T ]

E

{∫ ŝ

s
L(t , X (t ; s, y,u(·)),u(t ))d t +V (ŝ, X (t ; s, y,u(·)))

}
. (3.22)

Formula (3.22) enjoys the same structure as (??), but since the cost function (3.21) does not admit the split-

ting in Theorem (1.2), it is not a immediate consequence of that theorem.
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Proof. Let F s
ŝ = σ{Br : s ≤ r ≤ ŝ}. Denote right hand side of (3.22) by V̄ (s, y). For any ε ≥ 0, there exists

u(·) ∈Uf[s,T ] such that

V (s, y)+ε> J (s, y ;u(·))

= E

{∫ T

s
L(t , X (t ; s, y,u(·)),u(t ))d t +h(X (T ; s, y,u(·))

}
= E

{∫ ŝ

s
L(t , X (t ; s, y,u(·)),u(t ))d t

}
+EEF s

ŝ

[∫ T

ŝ
L(t , X (t ; s, y,u(·)),u(t ))d t +h(X (T ; s, y,u(·))

]
= E

{∫ ŝ

s
L(t , X (t ; s, y,u(·)),u(t ))d t

}
+EEF s

ŝ

[∫ T

ŝ
L(t , X (t ; ŝ, X ŝ ,u(·)),u(t ))d t +h(X (T ; ŝ, X ŝ ,u(·))

]
(uniqueness of solution)

= E

{∫ ŝ

s
L(t , X (t ; s, y,u(·)),u(t ))d t + J (ŝ, X (ŝ; s, y,u(·));u(·))

}
≥ E

{∫ ŝ

s
L(t , X (t ; s, y,u(·)),u(t ))d t +V (ŝ, X (ŝ; s, y,u(·)))

}
≥ V̄ (s, y).

To prove the converse, we need a technical result regarding the regularity of J and V : Given a constant

ε> 0, there exists δ= δ(ε) > 0 such that whenever |x − y | < δ,

|J (ŝ, y ;u(·))− J (ŝ, x;u(·))|+ |V (ŝ, y)−V (ŝ, x)| ≤ ε, ∀u(·) ∈Uf[ŝ,T ].

Next, choose a partition of Rn with Rn = ∪ j D j , Di ∩D j =∅ if i ̸= j and diam(D j ) < δ. Then there exist

(u j ) j≥1 ∈Uf[ŝ,T ] such that

J (ŝ, x j ;u j (·)) ≤V (ŝ, x j )+ε, ∀x j ∈ D j .

Hence for any x ∈ D j , we have

J (ŝ, x,u j (·)) ≤ J (ŝ, x j ,u j (·))+ε≤V (ŝ, x j )+2ε≤V (ŝ, x)+3ε.

Now for any u(·) ∈Uf[s,T ], define

ũ(t ) =
{

u(t ), t ∈ [s, ŝ)

u j (t ), t ∈ [ŝ,T ] and x(t ) ∈ D j
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Then

V (s, y) ≤ J (s, y ; ũ(·))

= E

{∫ T

s
L(t , X (t ; s, y, ũ(·)),u(t ))d t +h(X (T ; s, y, ũ(·))

}
= E

{∫ ŝ

s
L(t , X (t ; s, y,u(·)),u(t ))d t x

}
+EEF s

ŝ

[∫ T

ŝ
L(t , X (t ; s, y, ũ(·)),u(t ))d t +h(X (T ; s, y, ũ(·))

]
= E

{∫ ŝ

s
L(t , X (t ; s, y,u(·)),u(t ))d t + J (ŝ, X (ŝ; s, y,u(·)); ũ(·))

}
≤ E

{∫ ŝ

s
L(t , X (t ; s, y,u(·)),u(t ))d t +V (ŝ, X (ŝ; s, y,u(·)))+3ε

}
.

Again, as in the deterministic case, based on the above proposition, one can easily prove the following

theorem.

Theorem 3.8. Suppose that (A1)-(A2) hold and the value function V ∈C 1,2([0,T ]×Rn). Then V is a solu-

tion of the following PDE (stochastic HJB equation):

−Vt + sup
u∈U

G(t , x,u,−Vx ,−Vxx ) = 0 (3.23)

V (x,T ) = h(x), x ∈Rn

where

G(t , x,u, p,P ) = 1

2
tr

(
Pσ(t , x,u)σ(t , x,u)T )+〈

p,b(t , x,u)
〉−L(t , x,u).

Invoking the infinitesimal generator A(·) defined as (3.17), the stochastic HJB equation can also be

written as

0 =Vt + inf
u∈U

[Au(t )V +L(t , x,u)], (3.24)

V (x,T ) = h(x), x ∈Rn .

where

Au(t ) := 1

2

∑
ai j (t , x,u)

∂2

∂xi∂x j
(t , x)+∑

bi (t , x,u)
∂

∂xi
.

Notice that when σ= 0, (3.23) reduces exactly to the deterministic HJB (c.f. (1.37)). Thus the stochas-

tic principle of optimality is a generalization of the deterministic one.

3.2.2 Full state LQG control

Consider now the linear controlled stochastic system

d x(t ) = [A(t )x(t )+B(t )u(t )]d t +σ(t )dBt (3.25)

on the interval [0,T ] with A(·) ∈ L∞([0,T ];Rn×n), B(·) ∈ L∞([0,T ];Rn×m), u(·) ∈Uf[0,T ] andσ ∈ L∞([0,T ];Rn×d ),

B· is a d-dimensional Brownian motion. The cost function of interest for this system is

J (s, x,u) = E

{
x(T )T Dx(T )+

∫ T

s
[x(t )T M(t )x(t )+u(t )T R(t )u(t )]d t

}
,
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in which x(s) = x, M(t ) ≥ aIn×n , R(t ) ≥ bIm×m and D > cIn×n for some constants a,b,c ∈R>0.

In order to solve the stochastic HJB (3.23) or (3.24), it is natural to propose the following candidate

V (t , x) = xT K (t )x +q(t )

for some functions K : [0,T ] →Rn×n (symmetric), and q : [0,T ] →R.

Now

Au(t )V (t , x)+L(t , x,u)

=Au(t )[xT K (t )x +q(t )]+xT M(t )x +uT R(t )u

=2xT K (t )[A(t )x +B(t )u]+ tr(σ(t )σ(t )T K (t ))+xT M(t )x +uT R(t )u

which is a quadratic function of u. By the fact that R(t ) ≥ bIm×m we know inf[Au(t )V (t , x)+L(t , x,u)] is

achieved at

{u :
∂

∂u
[Au(t )V (t , x)+L(t , x,u)] = 0}

or

2R(t )u∗+2B(t )T K (t )x = 0

which results in a static feedback control law

u∗(t , x) =−R(t )−1B(t )T K (t )x.

Substituting u∗ into the stochastic HJB, we get

0 = xT [K̇ +K A+ AT K −K BR−1B T K +M ]x + q̇(t )+ tr(σσT K ).

Hence a sufficient condition for the optimal law is

K̇ (t ) =−K (t )A(t )− A(t )T K (t )+K (t )B(t )R−1(t )B(t )T K (t )−M(t )

K (T ) = D

q̇(t ) = tr(σ(t )σ(t )T K (t ))

q(T ) = 0

and that the resulting solution K (t ) being symmetric positive definite.

3.2.3 Revisit of viscosity solution of HJB

Let us consider two systems

S1 : d x(t ) = f (t , x(t ),u(t ))d t

S2 : d x(t ) = f (t , x(t ),u(t ))d t +p
2εdBt

i.e., S2 is obtained by adding a stochastic term
p

2εdBt on S1.

Consider the cost function for the two systems

J1(s, y,u(·)) =
∫ T

s
L(t , x(t ),u(t ))d t +ϕ(x(T )), x(t ) solves S1

J2(s, y,u(·)) = E

[∫ T

s
L(t , x(t ),u(t ))d t +ϕ(x(T ))

]
, x(t ) solves S2
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respectively.

The HJB for the two systems are

0 =Vt + inf
u

(
∂V (t , x)

∂x
f (t , x,u)+L(t , x,u)

)
(3.26)

0 =Wt + inf
u

(
∂W (t , x)

∂x
f (t , x,u)+L(t , x,u)

)
+ε∂

2W (x, t )

∂x2 (3.27)

We observe that the stochastic HJB can be obtained from the deterministic HJB by adding the term

ε∆W . It is reasonable to expect that when ε→ 0, W ε (the solution to (3.27) with a given ε) converges to V

in certain sense (in fact, uniformly) since the term ε∆W ε vanishes as ε→ 0. From parabolic PDE theory,

(3.27) admits smooth solutions (while (3.26) doesn’t! Thus the term ε∆W regularizes the HJB (3.26)).

Since the convergence of W ε is uniform, V should be continuous. One can show that this V is indeed the

viscosity solution that we have introduced in Section 1.2.4. On the other hand, the construction of the

viscosity solution in Section 1.2.4 has nothing to do with the discussion here. It is indeed a more intrinsic

way of construction.

3.3 Theory of optimal filtering

3.3.1 Kallianpur-Striebel formula

Give a filtered probability space (Ω,F , (Ft )t∈[0,T ],P ) and

System: d X t = b(t , X t )d t +σ(t , X t )dWt (3.28)

Observable: dYt = h(t , X t )d t +dBt

Assume (Bt )t∈[0,T ] and (Wt )t∈[0,T ] are independent d and p dimensional Brownian motions adapted

to (Ft ), X0 ∈F0 and Y0 = 0 a.s.

The mappings

b : [0,∞)×Rd →Rd

σ : [0,∞)×Rd →Rm×d

h : [0,∞)×Rd →Rp

are assumed to be measurable. Without further assumption, we assume that the equation for (X t ,Yt ) has

a unique (strong) solution.

Denote

F Y
t =σ{Ys : 0 ≤ s ≤ t }

The goal of the filtering problem is to compute the optimal estimates πt ( f ) := E [ f (X t )|F Y
t ] when

f (X t ) ∈ L1.

The idea is to construct a probability measure Q, such that X and Y are independent under Q. Then

by the Bayes formula (3.19), we would have

πt ( f )(ω) =
EQ [ f (X t ) dP

dQ |F Y
t ]

EQ [ dP
dQ |F Y

t ]

=
ẼQ [ f (X t (ω̃)) dP

dQ (X (ω̃),Y (ω))]

ẼQ [ dP
dQ (X (ω̃),Y (ω))]
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where X (ω̃),Y (ω) ∈ C [0,T ]. Our main tool to construct Q is the Girsanov theorem (see Theorem 3.7 in

the Appendix). Define

Λt = E

(
−

∫ t

0
h(s, Xs )dBs

)
t

= exp

(
−

∫ t

0
h(s, Xs )dBs − 1

2

∫ t

0
|h(s, Xs )|2d s

)
= exp

(
−

∫ t

0
h(s, Xs )dYs + 1

2

∫ t

0
|h(s, Xs )|2d s

)
see (3.18). Then since Yt = Wt −

(−∫ t
0 h(s, Xs )dBs

)
, it follows from Girsanov theorem (see Example 3.1)

that (Yt ) is a Brownian motion under Q defined by dQ =ΛT dP whenever

E

[
exp

(
1

2

∫ T

0
|h(s, Xs )|2d s

)]
<∞

Next, we show that X and Y are indeed independent under Q. We have to prove

EQ [Φ(X )Ψ(Y )] = EQ [Φ(X )]EQ [Ψ(Y )]

for any bounded measurable functionsΦ and Ψ on C [0,T ]. The following relations are trivial:

EQ [Φ(X )Ψ(Y )] = E P [ΛT (X ,Y )Φ(X )Ψ(Y )]

= E P [E P [ΛT (X ,Y )Φ(X )Ψ(Y )|X ]]

= E P [Φ(X )E P [ΛT (X ,Y )Ψ(Y )|X ]]

To continure, observe that

E P [ΛT (X ,Y )Ψ(Y )|X ](ω) = Ẽ P [ΛT (X (ω),Y X (ω)(ω̃))Ψ(Y X (ω)(ω̃))]

= ẼQ̃ [Ψ(Y X (ω)(ω̃))]

=
∫

C [0,T ]
Ψ(y)µW̄ (y)

where

Y X (ω)
t (ω̃) =

∫ t

0
h(s, Xs (ω))d s +Bt (ω̃),

µW̄ is the measure on C [0,T ] induced by a Brownian motion W̄ and that Y X (ω)
t (ω̃) is a Brownian motion

under dQ̃ =ΛT (X (ω),Y X (ω)(ω̃))dP by Girsanov theorem. Also, we see that E P [ΛT (X ,Y )Ψ(Y )|X ](ω) does

not dependent on ω and hence is deterministic! Thus we obtain

EQ [Φ(X )Ψ(Y )] = E P [Φ(X )]
∫

C [0,T ]
Ψ(y)µW (y).

Choose Ψ≡ 1, we get EQ [Φ(X )] = E P [Φ(X )]. Choose Φ≡ 1, we get EQ [Ψ(Y )] = ∫
C [0,T ]Ψ(y)µW (y), which

shows that Y is independent of X .
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Therefore

πt ( f )(ω) = EQ
[

f (X t )Λ−1
T |F Y

t

]
EQ [Λ−1

T |F Y
t ]

= EQ
[

f (X t )Λ−1
t |F Y

t

]
EQ [Λ−1

t |F Y
t ]

(ω)

= ẼQ
[

f (X t (ω̃)Λ−1
t (X (ω̃),Y (ω))

]
ẼQ [Λ−1

t (X (ω̃),Y (ω))]

=
∫

C [0,T ] f (ιt (x))Λ−1
t (x,Y (ω))µX (d x)∫

C [0,T ]Λ
−1
t (x,Y (ω))µX (d x)

due to the independence of X and Y . ιt (x) = xt . The second equality follows from the following fact:

EQ [ZΛ−1
t ] = E P [ZΛTΛ

−1
t ]

= E P [ZΛ−1
t E P [ΛT |Ft ]]

= E P [Z ]

= EQ [ZΛ−1
T ]

= EQ [Z EQ [Λ−1
T |Ft ]]

hence EQ [Λ−1
T |Ft ] =Λ−1

t , i.e., Λt is an Ft martingale under Q.

Kallianpur-Striebel formula

E [ f (X t )|F Y
t ](ω) = ẼQ

[
f (X t (ω̃)Λ−1

t (X (ω̃),Y (ω))
]

ẼQ [Λ−1
t (X (ω̃),Y (ω))]

where

Λ−1
t = exp

(∫ t

0
h(s, Xs )dYs − 1

2

∫ t

0
|h(s, Xs )|2d s

)

As a biproduct, we also see

Λ−1
t = exp

(∫ t

0
h(s, Xs )dYs − 1

2

∫ t

0
|h(s, Xs )|2d s

)
= E

(∫ ·

0
h(s, Xs )dYs

)
t

Hence Λ−1
t is an Ft martingale under P on [0,T ] i.e, E P [Λ−1

T |Ft ] =Λ−1
t .

3.3.2 Zakai and FKK equation

Keep the notations as in the previous section and introduce a new one:

σt ( f ) = EQ [
f (X t )Λ−1

t |F Y
t

]
then πt ( f ) = σt ( f )

σt (1) . We derive an equation for σt ( f ). For convenience, put zt =Λ−1
t , then d zt = zt hT

t dYt

where we write for convenience hs = hs (s, Xs ).
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then by Ito’s formula

d f (X t )zt = zt∇ f (X t )T d X t + f (X t )d zt+

+ 1

2

d∑
i , j=1

zt∂i j f (X t )d
〈

X i , X j
〉

t
+ 1

2

d∑
i=1

∂i f (X t )d
〈

X i
t , zt

〉
= zt∇ f (X t )T [b(t , X t )d t +σ(t , X t )dWt ]+ f (X t )zt hT

t dYt + 1

2

d∑
i , j ,k=1

σi kσ j k∂i j f (X t )d t

= zt

[
∇ f (X t )T b(t , X t )+ 1

2

d∑
i , j ,k=1

σi kσ j k∂i j f (X t )

]
d t

+ zt∇ f (X t )Tσ(t , X t )dWt + f (X t )zt hT
t dYt

= zt L f (X t )+ zt∇ f (X t )Tσ(t , X t )dWt + f (X t )zt hT
t dYt

or

f (X t )zt = f (X0)+
∫ t

0
Λ−1

s L f (Xs )d s

+
∫ t

0
Λ−1

s ∇ f (Xs )Tσ(s, Xs )dWs +
∫ t

0
f (Xs )zs hT

s (s, Xs )dYs . (3.29)

where we have used:

L f = 1

2

d∑
i , j ,k=1

σi kσ j k∂2
i j f +

d∑
i=1

bi∂i f

〈
X i , X j

〉
t
=

〈∫
bi d t +

∫ ∑
k
σi k dW k

t ,
∫

b j d t +
∫ ∑

k
σ j k dW k

t

〉

=
〈∫ ∑

k
σi k dW k

t ,
∫ ∑

k
σ j k dW k

t

〉
=∑

k

∫
σi kσ j k d t〈

X i
t , zt

〉
= 0

Take the conditional expectation on (3.29), we obtain

EQ [ f (X t )Λ−1
t |F Y

t ]

=EQ [ f (X0)]+
∫ t

0
EQ [Λ−1

s L f (Xs )|F Y
s ]d s +

∫ t

0
EQ [Λ−1

s f (Xs )hT (s, Xs )|F Y
s ]dYs

or

σt ( f ) =σ0( f )+
∫ t

0
σs (L f )d s +

∫ t

0
σs (hs f )T dYs (3.30)

where (hs f )(x) = f (x)h(s, x), σ0( f ) = E P [ f (X0)]. In differential form, it also reads

dσt ( f ) =σt (L f )d t +σt (ht f )dYt (3.31)

which is an SDE. Equation (3.30) is called the Zakai equation.
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Zakai equation

σt ( f ) =σ0( f )+
∫ t

0
σs (L f )d s +

∫ t

0
σs (hs f )dYs

Differential form

dσt ( f ) =σt (L f )d t +σt (ht f )dYt

where

L f = 1

2

d∑
i , j ,k=1

σi kσ j k∂2
i j f +

d∑
i=1

bi∂i f

(hs f )(x) = hT (s, x) f (x)

With the Zakai equation, we can now derive a equation for πt ( f ) using Ito’s formula:

dπt ( f ) = d

(
σt ( f )

σt (1)

)
= dσt ( f )

σt (1)
− σt ( f )dσt (1)

σt (1)2 + σt ( f )|σt (h)|2
σt (1)3 d t − σt (h)Tσt (ht f )

σ2
t (1)

d t

=πt (L f )+ [πt (ht f )−πt ( f )πt (h)]T [dYt −πt (h)d t ]

or

πt ( f ) =π0( f )+
∫ t

0
πs (Ls f )d s +

∫ t

0
[πs (hs f )−πs ( f )πs (h)]T dB̄s (3.32)

where

B̄t = Yt −
∫ t

0
πs (h)d s (3.33)

or

dB̄t = dYt −πs (h)d t

and we have used:

L1 = 0

ht 1(x) = h(t , x)T ⇒σt (ht 1) =σt (hT )

dσt (1) =σt (hT )dYt

d

(
xt

yt

)
= d xt

yt
− xt d yt

y2
t

− d
〈

x, y
〉

t

y2
t

+ xt d
〈

y, y
〉

t

y3
t

d
〈
σt ( f ),σt (1)

〉
t = |σt (ht f )|2d 〈Y ,Y 〉t = |σt (ht f )|2d t

The process B̄t is so important that it has a name: the innovation process of the filter.

The formula (3.32) is called te FKK equation.

FKK equation

πt ( f ) =π0( f )+
∫ t

0
πs (Ls f )d s +

∫ t

0
[πs (hs f )−πs ( f )πs (h)]T dB̄s

where

B̄t = Yt −
∫ t

0
πs (h)d s
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Proposition 3.3. The innovation process (B̄t )t∈[0,T ] is a Brownian motion adpated to (F Y
t )t∈[0,T ].

Proof. Clearly B̄0 = 0 a.s, and

B̄t =
∫ t

0
[hs −πs (h)]d s +Bt

where we have written hs = h(s, Xs ) for convenience. Recall that πt (h) = E [ht |F Y
t ]. It suffices to show

E
[

e iαT (B̄t−B̄s )|F Y
t

]
= e−|α|

2(t−s)/2.

For this, we apply Ito’s formula to ηt = exp(iαT B̄t ):

e iαT B̄t = e iαT B̄s + i
∫ t

s
e iαT B̄uαT dBu

+ i
∫ t

s
e iαT B̄uαT (hu −πu(h))du − 1

2
|α|2

∫ t

s
e iαT B̄u du

An immediate observation is that E
[∫ t

s e iαT B̄uαT dBu |F Y
s

]
= 0 since

∫ t
s e iαT B̄uαT dBu is an Ft ⊃F Y

t mar-

tingale. Further, for u ≥ s,

E
[

e iαT B̄uπu(h)|F Y
s

]
= E

[
e iαT B̄u E [hu |F Y

u ]|F Y
s

]
= E

[
e iαT B̄u hu |F Y

s

]
thus E

[∫ t
s e iαT B̄uαT (hu −πu(h))du|F Y

s

]
=αT

∫ t
s E

[
e iαT B̄u hu −πu(h)|F Y

s

]
du = 0. Combining these two,

we arrive at

E
[

e iαT B̄t ht |F Y
s

]
= e iαT B̄s − 1

2
|α|2

∫ t

s
E

[
e iαT B̄u hu |F Y

s

]
du

and the proof is completed.

Suppose that there is a density pt (x) such that

pt (x) = dP (X t ⪯ x|F Y
t )

d x

then

πt ( f ) = E [ f (X t )|F Y
t ] =

∫
Rd

f (x)pt (x)dx

Substitute this into (3.32) and suppose that f ∈C 2
c (Rd ), then∫

Rd
f (x)pt (x)d x =

∫
Rd

f (x)p0(x)d x +
∫ t

0

∫
Rd

(Ls f )(x)ps (x)d xd s

+
∫ t

0

[∫
Rd

(hs f )(x)ps (x)d x −
(∫
Rd

f (x)ps (x)d x

)
πs (h)T

]
dB̄s

=
∫
Rd

f (x)p0(x)d x +
∫
Rd

f (x)

(∫ t

0
L∗

s ps (x)d s

)
d x

+
∫
Rd

f (x)

(∫ t

0
hT

s ps (x)dB̄s

)
d x −

∫
Rd

f (x)

(∫ t

0
ps (x)πs (h)T dB̄s

)
d x

=
∫
Rd

f (x)

[
p0(x)+

∫ t

0
L∗

s ps (x)d s +
∫ t

0
ps (x)[hs −πs (h)]T dB̄s

]
d x

Thus

d pt (x) = L∗
t pt (x)d t +pt (x)[h(t , x)−πt (h)]T dB̄t . (3.34)
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Since we have assumed that f ∈C 2
c (Rd ), the above equation should be understood in the week sense.

If however, the density for the unnormalized quantity σt ( f ) is quested, i.e., search for qt (x) such that

σt ( f ) =
∫
Rd

f (x)qt (x)d x, ∀ f ∈C 2
c (Rd )

Note that if this is the case, then∫
Rd

f (x)pt (x)dx =
∫
Rd

f (x)
qt (x)∫

Rd qt (x)d x
d x

hence

pt (x) = qt (x)∫
Rd qt (x)d x

which implies

πt ( f ) =
∫
Rd

f (x)pt (x)dx =
∫
Rd f (x)qt (x)dx∫
Rd qt (x)d x

Thus, if the equation for qt (x) is simpler than (3.34), we can calculate qt (x) first and then use the last

formula to calculate pt (x). Using (3.31), we easily find

d qt (x) = L∗
t qt (x)d t +h(t , x)T dYt (3.35)

of which the initial distribution q0(x) is determined by the distribution of X0. This equation is called the

Zakai-PDE.

Equations for condtional density

Define

πt ( f ) =
∫
Rd

f (x)pt (x)dx

σt ( f ) =
∫
Rd

f (x)qt (x)dx

then

normalized: d pt (x) = L∗
t pt (x)d t +pt (x)[h(t , x)−πt (h)]T dB̄t

unnormalized: d qt (x) = L∗
t qt (x)d t +h(t , x)T dYt

3.3.3 Kalman-Bucy filter

Zero input

In this section, we consider filtering problem of the linear model (zero input):

d X t = [A(t )X t +D(t )ut ]d t +C (t )dWt

dYt = H(t )X t d t +dBt (3.36)

where A(t ),C (t ), H(t ) are deterministic real matrices of dimensions n ×n, n ×m, l ×n respectively. Wt

and Bt are Brownian motions adpated to filtration Ft (w.l.o.g, one can take Ft = FW
t ∨F B

t ). Y0 = 0 a.e.

and X0, Y0 are independent. ut is the control input adpated to F Y
t .

115



It is customary in the linear case to assume X0 ∼ N (X̂0, P̂0), i.e., the initial distribution of X t is Gaus-

sian and that the equation for (X t ,Yt ) has a unique strong solution adapted to Ft .

In this subsection, we restrict ourselves to the zero input case, i.e., ut ≡ 0 for all t ≥ 0.

Define X̂ t := E [X t |F Y
t ] (notice that this is consistent with the notation X̂0 introduced earlier). Since

the system (3.36) forms a Gaussian system, we are also interested in the covariance matrix of the condi-

tional mean: P̂t := E [(X t−X̂ t )(X t−X̂ t )T |F Y
t ]. Due to Proposition 3.4 below, P̂t is a deterministic function,

i.e., P̂t := E [(X t − X̂ t )(X t − X̂ t )T ].

To apply FKK equation, let f (x) = xi , then

L f (x) =∑
k

Ai k xk , ht f (x) = xi H(t )x, h(t , x) = H(t )x

hence

X̂ i
t = E [X i

t |F Y
t ] = E [X i

0]+
∫ t

0

∑
k

Ai k X̂ k
s d s +

∫ t

0

[
E [X i

s H(s)Xs |F Y
s ]− X̂ i

s H(s)X̂s

]T
dB̄s .

Align all X̂ i
t as a column vector, we get

X̂ t = E [X0]+
∫ t

0
AX̂s d s +

∫ t

0

[
E [H(s)Xs X T

s |F Y
s ]−H(s)X̂s X̂s

]T
dB̄s

= E [X0]+
∫ t

0
AX̂s d s +

∫ t

0

[
E [Xs X T

s |F Y
s ]− X̂s X̂s

]
H(s)T dB̄s

= E [X0]+
∫ t

0
AX̂s d s +

∫ t

0
E [(Xs − X̂s )(Xs − X̂s )T |F Y

s ]H(s)T dB̄s

= E [X0]+
∫ t

0
AX̂s d s +

∫ t

0
P̂s H(s)T dB̄s

or equivalently

d X̂ t = A(t )X̂ t d t + P̂t H(t )T dB̄t (3.37)

dB̄t = dYt −H(t )X̂ t d t (3.38)

with X̂0 = E [X0].

To derive the equation for P̂t , first notice that

P̂t = E [(X t − X̂ t )(X t − X̂ t )T ]

= E X t X T
t −E [X̂ t X̂ T

t ],

and then we apply Ito’s formula to P̂t :

d X i
t X j

t = X i
t d X j

t +X j
t d X i

t +d
〈

X i , X i
〉

t

= X i
t d X j

t +X j
t d X i

t +Ci C T
j d t

= X i
t (A j X t d t +C j dWt )+X j

t (Ai X t d t +C i dWt )+Ci C T
j d t

d X̂ i
t X̂ j

t = X̂ i
t d X̂ j

t + X̂ j
t d X̂ i

t +d
〈

X̂ i , X̂ j
〉

t

= X̂ i
t d X̂ j

t + X̂ j
t d X̂ i

t + P̂ i
t H(t )T H(t )(P̂ j

t )T d t

= X̂ i
t (A j X̂ t d t + P̂ j

t H T dB̄t )+ X̂ j
t (Ai X̂ t + P̂ i

t H T dB̄t )+ P̂ i
t H(t )T H(t )(P̂ j

t )T d t
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hence

dE [X i
t X j

t ] = [E(A j X i
t X t + Ai X j

t X t )+Ci C T
j ]d t

dE [X̂ i
t X̂ j

t ] = [E(A j X̂ i
t X̂ t + Ai X̂ j

t X̂ t )+ P̂ i
t H(t )T H(t )(P̂ j

t )T ]d t

and
dP̂ i j

t

d t
= A j E [X i

t X t − X̂ i
t X̂ t ]+ Ai E [X j

t X t − X̂ j
t X̂ t ]+Ci C T

j − P̂ i
t H(t )T H(t )(P̂ j

t )T

or equivalently
dP̂t

d t
= A(t )P̂t + P̂t (t )A(t )T +C (t )C (t )T − P̂t H(t )T H(t )P̂t (3.39)

with P̂0 = P0, i.e., the covariance matrix of X0.

Kalman-Bucy filter

System:

d X t = A(t )X t d t +C (t )dWt

dYt = H(t )X t d t +dBt

Filter:

d X̂ t = A(t )X̂ t d t + P̂t H(t )T dB̄t

dB̄t = dYt −H(t )X̂ t d t

where
dP̂t

d t
= A(t )P̂t + P̂t (t )A(t )T +C (t )C (t )T − P̂t H(t )T H(t )P̂t

Proposition 3.4. The process X t − X̂ t is independent of F Y
t , i.e., E [ f (Xs − X̂s )|F Y

s ] = E [ f (Xs − X̂s )] a.s. for

any bounded measurable f .

Proof. Step 1: we show that the conditional distribution X t |F Y
t is Gaussian. Fix t and let Y k

n = Xkt/2n ,

n ≥ 1. Define

En =σ
{

Y k
n : k = 1, · · · ,2n

}
Then En is a filtration (E∞ = F Y

t ). Since (X ,Y ) is a Gaussian process on [0, t ], the joint distribution of

{(Xkt/2n ,Ykt/2n )}2n

k=1 is a Gaussian vector and thus the conditional expectation X t |En is Gaussian with

mean E [X t |En] =: X̂ n
t and covariance P̂ n

t . Let πn
t (A) := P {X t ∈ A|En}, then

φn(λ) = E [exp(iλT X t )|En] =
∫
Rd

exp(iλT x)πn
t (d x)

= exp

(
λT X̂ n

t − 1

2
λT P̂ n

t λ

)
.
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Since {φn(λ)}∞n=1 and {X̂ n
t }∞n=1 are both uniformly integrable martingales adapted to En , φ∞(λ) and X̂ ∞

t

exist and are in L1. Thus P̂∞
t also exists. To sum up, in a.s. sense,

E [exp(iλT X t )|F Y
t ] = E [exp(iλT X t )|E∞]

= lim
n→∞φn(λ)

= exp

(
λT X̂ t − 1

2
λT P̂tλ

)
here we have omitted the superscript “∞”. Thus X t |F Y

t ∼ N (X̂ t , P̂t ).Step 2: X t −X̂ t is independent of F Y
t .

It is known from elementary probability theory that when (X ,Y ) are jointly Gaussian, then X −E [X |Y ] is

independent of Y . From Step 1, we know that X t − X̂ n
t is independent of En for all n. For any bounded

measurable function f and A ∈F Y
t , let An = E [1A |En], we have

E [ f (X t − X̂ n
t )1An ] = E [ f (X t − X̂ n

t )]P (An)

but

lim
n→∞E [ f (X t − X̂ n

t )1An ] = E [ f (X t − X̂ t )1A]

lim
n→∞E [ f (X t − X̂ n

t )]P (An) = E [ f (X t − X̂ t )]P (A)

thus E [ f (X t − X̂ t )1A] = E [ f (X t − X̂ t )]P (A). The conclusion now follows.

To find the conditional density, we use the Zakai-PDE, which reads

d qt (x) = qt (x)xT H(t )T dYt + tr

[
1

2
C (t )C (t )T Hess(qt (x))−∇(qt (x)A(t )x)

]
d t

which has a solution of the form

qt (x) = const×exp

(
−1

2
(x − X̂ t )T P̂−1

t (x − X̂ t )

)
.

Non-zero input

The non-zero input case is also important, which is not evident right now but will be clear in the next

section.

We use a superscript “u” to indicate the signal under control input u. A first observation is that

X u
t =

∫ t

0
A(s)Xs ds +

∫ t

0
D(s)us ds +

∫ t

0
C (s)dWs

X̂ u
t = E

[∫ t

0
A(s)Xs ds|F Y

t

]
+

∫ t

0
D(s)us ds +E

[∫ t

0
C (s)dWs |F Y

t

]
and then

X u
t − X̂ u

t = X 0
t − X̂ 0

t .

There are two implifications from the above formula: first, the covariance matrix P̂ u
t does not depend

on u, i.e., P̂ u
t = P̂t ; second, the differential of the above formula results in

d X̂ u
t = d X̂ 0

t +d X u
t −d X 0

t

= d X̂ 0
t +D(t )ut d t .
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Hence, the only thing we need to do to obtain the Kalman-Bucy filter with control is to add a term

D(t )ut dt in (3.37) and keep the innovation process and covariance matrix unchanged.

Kalman-Bucy filter with input

System:

d X t = [A(t )X t +D(t )ut ]d t +C (t )dWt

dYt = H(t )X t d t +dBt

Filter:

d X̂ t = [A(t )X̂ t +D(t )ut ]d t + P̂t H(t )T dB̄t

dB̄t = dYt −H(t )X̂ t d t

where
dP̂t

d t
= A(t )P̂t + P̂t (t )A(t )T +C (t )C (t )T − P̂t H(t )T H(t )P̂t

3.3.4 Numerical method

Particle filter

Monte Carlo method

3.4 Partial State LQG and Separation Principle

This section is devoted to linear quadratic Gaussian control of the linear system

system: d X t = (A(t )X t +B(t )ut )d t +C (t )dWt (3.40)

observable: dYt = H(t )X t d t +dBt

under the optimal cost

J [u] = E

[∫ T

0
(X u

t )T Q(t )X u
t +uT

t R(t )ut dt +X u
T Q f X u

T

]
(3.41)

where Q(t ), R(t ) and Q f are all semi-positive definite. The term X u
t represents the solution of the system

under control ut , which is required to depend only on the information {Ys }s∈[0,t ]. In other words, ut is

F Y
t measurable.

The first and the third terms in the cost functional are somewhat annoying since they are not observ-

able. However, we can perform an easy manipulation to transform J [u] into a more tractable form. This

is achieved by applying the tower property of conditional expection:

J [u] = E

[∫ T

0
E [(X u

t )T Q(t )X u
t |F Y

t ]+E [uT
t R(t )ut ]dt +E [X u

T Q f X u
T |F Y

t ]

]
Now the terms in the cost function are all observable! Instead of viewing this as a “magic”, we would

rather say that this somewhat natural. If we admit this fact, then the famous “separation principle” will
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come as a natural consequence. To see this, let X̂ u
t = E [X u

t |F Y
t ], then

E [(X u
t )T Q(t )X u

t |F Y
t ]

= E [(X u
t − X̂ u

t + X̂ u
t )T Q(t )(X u

t − X̂ u
t + X̂ u

t )|F Y
t ]

= E [(X u
t − X̂ u

t )T Q(t )(X u
t − X̂ u

t )|F Y
t ]

+2E [(X u
t − X̂ u

t )T Q(t )X̂ u
t |F Y

t ]+E [(X̂ u
t )T Q(t )X̂ u

t |F Y
t ]

= tr(E [Q(t )(X u
t − X̂ u

t )(X u
t − X̂ u

t )T |F Y
t ])+E [(X̂ u

t )T Q(t )X̂ u
t ]

= tr(E [Q(t )P̂ u
t ])+E [(X̂ u

t )T Q(t )X̂ u
t ]

As mentioned in the previous subsection, the term tr(E [Q(t )P̂ u
t ]) is deterministic and does not de-

pend on u. Hence it does not affect the optimal value of J [u]. To make this precise, rewrite J [u] as

J [u] = E

[∫ T

0
(X̂ u

t )T Q(t )X̂ u
t +uT

t R(t )ut dt + X̂ u
T Q f X̂ u

T

]
+ tr(E [Q(t )P̂t ]+E [Q f P̂T ])

and we can claim

argmin
u

J [u] = argmin
u

J̄ [u]

where J̄ (u) is

J̄ (u) = E

[∫ T

0
(X̂ u

t )T Q(t )X̂ u
t +uT

t R(t )ut dt + X̂ u
T Q f X̂ u

T

]
.

Now the optimal control problem has been transformed into a “full-state observable” one. Thus in-

voking the results for full-state LQG, we can immediately state the following theorem.

Theorem 3.9. Let P̂t be the solution of the Riccati equation

dP̂t

d t
= A(t )P̂t + P̂t AT (t )− P̂t H(t )T H(t )P̂t +C (t )C (t )T

P̂0 = Cov(X0)

and Kt be the solution of the time-reversed Riccati equation

dKt

d t
=−A(t )T Kt −Kt A(t )+Kt D(t )R−1(t )D(t )T Kt −R(t )

KT =Q f

Then the partial state LQG has a solution

u∗
t =−R−1(t )D(t )T Kt X̂ t

where X̂ t satisfies

d X̂ t = (A(t )−D(t )R−1(t )D(t )T Kt )X̂ t dt + P̂t H(t )T dB̄t

dB̄t = dYt −H(t )X̂ t d t .

This theorem has the spirit of “separation” since as we know Kt is the optimal gain for full-state LQG

and X̂ t is the output of the optimal filter. Thus the theorem suggests that we can divide the design of

the partial-state LQG into two parts. The first part is filtering, i.e., to obtain X̂ t and the filter gain P̂t , the

second part amounts to the design of a full-state LQG based on the filter state X̂ t . These two parts can be

designed separately.

120



C
H

A
P

T
E

R

4
OPTIMAL TRANSPORT

4.1 Monge and Kantorovich problem

4.1.1 The Kantorovich problem

Consider an extremely simplified model for the power grid in an isolated region which consists n power

plants and m transformer stations located at different places. Label the power plants and transformer

stations as pi and t j , i ∈ {1, · · · ,n} and j ∈ {1, · · · ,m}. Assume that the amount of electricity that the plant

pi can generate each day is a fixed value ai , and the electricity that the transformer station t j should

receive each day is fixed at b j . Assume additionally that there is no loss during the electricity transfer

and that all the electricity will be sent to the transformer stations, in other words,

n∑
i=1

ai =
m∑

j=1
b j . (4.1)

The cost of sending unit electricity from plant pi to transformer station t j is c(pi , t j ), where c is a non-

negative real function.

Now the state grid corporation needs the decide a power transfer plan with the minimum cost. That

is, how much electricity should power plant pi send to transformer station t j ? Let us denote the amount

sent from pi to t j as πi j . Then the total cost is

J (π) =
n∑

i=1

m∑
j=1

πi j c(pi , t j ) (4.2)

in which π is the compact notation for the decision variables (πi j ). See Figure 4.1.

Let us check the constraint on π. On the sender side, each plant pi should send out all the power (i.e.,

ai ) it generates, which means that
m∑

j=1
πi j = ai (4.3)
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Figure 4.1: Kantorovich problem.

and on the receiver side, the amount of electricity that transformer station t j needs is b j , which implies

that
n∑

i=1
πi j = b j . (4.4)

Note that constraint (4.1) is now satisfied automatically. Putting together equations (4.2-4.4), we arrive

at the following optimization problem

min
π

J (π) =
n∑

i=1

m∑
j=1

πi j c(pi , t j )

subject to:
m∑

j=1
πi j = ai

n∑
i=1

πi j = b j

πi j ≥ 0

(SP)

in which {ai }m
i=1, {b j }n

j=1 and {c(pi , t j )}i=1,··· ,n; j=1,··· ,m are known coefficients. Let us denote this problem

as (SP). Obviously, the SP problem is a linear programming problem. Define

Π(a,b) = {P ∈Rn×m : Pi j ≥ 0,
m∑

j=1
Pi j = ai ,

n∑
i=1

Pi j = b j } (4.5)

and for P ∈Π(a,b), denote

〈P,C〉 :=
n∑

i=1

m∑
j=1

Pi j Ci j .

With these notations, the SP problem can be conveniently written as

min
P∈Π(a,b)

〈P,C〉 . (4.6)

As we have mentioned, the SP problem is a linear programming. Thus it can be solved by all linear

programming algorithms, e.g., network simplex method. Typically, the computational complexity is of

order O(d 3 logd) where d = m +n.
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4.1.2 The Monge problem

We now put another constraint on the transshipment problem. Suppose that the electricity generated by

each one of the power plant is to be sent to only one power transformer station. For example, this may

happen when building transmission lines to multiple transformer stations is impossible or too expensive.

For each power plant pi , denote T (pi ) ∈ {t1, · · · , tm} as its target. Then the total cost can now be written

as

J (T ) =
n∑

i=1
c(pi ,T (pi ))ai ,

and the constraints (4.3,4.4) are replaced by ∑
i :T (pi )=t j

ai = b j

accordingly. The objective now is to seek for a map T which minimizes J (T ) under the above constraint:

min
T

J (T ) =
n∑

i=1
c(pi ,T (pi ))ai

subject to:
∑

i :T (pi )=t j

ai = b j

(4.7)

See Figure 4.2.

𝑝𝑝2

𝑐𝑐(𝑝𝑝1,𝑇𝑇(𝑝𝑝1))𝑎𝑎1 𝑝𝑝1

𝑎𝑎2

𝑏𝑏1

𝑏𝑏2

𝑏𝑏3

𝑝𝑝3

𝑝𝑝4

𝑝𝑝5

𝑎𝑎3

𝑎𝑎5

𝑎𝑎4
𝑐𝑐(𝑝𝑝4,𝑇𝑇(𝑝𝑝4))

Figure 4.2: Kantorovich problem.

We call this problem a Monge problem. Unlike the SP problem that we discussed earlier which is a

linear programming, the MP problem is nonlinear: the cost function c(·, ·) and T (·) itself may both be

nonlinear. Hence the Monge problem is much more difficult and less well-behaved. But this problem is

still important in applications.

It is interesting to note that the optimal value of the MP problem is always bigger than that of the SP

problem, since

Pi j =
ai , if T (pi ) = t j

0, else
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is always an admissible plan for admissible T . A natural question to ask is: when are the two optimal

values equal? This question is very important because it tells us when can we recast the MP problem,

which is ill-behaved as an SP problem, which is a linear programming. This question is however, not

obvious at all. Later, we will work this out in a systematic manner under a more general framework of

optimal transportation.

4.1.3 The dual of Kantorovich problem

Associate with every linear programming problem, there is a dual problem. We derive this dual from

scratch since the methodology will be used later to derive more general optimal transport dual problems.

To streamline the derivations, we introduce some useful notations that will be frequently used in the

sequel. Let C ∈Rn×m be the matrix whose component at the i -th row and j -th column is c(pi , t j ), and a,

b two column vectors whose i -th and j -th element is ai and b j respectively.

Introduce the indicator function of a set A:

I A(x) =
0, if x ∈ A

+∞, if x ∉ A
.

Then the problem (4.6) is equivalent to

min
P∈Rn×n

≥0

{〈P,C〉+ IΠ(a,b)(P )
}

For a ∈Rn
≥0 and b ∈Rm

≥0, define a ⊕b as the matrix whose i -th row and j -th column element is ai +b j .

IΠ(a,b)(P ) = sup
f ∈Rn , g∈Rm

n∑
i=1

(a −
m∑

j=1
Pi j ) fi +

m∑
j=1

(b j −
n∑

i=1
Pi j )g j

= sup
f ∈Rn , g∈Rm

a⊤ f +b⊤g −〈
P, f ⊕ g

〉
thus

min
P∈Rn×n

≥0

{〈P,C〉+ IΠ(a,b)(P )
}= min

P∈Rn×m
≥0

sup
f ∈Rn , g∈Rm

a⊤ f +b⊤g −〈
P, f ⊕ g −C

〉
= sup

f ∈Rn , g∈Rm
min

P∈Rn×m
≥0

a⊤ f +b⊤g −〈
P, f ⊕ g −C

〉
= sup

f ⊕g≤C

〈
f , a

〉+〈
g ,b

〉
where in the second equality, we swapped the minimization and maximization which is legitimate due

to minimax theorem of linear programming problem.

4.1.4 From “discrete” to “continuous” optimal transport

Suppose now that we are going to move a pile of sand from X to Y to construct certain structures, see

Figure 4.3. The sand on the left of the figure can be described by a density function f : X →R and the sand

on the right is described by some density function g : Y → R. Suppose that the unit cost of moving the

sand from the interval (x, x+d x) to interval (y, y+d y) is c(x, y)d xd y , and that there isΠ(d x,d y) amount

of sand moving from (x, x +d x) to (y, y +d y). When d x and d y are sufficiently small, we may assume
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the existence of some function π(x, y), satisfyingΠ(d x,d y) =π(x, y)d xd y . Due to mass preservation, we

must have ∫
X
Π(d x,d y) = g (y)d y,

∫
Y
Π(d x,d y) = f (x)d x

or ∫
X
π(x, y)dx = g (y),

∫
Y
π(x, y)dy = f (x).

The total cost is ∫
X

∫
Y

c(x, y)π(x, y)dxdy =
∫

X×Y
c(x, y)π(x, y)dxdy.

𝑋𝑋 𝑌𝑌

Figure 4.3: Moving a continuous distribution.

Thus the problem is formulated as

min
π

J (π) =
∫

X×Y
c(x, y)π(x, y)dxdy

subject to:
∫

X
π(x, y)dx = g (y),

∫
Y
π(x, y)dy = f (x)

π(x, y) ≥ 0

(4.8)

This is the Kantorovich version of the optimal transport problem. We derive next the corresponding

Monge problem. Suppose that the sand in the interval (x, x +d x) are all sent to (T (x),T (x)+dT (x)) for

some continuously differentiable function T : X → Y . Then the mass preservation constraint is now∫
T (x)∈(y, y+dy)

f (x)dx = g (y)dy

By change of variable formula (holds when T is a diffeomorphism, for the shape drawn on the right of

Figure 4.3, such T clearly does not exist! We neglect this issue though), the left is∫
z∈(y, y+dy)

f (T −1(z))|detDT −1(z)|dz = f (T −1(y))

|detDT (T −1(y))|dy

Hence

|detDT (x)| = f (x)

g (T (x))
, ∀x ∈ X . (4.9)

This equation is called the Monge-Ampère equation.

The total cost is

J (T ) =
∫

X
c(x,T (x)) f (x)dx
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To summarize, the Monge problem is the following optimization problem

min
T

J (T ) =
∫

X
c(x,T (x)) f (x)dx

subject to: |detDT (x)| = f (x)

g (T (x))

(4.10)

Note that this problem is highly nonlinear and is extremely hard to solve. Indeed, the Monge-Ampère

equation is a nonlinear PDE which is difficult to solve even numerically.

Exercise 4.1 (Transport maps between Gaussian distributions). Consider two Gaussian distributionsN (µ1,Σ1)

and N (µ2,Σ2) on Rn , where µ1, µ2 are the mean vectors and Σ1, Σ2 the covariant matrices. Find an ad-

missible map of the form T (x) =µ2 + A(x −µ1) for some constant matrix A.

4.1.5 A quick review of measure and integration theory

Measure

To efficiently describe the optimal transport problem, it is inevitable to use some measure theory.

Given a set X , a measure on X is some extended real value function which measures the sizes of the

subsets in X , e.g., the number of points in the set, the length of a curve, the area of a surface, the volume

of a polyhedron, etc. Obviously, a measure, say µ, should have the following properties: 1) µ(;) = 0;

2) for any finite collection of disjoint subsets A1, · · · Am in X , the finite additive property should hold∑m
i=1µ(Ai ) = µ

(⋃m
i=1 Ai

)
. It turns out that the finite additive property 2) is too weak to work with; just

think of the case that we need to take limits when doing improper Riemann integration. Therefore, 2)

is asked to be replaced by a stronger requirement, the so-called countably additive property: 2’) for any

countable1 collection of disjoint sets A1, · · · Ai , · · · , there hold
∑m

i=1µ(Ai ) =µ(⋃∞
i=1 Ai

)
.

It seems that we are done with the definition of a measure, i.e., an extended real value function on 2X

(the set of all subsets of X ) satisfying properties 1) and 2’). Unfortunately, such a function in general does

not exist. The reason is that the set 2X is too big which contains some “bad sets” that hinders us from

defining a meaningful function having properties 1) and 2’). To cope with this, the strategy is to restrict

the definition of a measure on a smaller class of sets. Let us check what kind of sets should be included

in this class. First, the empty set ; should be in this class. Second, if A1, · · · , Ai , · · · are in this class, 2’) is

meaningful only if
⋃∞

i=1 Ai is also in this class. In other words, the class should be closed under countable

union operation. Apart from these, we also require that 3) the class is closed under complement; in

words, if A is in the class, so is Ac . In particular, X = ;c is in the class, and 2’), 3) together imply that

countable intersection operation is also closed. The reason to include this is that not only we need to do

addition (union of sets) in the class, but also we need be able to do subtraction. A class with properties

1), 2’) and 3) is called a σ-algebra:

Definition 4.1 (σ-algebra and measurable space). Given a set X , a σ-algebra A on X is a collection of

subsets of X satisfying the following properties:

1) ;∈A ;

2) If A1, · · · Ai , · · · ∈A , then
⋃∞

i=1 Ai ∈A .

3) If A ∈A , then Ac ∈A .

We call (X ,A ) a measurable space.

1A set A is said to be countable if there exists a bijective mapping betwee A and the set of natural numbers.
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The first example of a σ-algebra is 2X , i.e., the collection of all subsets of X . As we have mentioned

before, this σ-algebra is often too big to work with. However, when X is a discrete set, either finite or

countable, this σ-sigma algebra will be in effect for in this course.

It turns out on the one hand, a σ-algebra is big enough to contain the sets that we are interested in,

and on the other, it is small enough for us to define a measure (i.e., such measure exists). However, the

justification of the latter fact is not as obvious. Interested readers are referred to [8].

An important class of measurable spaces is the Borel measurable space.

Definition 4.2 (Borel measurable space). Let X be a topological space. The Borel σ-algebra on X , de-

noted B(X ), is the smallest σ-algebra containing all the open sets of X . A measure on B(X ) is called a

Borel measure.

Typical sets in Borel σ-algebra include: 1) all the open sets; 2) Gδ sets: countable intersection of open

sets; 3) Fσ sets: countable union of closed sets, and so on.

Definition 4.3 (Measure). Given a measurable space (X ,A ), a measure µ : A → [0,∞] is a function satis-

fying

1) µ(;) = 0;

2) for countable collection of disjoint measurable sets {Ai }, µ
(⋃∞

i=1 Ai
)=∑∞

i=1µ(Ai ).

We call (X ,A ,µ) a measure space.

A measure is sometimes written as dµ.

Example 4.1 (Dirac measure). Given measurable space (X ,A ), we can define for every x ∈ X a measure

δx : A → {0,1} by

δx (A) = 1A(x) =
1, if x ∈ A

0, else
.

Example 4.2 (Counting measure). Given a set X and 2X its σ-algebra, for S ⊆ 2X , define the counting

measure #S as the cardinality of the set S. If the cardinality of S is infinite, set #S =∞. It is plain to verify

that this is indeed a measure.

Example 4.3 (Probability measure). When the measure satisfies µ(X ) = 1, then µ is called a probability

measure. The set of probability measures on X is denoted as P(X ).

Sets with zero measure play an important role in measure theory, we call such sets null sets. On a

measure space X , we say that a property is satisfied for almost every x ∈ X (abbreviated as a.e.) if the

property holds for all x ∈ X /N for some null set N , i.e., µ(N ) = 0. If for every null set N , every subset

of N is measurable, we say that the measure µ is measure complete. Given a measure space (X ,A ,µ),

one can extend the σ-algebra A to make X a measure complete space (X̄ ,Ā ,µ). We call X̄ the measure

completion of X .

Example 4.4 (Lebesgue measure). Let X = Rn be equipped with the normal topology. The completion

of the Borel measure2 L n on B(Rn) with the property that L n(S) = vol(S) for every cubic set S ⊆ Rn is

called the Lebesgue measure. Notice that cubic sets generate the topology of Rn , the Lebesgue measure

is uniquely defined.

2A Borel measure needn’t be complete.
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Integration

A function f : (X ,A ) → (Y ,B) is said to be measurable if S ∈ B ⇒ f −1(S) ∈ A . We define integration of

Borel measurable functions from (X ,B(X ),µ) to (R,B(R),L 1) where L 1 is the Lebesgue measure on the

real line. The following is a characterization of such functions.

Proposition 4.1. A function f : (X ,B(X ),µ) → (R,B(R),m) is measurable if and only if any of the fol-

lowing is measurable for all a ∈ R: 1) {x ∈ X : f (x) ≤ a}; 2) {x ∈ X : f (x) < a}; 3) {x ∈ X : f (x) ≥ a}; 4)

{x ∈ X : f (x) > a}.

Unless otherwise specified, the term “Borel function” means “real-valued Borel measurable function”

henceforth.

Proposition 4.2. If { f j } is a sequence of Borel functions, then the following functions are also measurable:

g1(x) = sup j f j (x), g2(x) = inf j f j (x)

g3(x) = limsup j→∞ f j (x), g4(x) = liminf j→∞ f j (x)
.

To define the integration, one starts with non-negative simple functions of the form

φ(x) =
m∑

i=1
ai 1Ai (x)

where {Ai } are some measurable sets and ai some non-negative coefficients. Define the integration of φ

as ∫
φdµ=

m∑
i=1

aiµ(Ai ).

This number is set to zero if ai > 0 and µ(Ai ) =∞ for some i .

Then one argue that any Borel function f ≥ 0 is a limit of an increasing sequence of non-negative

simple functions:

f = lim
i→∞

fi

and therefore the integration of f can be defined as the limit∫
f dµ= lim

i→∞

∫
fi dµ.

The following are some equivalent notations for integration
∫

f dµ when there is no danger of ambi-

guities: ∫
f ,

∫
X

f dµ,
∫

X
f (x)dµ(x),

∫
X

f (x)µ(dx).

Example 4.5. Let N = {1, · · · ,n, · · · } be the set of natural numbers equipped with the counting measure.

Let {ai }∞i=1 be a non-negative sequence, which can be viewed as a measurable function i 7→ ai . It is readily

checked that the integration of this function is simply∫
a· =

∞∑
i=1

ai

Example 4.6 (Absolutely continuous measures). Given a (base) measure µ on (X ,B(X )), and a measur-

able function f : X →R, the following formula

ν(A) =
∫

A
f (x)dµ(x) :=

∫
X

f (x)1A(x)dµ(x), ∀A ∈B(X )
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defines a new measure on (X ,B(X )). We shall denote this measure as f (x)dµ(x) and say that it is abso-

lutely continuous w.r.t. the measure µ. For measurable function g : X → R, it can be easily verified that

the integration of g is ∫
X

g (x)dν(x) =
∫

X
g (x) f (x)dµ(x),

i.e., one simply replaces dν(x) by f (x)dµ(x), this justifies our notation. The proof strategy is to first to

prove for simple functions and then use simple functions to approximate general measurable functions.

Example 4.7. Let X = [0,1] be equipped with the Lebesgue measure L 1|[0,1]. We calculate the integration

of the function f (x) =p
x on X . For n ≥ 1, define sets

Ek = f −1([
k

2n ,
k +1

2n )), 0 ≤ k ≤ 2n −1

and functions

fn(x) =
2n−1∑
k=0

k

2n ·1Ek (x)

1
21

2
21

0 1𝐸𝐸0 𝐸𝐸1

2
22

1
22

3
22

4
22

0 1𝐸𝐸0 𝐸𝐸1 𝐸𝐸2 𝐸𝐸3

𝑛𝑛 = 1 𝑛𝑛 = 2

𝑦𝑦 = 𝑥𝑥 𝑦𝑦 = 𝑥𝑥

Figure 4.4: Construction of fn . On the left, n = 1; on the right, n = 2.

On can verify that fn ↑ f as n →∞ for all x ∈ [0,1). Next, it is readily calculated that L 1(Ek ) = 2k+1
22n

and ∫
fn =

2n−1∑
k=1

(2k +1)k

23n = 2

23n · (2n −1)2n(2n+1 −1)

6
+ 1

23n · (2n −1)2n

2
= 2

3
+O(

1

2n )

Thus by definition ∫
f = lim

n→∞

∫
fn = 2

3

which coincides with the Riemann integral.

To define integration of a function f with possibly negative values, first decompose f as f = f +− f −,

where f + ≥ 0, f − ≥ 0 (this decomposition may not be unique). If one of
∫

f + and
∫

f − is finite (otherwise

we will run into the pathological case ∞−∞), we define∫
f dµ=

∫
f +dµ−

∫
f −dµ.
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We say that f is integrable as long as both
∫

f + and
∫

f − are finite, or equivalently
∫ | f |dµ<∞. Denote

the set of integrable functions on X as L1(X ,µ) or simply L1(X ) or even L1.

The integration defined above is called Lebesgue integration, which (with Lebesgue measure L n)

coincides with the Riemannian integration when restricted piece-wise continuous functions on compact

sets in Rn . On the other hand, it is defined for much larger class of functions. Indeed, it is not an easy

task to construct a function which is not measurable; almost all functions in real life are measurable

and can be integrated. What’s more, technically, the Lebesgue integration is much more flexible and

more convenient to use. In particular, while it is often a subtle issue to exchange limit and integration

in Riemannian integration (one often needs certain uniform convergence), the requirement to exchange

limit and integration is much less strict. One of the most useful criteria is the following:

Theorem 4.1 (Dominated convergence theorem). Let (X ,µ) be a measure space and { fn} a sequence of

integrable functions such that fn(x) → f (x) pointwisely as n → ∞ for a.e. x ∈ X . If there exists a non-

negative g ∈ L1(µ) such that | fn | ≤ g a.e. for all n. Then f ∈ L1(µ) and∫
f dµ= lim

n→∞

∫
fn(x)dµ(x)

Another two useful results for non-negative functions are the monotone convergence theorem and

Fatou lemma:

Theorem 4.2 (Monotone convergence theorem). If { fn} is a non-negative sequence such that f j ≤ f j+1 for

all j and f = limn→∞ fn , then ∫
f dµ= lim

n→∞

∫
fndµ.

Lemma 4.1 (Fatou’s lemma). If { fn} is a non-negative measurable sequence, then∫
liminf

n→∞ fn(x)dµ(x) ≤ liminf
n→∞

∫
fndµ

4.1.6 General formulation of optimal transport

We are now ready to introduce the general formulation of the optimal transport problem. There are two

approaches we may adopt. Either by abstracting the reasoning of the continuous version of optimal

transport in Section ?? or introducing directly abstract optimal transport problem using measure theo-

retical terms. We here adopt the second approach to help the readers familiarize a bit the measure theory

(the first approach is rather easy and the reader should also do it).

Pushforward of measures

Throughout this course, X , Y will be denoted as the source and target spaces of the optimal transporta-

tion respectively. They are assumed to be a complete metric spaces3. We equip X and Y with non-

negative complete Borel measures, say µ and ν respectively.

Given a measurable function f : (X ,B(X ),µ) → (Z ,B(Z )) (Z hasn’t been assigned a measure yet), we

can define a measure on Z by

f#µ(B) :=µ( f −1(B)), ∀B ∈B(Z ).

3A metric space X is said to be complete if for any sequence {xn }, d(xn , xm ) → 0 as n,m →∞ (such sequence is called a Cauchy
sequence) implies the existence of a point x ∈ X such that d(xn , x) → 0 as n →∞.
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One can check that f#µ is a well-defined measure, called the pushforward measure ofµ by f . If g : Z →W

is another measurable function, then it is easy to see that

( f ◦ g )#µ= f#(g#µ).

The following formula will be used frequently:

Proposition 4.3 (Change of measure formula). For any measurable function f : X → Y and any measur-

able function φ : Y → [0,∞], one has ∫
Y
φd f#µ=

∫
X

(φ◦ f )dµ.

The proof strategy is first to check the formula for simple functions, and then approximate Borel

functions by simple functions.

Proof. If φ= 1A for some measurable A ⊆ Y , then on the left∫
Y

1A(y)d f#µ(y) = f#µ(A) =µ( f −1(A))

and on the right, ∫
X

1A( f (x))dµ(x) =
∫

X
1 f −1(A)(x)dµ(x) =µ( f −1(A))

Next, it is obvious to see that this also holds for all non-negative simple functions. Now for non-negative

Borel function φ, choose a sequence of simple functions such that φn ↑ φ, then by monotone conver-

gence theorem, the formula also holds. The proof is finalized by decomposing general φ into positive

and negative parts.

The abstract Monge problem

Monge problem

Let X , Y be two complete metric space, µ ∈ P(X ), ν ∈ P(Y ) two probability measures and

c(x, y) : X ×Y → [0,∞] a Borel cost function, representing the cost of shipping a unit mass from x

to y . The Monge problem is

inf
T

{∫
X

c(x,T (x))dµ(x) : T : X → Y Borel, T#µ= ν
}

. (M)

A map T satisfying the constraint T#µ= ν is called a transport map.

We henceforth denote this problem as (M). The critical part in (M) is the constraint T#µ = ν. By

definition, this is equivalent to saying ν(A) = µ(T −1(A)) for all measurable A ⊆ Y . Thinking ν(A) as the

mass of set A in the target set Y , then the constraint ν(A) = µ(T −1(A)) says that if we trace back the

sources of the elements in A (i.e., the preimage of A under T ), then they have the same mass as in the

target. This coincides with the underlying assumption of optimal transport. To see that, we revisit the

optimal transport problems that we defined previously.

Discrete case: If µ and ν are discrete probability measures on X = {x1, · · · , xn} and Y = {y1, · · · , ym}

respectively:

µ=
n∑

i=1
aiδxi , ν=

m∑
j=1

b jδy j
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in which ai ,b j ≥ 0 and
∑

ai = ∑
b j = 1 (the requirement that they sum to 1 is not essential; it can be

replaced by any other fixed numbers). Then the cost can be calculated:

J (T ) =
∫

X
c(x,T (x))dµ(x) =

n∑
i=1

c(xi ,T (xi ))ai (4.11)

For a mapping T : X → Y , the pushforward of T is

T#µ(A) =µ(T −1(A)) =
n∑

i=1
aiδxi (T −1(A)) =

n∑
i=1

aiδT (xi )(A)

hence the requirement T#µ= ν forces the following to hold

n∑
i=1

aiδT (xi ) =
m∑

j=1
b jδy j

which happens if and only if ∑
i :T (xi )=y j

ai = b j . (4.12)

The equations (4.11, 4.12) are exactly those in (4.7).

Continuous case: This time, let us consider the absolutely continuous measures dµ(x) = f (x)dx,

dν(y) = g (y)dy form some Lebesgue measurable functions f and g , where dx is the Lebesgue measure

on Rn . Then

J (T ) =
∫

X
c(x,T (x))dµ(x) =

∫
X

c(x,T (x)) f (x)dx. (4.13)

When T is a diffeomorphism, the constraint T#µ= ν imposes the following

T#µ(A) =µ(T −1(A)) =
∫

T −1(A)
f (x)dx

= ν(A) =
∫

A
g (y)dy =

∫
T −1(A)

g (T (x))|detDT (x)|dx

hence

|detDT (x)| = f (x)

g (T (x))
, ∀x ∈ X . (4.14)

Equations (4.13, 4.14) are exactly (4.10) introduced in Section ??.

One important question in Monge problem is when the set {T : T#µ = ν} is non-empty. A further

question is, how to construct a transport map from the given dataµ andν. It is easy to construct measures

µ and ν such that T does not exist:

Example 4.8 (Nonexistence of transport map). Let X = {0}, Y = {0,1} and µ = δ0 and ν = 1
2δ0 + 1

2δ1.

Obviously there is no map T : X → Y satisfying T#µ = ν, because the point 0 can only be mapped to

either 0 or 1, but not both. More generally, if the cardinality of the support of ν is larger than that of µ,

transport map does not exist. In particular, when µ is a discrete measure, i.e., its support is a discrete set,

and ν a continuous measure, there is not admissible transport map.

Example 4.9 (Transport map on the real line). Consider two probability measures on the real line, µ,

ν ∈P(R). The compatibility condition T#µ= ν says µ(T −1(A)) = ν(A) for all Borel sets A. Since intervals

(−∞, a] generates the Borel measure, it is sufficient to require

µ{T −1(−∞, a]} = ν{(−∞, a]}, ∀a ∈R.
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The right hand side is simply the cumulative distribution function, which we denote as Fν(a) := ν{(−∞, a]}.

On the left, if T is a strictly increasing map, then T −1(−∞, a] = (−∞,T −1(a)]. And it follows that the left

hand side is Fµ(T −1(a)). Equating the two terms, we get

Fµ(T −1(a)) = Fν(a)

thus T can be taken as T (x) = F−1
ν ◦ Fµ(x). In general, this map needn’t be strictly increasing and Fν

needn’t be invertible, e.g., when ν is supported only on finite intervals. A better definition for T is

T (x) := inf{y ∈ suppν : Fν(y) ≥ Fµ(x)}. (4.15)

Indeed, if suppFν = R, then Fν is invertible and T (x) = F−1
ν ◦Fµ(x). But definition (4.15) makes sense

even if Fν is supported only on subset of R. It remains to verify that T is an admissible transport map,

i.e., Fν(y) = µ({x : T (x) ≤ y}) for all y ∈ R. Obviously, T is nondecreasing, and hence there exists a ∈ R,

such that {x : T (x) ≤ y} contains (−∞, a) and is contained in (−∞, a]. Since µ is atomless, in either case

they have the same measure. Thus it suffices to prove Fν(y) = Fµ(a). On the one hand, since (−∞, a) ⊆
{x : T (x) ≤ y}, then for any a′ < a and ϵ> 0, we have by definition of T , Fµ(a′) ≤ Fν(T (a′)+ ϵ) ≤ Fν(y + ϵ).

Letting ϵ → 0 and a′ → a, by continuity of Fµ (since µ is atomless) and right continuity of Fν, we get

Fµ(a) ≤ Fν(y). On the other hand, for any a′ > a, we have T (a′) > y because {x : T (x) ≤ y} ⊆ (−∞, a],

which is equivalent to {x : T (x) > y} ⊇ (a,∞). Hence Fν(y) ≤ Fµ(a′), and Fν(y) ≤ Fµ(a) by continuity of

Fµ, see Figure 4.5.

𝑦𝑦

𝐹𝐹𝜇𝜇(𝑎𝑎′) 𝐹𝐹𝜈𝜈(⋅)

𝑇𝑇(𝑎𝑎′)

Figure 4.5: Illustration of the proof.

The following result says this also holds in higher dimension.

Proposition 4.4. Given two probability measures µ and ν, if µ is atomless, then there always exists a Borel

map T such that T#µ= ν.

The abstract Kantorovich problem

Let us recall the Kantorovich problem in continuous case (see Section ??, problem (4.8)):

min
p

J (π) =
∫

X×Y
c(x, y)p(x, y)dxdy

subject to:
∫

X
p(x, y)dx = g (y),

∫
Y

p(x, y)dy = f (x)

p(x, y) ≥ 0
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Here we changed a bit the notation (replace π with p) to avoid confusion. Suppose that f (x)dx and

g (y)dy are two probability measures. The equations on the second line above motivate us to define a

measure π ∈P(X ×Y ) by

π(S) =
∫

S
p(x, y)dxdy

for S ⊆ X ×Y . π is easily seen to be a probability measure. We claim that with this notation, the constraint

on the second line can be recast as

π(A×Y ) =µ(A), π(X ×B) = ν(B) (4.16)

for all measurable sets A ⊆ X , B ⊆ Y . To see this, first notice

π(A×Y ) =
∫

A×Y
p(x, y)dxdy =

∫
A

∫
Y

p(x, y)dydx

µ(A) =
∫

A
f (x)dx

then equate the rightmost terms of the above two lines to get∫
X

1A(x)

(∫
Y

p(x, y)dy − f (x)

)
dx = 0.

One then argue that ∫
X
φ(x)

(∫
Y

p(x, y)dy − f (x)

)
dx = 0

for all Borel functions φ and conclude that
∫

Y p(x, y)dy = f (x), as expected. The reverse direction is

straightforward.

We remark that the equations (4.16) can be written more concisely as

(pX )#π=µ, (pY )#π= ν

where pX : X ×Y → X and pY : X ×Y → Y are the projection maps. Call the following set

Γ(µ,ν) = {π ∈P(X ×Y ) : (pX )#π=µ, (pY )#π= ν} (4.17)

the set of transport plans between µ and ν. We claim that Γ(µ,ν) is never empty. Define a measure µ⊗ν
as follows

µ⊗ν(A×B) =µ(A)ν(B)

which is uniquely determined since A×B generates the Borel σ-algebra of X ×Y . By this definition, it is

immediate that µ⊗ν is a transport plan.

Example 4.10. Letµ=∑n
i=1 aiδxi andν=∑m

j=1 biδy j two discrete probability measures on X = {x1, · · · , xn}

and Y = {y1, · · · , ym} respectively. Let π ∈ Γ(µ,ν). Then π is a probability measure on X ×Y , or

π=
n∑

i=1

m∑
j=1

Pi jδ(xi ,y j ).

for some non-negative numbers {Pi j } satisfying
∑

i , j Pi j = 1. For any xi ∈ X , by definition of a transport

plan, we have

ai =µ({xi }) =π({xi }×Y ) =
m∑

j=1
Pi j

b j = ν({y j }) =π(X × {y j }) =
n∑

i=1
Pi j

which coincides with 4.5. Thus Γ(µ,ν) =Π(a,b), as expected.

134



The Kantorovich problem is formulated as follows:

Kantorovich problem

Given two probability measures µ ∈P(X ), ν ∈P(Y ), the Kantorovich problem is to seek a prob-

ability measure π ∈P(X ×Y ) to the following minimization problem:

inf
π

{∫
X×Y

c(x, y)dπ(x, y) :π ∈ Γ(µ,ν)

}
. (K)

We henceforth denote this problem as (K). The Kantorovich has the following important properties:

1) The set Γ(µ,ν) is never empty since µ⊗ν is always in Γ(µ,ν). Thus the problem is always well-

defined.

2) It is a convex optimization problem over a convex set. Indeed, for π1,π2 ∈ Γ(µ,ν) and λ ∈ [0,1], it is

easily seen thatπ=λπ1+(1−λ)π2) is a transport plan, e.g.,π(A×Y ) =λπ1(A×Y )+(1−λ)π2(A×Y ) =µ(A).

On the other hand, the mapping π→ ∫
cdπ is affine since

∫
cd(λπ1+(1−λ)π1) =λ∫

cdπ1+(1−λ)
∫

cdπ2.

(Note that we cannot talk about linearality since π is restricted to be probability measures).

Problem (M) versus problem (K)

We mentioned earlier that the Monge problem can be viewed as adding an additional constraint on the

Kantorovich problem, or in other words, Kantorovich problem is a relaxation of the Monge problem.

This still holds for abstract optimal transportation problems. In fact, we can associate every transport

map T : X → Y with a transport plan π by 4

π= (id×T )#µ

where id is the identity mapping on X . To see that π is a transport plan, notice that π(A ×Y ) = µ((id×
T )−1(A×Y )) =µ{x ∈ A;T (x) ∈ Y } =µ(A). The other equation is similar. Thus we can conclude

inf
π

(K) ≤ inf
T

(M). (4.18)

We point out that even though µ has a density, e.g., dµ(x) = f (x)d x, the map π = (id×T )#µ needn’t

do. In fact, π is concentrated on the graph of T :

Gr(T ) := {(x,T (x)) ∈ X ×Y },

see Figure 4.6.

4Given two mappings T1 : X → Y1, T2 : X → Y2, the mapping T1 ×T2 : X → Y1 ×Y2 is defined as T1 ×T2(x) = (T1(x),T2(x)).
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𝑋𝑋 𝑋𝑋

𝑌𝑌𝑌𝑌
𝑦𝑦 = 𝑇𝑇(𝑥𝑥)

Figure 4.6: Monge problem versus Kantorovich problem. On the left, the mass is concentrated on the
graph of T . On the right, we draw the continuous density function of a probability measure π. The
brighter the value, the higher the density value at that point.

It now seems that the (K) problem is so much more general than (M) that the one would normally

not expect the reverse direction to hold. But quite surprisingly, the reverse direction holds under very

mild conditions: if 1) µ does not assign positive measure to singletons, i.e., µ{x} = 0 for any x ∈ X (we call

such µ atomless or µ has no atom) and 2) the cost function c(x, y) : X ×Y → R is continuous, then the

inequality (4.18) becomes equality:

Theorem 4.3 (Pratelli). If µ is atomless and c : X ×Y →R is continuous, then

min
π

(K) = inf
T

(M).

The proof of the theorem is quite technical which relies essentially on Proposition 4.4: based on that

proposition, for anyπ ∈ Γ(µ,ν) – whenµ is atomless – we can find a sequence of transport maps {Tn} such

that (id×Tn)#µ converges to π in certain sense. The continuity of c then will allow us to take the limit

lim
n→∞

∫
X

c(x,Tn(x))dµ(x) = lim
n→∞

∫
X×Y

c(x, y)d(id×Tn)#µ(x, y) =
∫

X×Y
c(x, y)dπ(x, y).

Observe from above that given a sequence of measures {µn}, the convergence we need is the following:

there exists a measure µ such that for any continuous function φ,
∫
φdµn converges to

∫
φdµ. In fact, a

weaker requirement is sufficient, i.e., the weak convergence of measures:

Definition 4.4 (Weak convergence). A sequence of measures {µn} on X is said to converge weakly to µ

and is denoted µn *µ, if ∫
X
φdµn →

∫
X
φdµ

for all bounded continuous functions φ ∈Cb(X ).

4.2 Structures of the minimizer

4.2.1 Existence of optimal transport plan

For both Kantorovich and Monge problem, the first question needs to be addressed is the existence of

minimizers. We study the Kantorovich problem first.
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Recall that in the discrete measure setting, the Kantorovich problem is a linear programming on a

convex compact set Π(a,b). Thus a minimizer is guaranteed to exist. In the general setting, we will see

that the set Γ(µ,ν) is still compact – under the weak topology introduced earlier. Recall that:

1) a set X is compact if for any sequence {xn} in X , there is a convergent subsequence {xnk } whose

limit lies in X .

2) the weak topology on Γ(µ,ν) is defined by: µn * µ iff
∫
φdµn → ∫

φdµ for all bounded continuous

φ.

Now that Γ(µ,ν) is compact, if the functional π 7→ ∫
cdπ is continuous, we can conclude that there

exists at least one minimizer in Γ(µ,ν). However, sometimes continuity is a strong requirement, and a

weaker condition is enough, i.e., lower semi-continuity.

Definition 4.5 (Lower semi-continuity). On a metric space X , a function f : X → R∪ {+∞} is said to be

lower semi-continuous (l.s.c. for short) if for every sequence xn → x, we have

f (x) ≤ liminf
n→∞ f (xn).

By definition, a continuous function is l.s.c. Increasing left continuous functions and decreasing right

continuous functions on the real line are also l.s.c.

Theorem 4.4 (Weierstrass extreme point theorem). If f is l.s.c. on a compact metric space X , then f

achieves minimum on X , i.e., there exists x∗ ∈ X such that

f (x∗) = min
X

f (x).

Next, we show that π 7→ ∫
cdπ is l.s.c. when c is on X ×Y :

Proposition 4.5 (L.s.c. of π→ ∫
cdπ). If c : X ×Y → [0,∞] is l.s.c., the mapping π 7→ ∫

cdπ is also l.s.c. in

P(X ×Y ) w.r.t. the weak topology.

Proof. We need to show that, for a sequence {πi } ∈P(X ×Y ) converging weakly to π, there holds∫
cdπ≤ liminf

i→∞

∫
cdπi .

If c is continuous, then we can prove this rather easily. Define a sequence ck (x, y) = c(x, y)∧k ≤ c(x, y),5

which is bounded continuous on X ×Y and ck ↑ c as k →∞ pointwisely. By definition of weak conver-

gence,

lim
i→∞

∫
ck dπi =

∫
ck dπ.

Apply monotone convergence theorem∫
cdπ= lim

k→∞

∫
ck dπ= lim

k→∞
lim

i→∞

∫
ck dπi = lim

k→∞
liminf

i→∞

∫
ck dπi ≤ liminf

i→∞

∫
cdπi

as desired.

For l.s.c., the proof strategy is the same: approximate c by some continuous bounded functions and

then tend to limit. The following clever construction produces a Lipschitz continuous function from a

l.s.c. function:

ck (x, y) := inf
x′∈X , y ′∈Y

{c(x ′, y ′)∧k +kdX (x, x ′)+kdY (y, y ′)} (4.19)

5We denote x ∧ y := min{x, y}, and x ∨ y = max{x, y}.
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where dX and dY are the metric on X and Y respectively. We assert that ck ↑ c. Indeed, 0 ≤ ck ≤ ck+1 ≤
c ∧k ≤ c, it suffices to prove c(x, y) ≤ supk ck (x, y) since this implies (by monotonicity of ck )

lim
k

ck ≤ c ≤ sup
k

ck = lim
k

ck .

Fix x, y , by definition of ck , for any k ≥ 1, there exists xk , yk such that

c(xk , yk )∧k +kdX (x, xk )+kdY (y, yk ) ≤ ck (x, y)+ 1

k
.

Let k → ∞, we discover that dX (x, xk ) → 0, dY (y, yk ) → 0. Thus by definition of l.s.c., (w.l.o.g., assume

supk c(xk , yk ) is finite):

c(x, y) ≤ liminf
k→∞

c(xk , yk ) = liminf
k→∞

c(xk , yk )∧k ≤ sup
k

ck (x, y).

The Lipschitz continuity of ck (x, y) is left as an exercise (see below).

Exercise 4.2. If { fα}α∈A is a family of Lipschitz continuous functions on X with a common Lipschitz

constant – we call the family equi-Lipschitz – then f (x) := infα fα(x) is also Lipschitz continuous. In

particular, if fα has the same Lipschitz constant, say L, then the Lipschitz constant of f is also L.

The compactness of the set Γ(µ,ν) is much more technical. We state the following theorem without

proof. Before that we need the notion of separable spaces. A metric space X is said to be separable if it has

a countable dense set. For example, a Hilbert space admitting countable basis is separable. Lp (X ,µ) is

also separable for p ∈ [1,∞) if X is, e.g., Lp (Rn ,L n). A separable complete metric space is called a Polish

space.

Theorem 4.5 (Compactness of Γ(µ,ν)). Let X ,Y be Polish spaces, and µ ∈P(X ), ν ∈P(Y ). Then Γ(µ,ν)

is compact w.r.t. the weak topology.

Finally, we can conclude with the help of Proposition 4.5 and Theorem 4.5 the following result:

Theorem 4.6. Let X ,Y be Polish spaces and c : X ×Y → [0,∞] l.s.c., then the Problem (K) has a minimizer.

Although the existence of optimal transport plan for the Kantorovich problem is guaranteed in most

reasonable cases and is rather easy to analyze, it is not the case for the Monge problem. We will only

be able to prove the existence of optimal transport maps for much narrower class of problems and even

in those cases, the proof is non-trivial and requires deeper understandings of the minimizer of the Kan-

torovich problem.

4.2.2 Duality theory I: X ×Y compact

Remember that in Section 4.1.3, we derived the dual formula for discrete Kantorovich problem min〈P,C〉,
which is sup f ⊕g≤C

〈
f , a

〉+〈
g ,b

〉
, and that strong duality holds

min
P∈Π(a,b)

〈P,C〉 = sup
f ⊕g≤C

〈
f , a

〉+〈
g ,b

〉
. (4.20)

With a bit insight, one may write the abstraction of the above formula in the general setting

min
π∈Γ(µ,ν)

∫
cdπ= sup

φ,ψ

{∫
X
φ(x)dµ(x)+

∫
Y
ψ(y)dν(y) :φ(x)+ψ(y) ≤ c(x, y)

}
(4.21)
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This formula is called Kantorovich-Rubinstein duality. Since both sides of (4.21) are linear programming

problems (infinite dimensional though), the duality has a high chance to be true. Recall that the non-

trivial step in proving (4.20) involves an exchange of “inf” and “sup”. This is also the case for (4.21).

Indeed,

min
π∈Γ(µ,ν)

∫
cdπ= min

π

∫
cdπ+ IΓ(µ,ν)(π)

but

IΓ(µ,ν)(π) = sup
φ

∫
φ(x)d

[
µ− (pX )#π

]
(x)+ sup

ψ

∫
ψ(y)d

[
ν− (pY )#π

]
(y)

= sup
φ

[∫
φ(x)dµ(x)−

∫
φ(x)dπ(x, y)

]
+ sup

ψ

[∫
ψ(y)dν(y)−

∫
ψ(y)dπ(x, y)

]
Thus

min
π∈Γ(µ,ν)

∫
cdπ= min

π
sup
φ,ψ

∫
(c −φ−ψ)dπ+

∫
φdµ+

∫
ψdν

≥ sup
φ,ψ

min
π

∫
(c −φ−ψ)dπ+

∫
φdµ+

∫
ψdν (weak duality)

= sup
φ(x)+ψ(y)≤c(x,y)

∫
φ(x)dµ(x)+

∫
ψ(y)dν(y).

If equality is met for the inequality on the second line, i.e., when we can swap the min and sup, we will

get the formula (4.21).

The device to prove the duality relation is the the following Fenchel-Rockafellar duality theorem:

Theorem 4.7 (Fenchel-Rockafellar duality). Let E be a normed vector space, E∗ its topological dual (the

space of bounded linear functionals on E), and Θ, Ξ two convex functions on E with values in R∪ {+∞}.

Let Θ∗ and Ξ∗ be the Legendre-Fenchel transform of Θ, Ξ respectively. If ∃z0, s.t.

Θ(z0) <+∞, Ξ(z0) <+∞

and

Θ(z) is continuous at z0

Then there holds

inf
z∈E

{Θ(z)+Ξ(z)} = max
z∗∈E∗{−Θ∗(−z∗)−Ξ∗(z∗)}

To gain some insight on how to prove the Kantorovich-Rubinstein duality, we use Theorem 4.7 to

justify the minimax property of the discrete duality relation (4.20). Rewrite the right hand side of (4.20):

sup
f ⊕g≤C

〈
f , a

〉+〈
g ,b

〉= sup
f ,g

〈
f , a

〉+〈
g ,b

〉+
0, if f ⊕ g ≤C

−∞, else


= sup

P∗


〈

f , a
〉+〈

g ,b
〉

, if P∗ = f ⊕ g

−∞, else
+

0, if P∗ ≤C

−∞, else


Denote

−Θ∗(−P∗) =


〈
f , a

〉+〈
g ,b

〉
, if P∗ = f ⊕ g

−∞, else
, −Ξ∗(P∗) =

0, if P∗ ≤C

−∞, else
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then one can readily check that Θ∗ and Ξ∗ are the Legendre transform of Θ and Ξ defined as follows

(calculate Θ∗∗ and Ξ∗∗ first and then argue Θ=Θ∗∗ and Ξ∗∗ =Ξ):

Θ(P ) :=
0, if

∑m
j=1 Pi j = ai ,

∑n
i=1 Pi j = b j

+∞, else.
, Ξ(P ) =

〈P,C〉 , if P ≥ 0

+∞, else

Therefore

inf
P

{Θ(P )+Ξ(P )} = inf
P∈Π(a,b)

〈P,C〉

By Fenchel duality, we now deduce (4.20).

Let M (X ×Y ) be the space of Borel measures on X ×Y . Mimicking the above reasoning, we define

two functionals Θ,Ξ : M (X ×Y ) →R∪ {+∞}:

Θ(π) :=
0, if π ∈ Γ(µ,ν)

+∞, else.
, Ξ(π) =


∫

cdπ, if π≥ 0

+∞, else

To apply Fenchel duality theorem, one has to first determine the Legendre transforms of Θ and Ξ. But

the topological dual of M (X ×Y ) is not analytically convenient to work with. Thus we go from the other

direction, i.e., from the right to the left of (4.21). In this case, we need to change the sup on the right to

inf instead:

sup
φ,ψ

{∫
X
φ(x)dµ(x)+

∫
Y
ψ(y)dν(y) :φ(x)+ψ(y) ≤ c(x, y)

}
=− inf

φ,ψ

{∫
X
φ(x)dµ(x)+

∫
Y
ψ(y)dν(y) :φ(x)+ψ(y) ≥−c(x, y)

}
Now

inf
φ,ψ

{∫
X
φ(x)dµ(x)+

∫
Y
ψ(y)dν(y) :φ(x)+ψ(y) ≥−c(x, y)

}
= inf

u
Ξ(u)+Θ(u)

where Θ,Ξ are defined as

Θ(u) =
0, if u(x, y) ≥−c(x, y)

+∞, else
, Ξ(u) =


∫

X φ(x)dµ(x)+∫
Y ψ(y)dν(y), if φ(x)+ψ(y) = u(x, y)

+∞, else

where the living space for u is yet to be determined. It should be chosen in a way that its topological dual

is rich enough and easy to work with. A good candidate is Cb(X ×Y ) when X ×Y is compact, since it is

well-known that the topological dual of Cb(X ×Y ) is M (X ×Y ).

Let’s assume X ×Y is compact and c is lower semi-continuous. The Legendre transforms of Θ,Ξ :

Cb(X ×Y ) →R∪ {+∞} are

Θ∗(−π) = sup
u∈Cb

−〈π,u〉−Θ(u)

= sup
u∈Cb

{
−

∫
udπ : u ≥−c

}
= sup

u∈Cb

{∫
udπ : u ≤ c

}

=


∫
cdπ if π≥ 0

+∞ else.
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and

Ξ∗(π) = sup
u∈Cb

{
〈π,u〉−

∫
X
φ(x)dµ(x)−

∫
Y
ψ(y)dν(y) :φ+ψ= u

}
= sup

u∈Cb

{∫
φ(x)+ψ(y)dπ(x, y)−

∫
φdµ−

∫
ψdν :φ+ψ= u

}

=
0 if (pX )#π=µ, (pY )#π= ν
+∞ else.

respectively. By Fenchel duality,

max
π

−Θ∗(−π)−Ξ∗(π) = max
π∈Γ(µ,ν)

−
∫

cdπ=− min
π∈Γ(µ,ν)

∫
cdπ

from which it follows that

RHS of (4.20) =− inf
u
Θ(u)+Ξ(u) =−max

π
−Θ∗(−π)−Ξ∗(π) = min

π∈Γ(µ,ν)

∫
cdπ

= LHS of (4.20).

as desired. In conclusion, we have proved the duality relation (4.21) when X×Y is compact. The following

general result shows that compactness is not essential though:

Proposition 4.6 (Duality for compact X ×Y ). Let X ×Y be compact and c : X ×Y → [0,∞] l.sc., then the

Kantorovich-Rubinstein duality (4.21) holds.

In order to extend to non-compact case, we need some convex analysis tools, which are important

also for further understanding the structures of optimal transport plans and maps. In particular, the

notion c-cyclical monotonicity of the supports of optimal plans will be crucial to us.

4.2.3 c-cyclical monotonicity

Convex analysis recalled

Let X be a complete metric space, recall that for a convex functional f : X → (−∞,∞], the subdifferential

of f at x is defined as

∂ f (x) := {x∗ ∈ X ∗ :
〈

x∗, y −x
〉≤ f (y)− f (x), ∀y ∈ X } (4.22)

where X ∗ is as usual the topological dual of X , and 〈,〉is the paring on X ∗× X . The following are some

well-known properties of the subdifferential (the reader is invited to verify these properties) of a convex

function:

1) ∂ f (x) is a convex closed (possibly empty) subset of X ∗.

2) x∗ ∈ ∂ f (x) if and only if f (x) + f ∗(x∗) = 〈x∗, x〉, where f ∗ is the Legendre transform of f , i.e.,

f ∗(x∗) = supx∈X {〈x∗, x〉− f (x)}.

3) When f is differentiable 6 at x, then ∂ f (x) = {∇ f (x)}.

4) ∂ f is a monotone operator: for x∗
1 ∈ ∂ f (x1), x∗

2 ∈ ∂ f (x2),〈
x∗

2 −x∗
1 , x2 −x1

〉≥ 0.

6In this course, a function f is said to be differentiable at x if r 7→ f (x + r y) is differentiable at r = 0 for all y ∈ X .
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5) Another remarkable property regarding subdifferential is cyclical monotonicity of its graph. Since

x 7→ ∂ f (x) is a set valued map, its graph is well defined:

Gr(∂ f ) := {(x, x∗) ∈ X ×X ∗ : x∗ ∈ ∂ f (x)}.

For a set of points (x1, x∗
1 ), · · · , (xN , x∗

N ) on the graph and a permutation σ on {1, · · · , N }, we have〈
x∗

i , xσ(i ) −xi
〉≤ f (xσ(i ))− f (xi )

adding up together, we get
N∑

i=1

〈
x∗

i , xσ(i ) −xi
〉≤ 0. (4.23)

A graph Γ⊆ X ×X ∗ satisfying (4.23) is said to be cyclically monotone. Notice that there also holds

N∑
i=1

〈
x∗
σ(i ) −x∗

i , xi

〉
≤ 0.

c-cyclical monotonicity

Cyclical monotonicity is a special case of a more general notion, namely, c-cyclical monotonicity, which

plays a fundamental role in optimal transport. Our final goal in this subsection is to show that the support

of an optimal transport plan is c-cyclically monotone.

Definition 4.6 (c-cyclical monotonicity). A set Γ⊆ X ×Y is c-cyclically monotone if

N∑
i=1

c(xi , yi ) ≤
N∑

i=1
c(xi , yσ(i )) (4.24)

for every N ≥ 1, permutation σ of {1, · · · , N } and (xi , yi ) ∈ Γ for i = 1, · · · , N .

Example 4.11. Consider the set

Ic = {(φ,ψ) ∈Cb(X )×Cb(Y ) :φ(x)+ψ(y) ≤ c(x, y), ∀x, y ∈ X ×Y }.

For φ,ψ ∈ Ic , call

Γ(φ,ψ) := {(x, y) ∈ X ×Y :φ(x)+ψ(y) = c(x, y)}

the contact set of the pair (φ,ψ). Then Γ(φ,ψ) is c-cyclically monotone. Indeed, for (x1, y1), · · · , (xN , yN )

and any permutation σ of {1, · · · , N }, we have

N∑
i=1

c(xi , yi ) =
N∑

i=1
φ(xi )+

N∑
i=1

ψ(yσ(i )) ≤
N∑

i=1
c(xi , yσ(i )).

To see that c-cyclical monotonicity is a generalization of cyclical monotonicity, let Y = X ∗ and c(x, x∗) =
−〈x∗, x〉 in (4.24), we immediately recover (4.23).

Similarly, we can generalize the Legendre transform:

Definition 4.7 (c-transform). Given c(x, y) : X ×Y →R∪{+∞}, φ : X → [−∞,∞),ψ : Y → [−∞,∞), define

φc (y) := inf
x∈X

{c(x, y)−φ(x)}

ψc (x) := inf
y∈Y

{c(x, y)−ψ(y)}

and say that φc (resp. ψc ) the c-conjugate of φ (resp. ψ).
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Definition 4.8 (c-concavity). A function φ : X → [−∞,∞) (resp. ψ : Y → [−∞,∞)) is said to be c-concave

if it is the infimum of a family of c-affine functions c(·, y)+α (resp. c(x, ·)+β), i.e.,

φ(x) = inf
y∈A

c(x, y)+αy

for some index set A .

c-concave function has the following important properties whose proof is left as an exercise:

• φ is c-concave if and only if it is the c transform of a function ψ, i.e., φ=ψc ;

• φcc ≥φ, with equality if and only if φ is c-concave.

The following is the last definition we will need:

Definition 4.9 (c-superdifferential). Given c(x, y) : X×Y →R∪{+∞},φ : X → [−∞,∞), the c-superdifferential

of φ is a set valued map

∂cφ(x) := {y ∈ Y : c(x, y)− c(x ′, y) ≤φ(x)−φ(x ′) for all x ′ ∈ X }

If we specify the definition to c(x, x∗) =−〈x∗, x〉, then we see that ∂c (− f )(x) = {x∗ ∈ X ∗ :
〈

x∗, y −x
〉≤

f (y)− f (x)} = ∂ f (x) in which the inequality is in opposite direction compared to (4.22). That is the reason

why we should not call ∂cφ c-subdifferential.

Exercise 4.3. Show that y ∈ ∂cφ(x) if and only if φ(x)+φc (y) = c(x, y) and deduce from this relation that

the graph of ∂cφ is c-cyclically monotone. Hint: Gr(∂cφ) is a contact set.

The following result says that a c-cyclically monotone set is always contained in contact sets, or more

precisely, the graph of some c-superdifferential Gr(∂cφ).

Theorem 4.8 (Rockafellar). Assume c : X ×Y →R and that Γ⊆ X ×Y is c-cyclically monotone. Then there

exists a c-concave function φ : X → [−∞,∞), φ ̸≡ −∞, such that Γ⊆ Gr(∂cφ). If c is bounded Lipschitz, i.e.,

c ∈ Lipb(X ×Y ), then φ can be chosen such that (φ,φc ) ∈ Lipb(X )×Lipb(Y ).

Proof. We construct φ with the desired properties. For any (xN , yN ) ∈ Γ, φ should be such that

φ(x) ≤ c(x, yN )− c(xN , yN )+φ(xN ), ∀x ∈ X .

We can continue for (xN−1, yN−1), · · · , (x0, y0) ∈ Γ,

φ(x) ≤ c(x, yN )− c(xN , yN )+ c(xN , yN−1)− c(xN−1, yN−1)+φ(xN−1)

≤ c(x, yN )− c(xN , yN )+ c(xN , yN−1)− c(xN−1, yN−1)+·· ·+c(x1, y0)− c(x0, y0)+φ(x0).

If φ(x0) = 0, the above formula suggests defining

φ(x) := inf{c(x, yN )− c(xN , yN )+ c(xN , yN−1)− c(xN−1, yN−1)+·· ·+c(x1, y0)− c(x0, y0)}

where the infimum is taken over all finite set of points on Γ. We need to verify that 1) φ is c-concave; 2)

φ(x0) = 0. For 1), it is obvious. It remains to show 2). Take N = 1 and (x1, y1) = (x0, y0), we get φ(x0) ≤ 0.

Thus we need only show that φ(x0) ≥ 0, which is obvious due to c-cyclical monotonicity of Γ.

143



It remains to show that φ and φc are bounded Lipschitz whenever c ∈ Lipb(X ×Y ). The Lipschitz

continuity is obvious since φ is an infimum of a family of Lipschitz functions, see Exercise 4.2. Note that

φc (y) ≤ c(x0, y)−φ(x0) ≤ supc <∞

Since φ is c-concave,

infφ(x) = infφcc (x) = inf
x

inf
y

c(x, y)−φc (y) ≥ infc − supφc >−∞

Similarly, one can show that supφ(x) <+∞. Thus φ is bounded on X . One can prove for φc analogously.

Now, reconsider the discrete Kantorovich problem. Suppose that π = ∑
i , j Pi jδ(xi ,y j ) is an optimal

plan. If the support of π is not c-cyclically monotone, we can find a set of points (xi1 , y j1 ), · · · , (xiN , y jN )

with Pik jk > 0 for k = 1, · · · , N and a permutation σ of { j1, · · · , jN } such that

N∑
k=1

c(xik , y jk ) >
N∑

k=1
c(xik , yσ( jk )). (4.25)

We use these information to construct a better plan:

π̃=π−ϵ
N∑

k=1
δ(xik

,y jk
) +ϵ

N∑
k=1

δ(xik
,yσ( jk ))

Since Pik jk is strictly positive, π̃ is non-negative for small ϵ> 0. Next, notice that

(pX )#π̃= (pX )#π−ϵ
N∑

k=1
δxik

+ϵ
N∑

k=1
δxik

= (pX )#π

(pY )#π̃= (pY )#π−ϵ
N∑

k=1
δy jk

+ϵ
N∑

k=1
δyσ( jk ) = (pY )#π

since σ is a permutation. Thus π̃ is a bona fide optimal plan. It remains to show that π̃ performs better

than π. Indeed, invoking (4.25),∫
cdπ̃−

∫
cdπ=−ϵ

(
N∑

k=1
c(xik , y jk )−

N∑
k=1

c(xik , yσ( jk ))

)
< 0

as desired. Thus we have shown that the support of the optimal plan of discrete Kantorovich problem is

c-cyclically monotone. The same reasoning also holds for general Kantorovich problem:

Theorem 4.9 (c-cyclical monotonicity of the support of optimal plan). Assume that c : X ×Y → [0,∞) is

continuous and that π ∈ Γ(µ,ν) is optimal with
∫

cdπ<∞. Then suppπ is c-cyclically monotone.

Exercise 4.4. Prove Theorem 4.9. The proof strategy is almost the same as that of the preceding discrete

version. Hint: since c is continuous, one may construct some neighborhoods Ui ×Vi around (xi , yi ) such

that c(x, y) > c(xi , yi )−ϵ on Ui ×Vi and c(x, y) < c(xi , yσ(i ))+ϵ on Ui ×Vσ(i ).

144



4.2.4 Duality theory II: X ×Y non-compact

Let us see how much possible can we extend our result to non-compact X × Y . Let π ∈ Γ(µ,ν) be a

minimizer (whose existence is guaranteed by Proposition 4.6). When c : X ×Y → R is continuous, by

Theorem 4.9, the support of π is c-cyclically monotone. Thus by Theorem 4.8,

suppπ⊆ Gr(∂cφ) = {(x, y) ∈ X ×Y :φ(x)+φc (y) = c(x, y)}

for some c-concave function φ, and (φ,φc ) ∈ Lipb(X )×Lipb(Y ) whenever c ∈ Lipb(X ×Y ). Since c(x, y)−
(φ(x)+φc (y)) = 0 on the support of π, we have∫

cdπ=
∫

c(x, y)− (φ(x)+φc (y))dπ+
∫
φ(x)+φc (y)dπ

=
∫
φ(x)+φc (y)dπ(x, y)

=
∫

X
φ(x)dµ(x)+

∫
Y
φc (y)dν(y).

To summarize, we have proved:

Proposition 4.7 (Bounded Lipschitz cost function). The Kantorovich-Rubinstein duality (4.21) holds for

c ∈ Lipb(X ×Y ). In addition, the maximum on the RHS is attained at a pair (φ,φc ) ∈ Lipb(X )×Lipb(Y ),

where φc is the c-transform of φ. The function φ is called the Kantorovich potential.

Notice that in the proof of Proposition 4.7, we didn’t use Fenchel duality theorem, but the result is

stronger than Proposition 4.6 when c is bounded Lipschitz. In particular, 4.7 holds for c with negative

parts. But Proposition 4.6 has the advantage that it holds for l.s.c. c and that it does need to be bounded.

The goal of the rest of this subsection is to prove the following result for non-negative c:

Theorem 4.10 (Kantorovich-Rubinstein duality). Assume that c : X×Y → [0,∞] is l.s.c., then the Kantorovich-

Rubinstein duality (4.21) holds.

Proof. In the proof of Proposition 4.5, we have shown that c can be approximated by an increasing se-

quence of bounded Lipschitz functions {ck }: ck ↑ c as k →∞. Let π be an optimal plan, we have

min
π

∫
cdπ≥ sup

φ+ψ≤c

∫
φdµ+

∫
ψdν (weak duality) (4.26)

≥ sup
φ+ψ≤ck

∫
φdµ+

∫
ψdν

= min
π

∫
ck dπ (Proposition 4.7)

Thus it suffices to prove

lim
k→∞

min
π

∫
ck dπ≥ min

π

∫
cdπ

which forces the inequality (4.26) to be equality. Let πk ∈ argminπ
∫

ck dπ. Since Γ(µ,ν) is compact, we

can find a subsequence of {πk }, still denoted as {πk }, and some π∗ ∈ Γ(µ,ν), such that πk *π∗ as k →∞.

This implies

lim
k→∞

min
π

∫
ck dπ= lim

k→∞

∫
ck dπk ≥ liminf

k→∞

∫
cp dπk =

∫
cp dπ∗ ≥

∫
cp dπ
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for any p ≥ 1 since ck is an increasing sequence and π is optimal. Then letting p → ∞, by monotone

convergence theorem, we obtain

lim
k→∞

min
π

∫
ck dπ≥

∫
cdπ

as desired.

Remember in Theorem 4.9, we proved that when c : X ×Y → R is continuous, then the support of π

is c-cyclically monotone. The following rather surprising result says that the converse is also true when

x → c(x, y) and y → c(x, y) are bounded by integrable functions.

Theorem 4.11. Assume c : X ×Y → [0,∞] is l.s.c. and there exist functions f ∈ L1(µ), g ∈ L1(ν) such that

c(x, y) ≤ f (x)+ g (y). Then

1) π ∈ Γ(µ,ν) is optimal if and only if suppπ is c-cyclically monotone.

2) there exists a c-concave function φ : X → [−∞,∞) such that φ ∈ L1(µ), φc ∈ L1(ν) and

min
π

∫
cdπ=

∫
X
φdµ+

∫
Y
φc dν.

4.2.5 Existence of optimal maps

We are now ready to study a bit the existence theory of minimizers of the Monge problem. Due to the

highly nonlinearality of the Monge problem, general results regarding existence of minimizers are not

available. However, there are at least two important situations of which strong conclusions can be made.

The fist one is the quadratic cost case in Euclidean space and the other is convex cost on the real line.

Quadratic case: c(x, y) = 1
2 |x − y |2

Assumption: X = Y = Rn , c(x, y) = 1
2 |x − y |2, µ, ν are probability measures with finite second moment,

i.e.,
∫ |x|2dµ(x),

∫ |x|2dν(x) <∞, and µ is absolutely continuous w.r.t. L n .

The following is the main theorem on existence of optimal maps. It reveals a rather surprising con-

nection between Monge problem and convex analysis (be aware that the Monge problem is highly non-

linear).

Proposition 4.8. Under the above assumption. The Monge problem has a unique solution. Further more,

the optimal map is constructed from a convex functionψ differentiable µ-a.e., given by the formula T (x) =
∇ψ(x) for µ-a.e. x. Conversely, if ψ is convex, differentiable µ-a.e. with |∇ψ| ∈ L2(µ), i.e.,

∫ |∇ψ|2dµ<∞,

then T :=∇ψ is optimal from µ to ν := T#µ.

The proof strategy is to construct the optimal map from an optimal plan, with the help of the exis-

tence theory of optimal plans that we have already studied in Section 4.2.4.

Proof. Under the assumption, the Kantorovich problem has an optimal solution π supported on Gr∂cφ

for some c-concave function φ. Let us take a closer look at what it means to be c-concave in this context.

By definition

φ(x) = inf
i∈A

c(x, yi )+αi = inf
i∈A

1

2
|x − yi |2 +αi = 1

2
|x|2 + inf

i∈A

1

2
|yi |2 − y⊤

i x +αi .

It is immediate to see that φ(x)− 1
2 |x|2 is concave and lower-semi continuoussince it is the infimum of a

family of affine functions. Obviously, the converse also holds. Thus for quadratic cost, φ is c-concave if
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and only if φ(x)− 1
2 |x|2 is concave. Since a convex function is differentiable almost every where, so is φ.

At point x where ∇φ exists, we examine Gr(∂cφ). If (x, y) ∈ Gr(∂cφ), then c(x ′, y)−φ(x ′) = 1
2 |x ′−y |2−φ(x ′)

is minimal at x ′ = x. Differentiating w.r.t. x ′, we get

y = x −∇φ(x) =∇
(

1

2
|x|2 −φ(x)

)
=: ∇ψ(x)

where ψ(x) = 1
2 |x|2 −φ(x) is convex and . But this implies that for any x ∈ pX (Gr(∂cφ)), there is only one

point corresponding to x, which is ∇ψ(x). Thus we can define a map T on Rn as

T (x) =∇ψ(x)

and π is supported on the graph of T . Consequently, π= (id×∇ψ)#µ, and T are optimal plan and optimal

map respectively invoking Pratelli Theorem 4.3. To see that T is unique up to a negligible set, suppose

that T ′ is another optimal map. Then π′ = (id×T ′)#µ is also an optimal plan. Moreover, π′′ = 1
2 (π+π′)

is also optimal, which, by similar reasoning above, is supported on a graph which is only possible when

T = T ′ µ-a.e.

To prove the converse, we utilize Theorem 4.11 invoking that c(x, y) = 1
2 |x − y |2 ≤ |x|2 +|y |2. We need

to show that the graph of ∇ψ is c-cyclically monotone. But since ψ is convex, by definition of the subdif-

ferential, we have for any set of points (x1,∇ψ(x1)), · · · , (xN ,∇ψ(xN )) on the graph and permutation σ of

{1, · · · , N }: 〈∇ψ(xi ), xσ(i ) −xi
〉≤ψ(xσ(i ))−ψ(xi )

from which it follows that
N∑

i=1

〈∇ψ(xi ), xσ(i ) −xi
〉≤ 0.

But this is equivalent to (verify!):

N∑
i=1

|∇ψ(xi )−xi |2 ≤
N∑

i=1
|∇ψ(xi )−xσ(i )|2

as desired.

Remark 4.1. As a byproduct, we also see that optimal plan for the Kantorovich problem under assump-

tion is unique up to a µ⊗ν negligible set. Indeed, if π′ is another optimal plan, then π′′ = 1
2 (π+π′) is also

optimal. But we have seen that the graph of π′′ must coincide with that of π for µ-a.e. x, which implies

that π′′ =π and consequently π=π′ for µ⊗ν-a.e x, y ∈ X ×Y . More generally, whenever an optimal plan

must be induced by a transport map, then we have uniqueness of both.

The real line: c(x, y) = h(x − y)

Let us consider the cost of the form c(x, y) = h(x− y) on the real line, where h :R→ [0,∞) is convex. Note

carefully that h takes values in R instead of in R∪ {∞}, which forces c to be a continuous function on R, a

well-known fact.

Exercise 4.5. Any convex function h : Rn → R is continuous. Give an example that this fails to be true if

we allow +∞ in the range of h.
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Now by Theorem 4.6, there exists an optimal plan π to the Kantorovich problem. By Theorem 4.9,

if
∫

cdπ < +∞, then Γ := suppπ is c-cyclically monotone. Now Rockafellar’s theorem 4.8 says that there

exists a c-concave function φ : R→ [−∞,∞), φ ̸≡ −∞, such that Γ ⊆ Gr(∂cφ). In particular, when c is

bounded Lipschitz, e.g., when c vanishes outside a compact set., φ can be chosen to be bounded Lips-

chitz, which is differentiable L 1-almost everywhere. In this case, for any (x, y) ∈ Gr(∂cφ), by definition

h(x ′− y)−φ(x ′) is minimum at x ′ = x, and thus

∇h(x − y)−∇φ(x) = 0 (4.27)

. Since h is strictly convex, ∇h is invertible, and we may further get

y = x − (∇h)−1 ◦∇φ(x) := T (x).

By Remark 4.1, T is the unique optimal transport map. Notice that the formula (4.27) can be

Remember that in Example 4.9, we have shown that for µ ∈P(R) atomless, formula (4.15) provides a

transport map. In particular, when suppν=R, then T can be explicitly written as T = F−1
ν ◦Fµ where Fµ,

Fν are the cumulative functions of the measure µ and ν respectively. To conclude, we have:

Proposition 4.9. Suppose that c(x, y) = h(x−y) for some strictly convex function h :R→ [0,∞), µ is atom-

less and c is bounded Lipschitz. Then the optimal transport plan π is induced by the unique optimal

transport map, i.e., π= (id×T )#µ.

In this proposition, the requirement bounded Lipschitz of c is somehow too strong. To relax this, we

use the following technical lemma.

Lemma 4.2. Assume that Γ⊆R×R is c-cyclically monotone. Then Γ is a monotone graph in the sense that

whenever (x, y), (x ′, y ′) ∈ Γ and x < x ′, one has y ≤ y ′.

Now starting from the fact that suppπ is c-cyclically monotone, suppπ is concentrated on a monotone

graph by the above lemma. However, a monotone function can have at most countably many disconti-

nuity points and all of them are of the first kind. Thus through the optimal plan π, a transport map can

be constructed, which is uniquely determined up to L 1-negligible sets, and as before, this is the unique

optimal transport map.

We left the proof of Lemma 4.2 as an exercise.

Proposition 4.10. Suppose that c(x, y) = h(|x− y |) for some convex nondecreasing function h :R→ [0,∞),

µ is atomless. Then there exists an optimal transport map T (possibly non-unique) if
∫

c(x,T (x))dµ(x) <
∞.

Example 4.12. Let µ=L 1|[0,1], ν=L 1|[1,2], and c(x, y) = |x − y |. To obtain calculate the optimal value,

we can use the results in 4.2.5 since c(x, y) = h(x−y), with h(x) = |x| convex. Then T (x) = F−1
ν ◦Fµ(x) is an

optimal map, which results in min(M) = 1. On the other, T1(x) = x +1 and T2(x) = 2−x are also optimal.

Example 4.13 (Histogram equalization). Histogram equalization is a common operation used to in-

crease the global contrast of an image. This is applied for example when the intensity of pixels of the

image lie in a narrow range in the histogram. Suppose that the histogram of the original image is rep-

resented by a vector of dimension N , or a probability measure (after normalization) µ = ∑N
i=0 aiδi . For
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grayscale images, N is usually 255. Histogram equalization is to find a map which transforms the his-

togram µ into a uniform distribution ν, still supported on {1, · · · , N }. The problem is easier to solve if we

view µ as an atomless continuous distribution, for example, by approximation. Then T (m) = F−1
ν ◦Fµ(m)

(see Example 4.9) is the unique optimal transport map for any cost c(x, y) = h(x−y) with h strictly convex.

Since ν is uniform, T has a simple formula

T (m) = (N +1)
m∑

i=1
ai .

This formula says that, for pixels of intensity m, it should be mapped to intensity T (m).
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Figure 4.7: Original image and histogram
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Figure 4.8: After histogram equalization

Dido’s problem revisited

We now solve Dido’s problem using a totally different approach. In Figure 4.9, we draw two regions in

yellow color. On the right is a semi-circle with radius r and whose center is at the origin. The set on

the left is a region enclosed by a curve γ and the x-axis which has the same area as the semi-circle, i.e.

area(C ) = area(H) = 1
2πr 2.
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Figure 4.9: Dido’s problem and optimal transport

We want to show that the length of the curve γ is less than the perimeter of the half circle, i.e., πr .

If we reflect the two sets along the x-axis, then we obtain two new sets, still denoted as C and H , as in

Figure 4.10.
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Figure 4.10: Dido’s problem and optimal transport

Define two probability measures that represent the two sets:

µ := 1

πr 2 L 2|C , ν := 1

πr 2 L 2|H

where L 2 is the Lebesgue measure on the plane. Now since µ has density, under quadratic cost c, there

exists an optimal transport map T on R2 such that T#µ= ν by Proposition 4.8. Assume that T is C 1 (the

regularity is a subtle issue), then by mass preservation, T must map the points in C onto H . Again by

Proposition 4.8, T is the gradient of a convex function φ, i.e., T =∇φ. By Monge-Ampere equation (4.9),
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we have

det∇T (x) = ρC (x)

ρE (T (x))
= 1, ∀x ∈C ,

where ρC and ρE are the densities of µ and ν respectively. Since ∇T =∇2φ, ∇T is symmetric and has only

real eigenvalues, say {λ1,λ2}. Thus

1 =
√

det∇T (x) =
√
λ1λ2 ≤ λ1 +λ2

2
= 1

2
tr(∇T (x)) = 1

2
divT (x)

and ∫
C

divT (x)dx ≥ 2vol(C ) = 2πr 2

On the other hand, let ν be the outward pointing normal field on ∂C , then by divergence theorem,∫
C

divT (x)dx =
∫
∂C

〈T,ν〉dl ≤
∫
∂C

r dl = 2rℓ(γ)

since T (C ) ⊆ B , from which we obtain

ℓ(γ) ≥πr

as desired.

It is easy to see that the above reasoning also holds in higher dimension. More precisely, let L n and

σn−1 denote the Lebesgue volume and surface measures in Rn . We have the following generalized result

of the Dido’s problem, which is called the isopermetric inequality:

Proposition 4.11 (Isoperimetric inequality). Let E ⊆ Rn be a bounded open set with C 1 boundary. Let

B ⊆Rn be the ball with L n(E) =L n(B). Then σn−1(∂E) ≥σn−1(∂B).

Proof. It is sufficient to note the following inequalities:

1 = (det∇T )1/n ≤ 1

n
divT

and

σn−1(∂B) = nL n(B) = nL n(E) ≤
∫

E
divT dx =

∫
∂E

〈T,ν〉dσn−1 ≤σn−1(∂E).

4.3 Metric properties of optimal transport

4.3.1 Wasserstein spaces

Optimal transport provides a way of measuring the difference/distance between different measures. This

shall be clear once we have introduced the metric side of optimal transport.

Given a metric space (X ,d), set

Pp (X ) :=
{
µ ∈P(X ) :

∫
d(x, x0)p dµ(x) <∞ for some x0(hence for all) x0 ∈ X

}
for p ∈ [1,∞] and define the Wasserstein distance on Pp (X ) as the optimal value of the Kantorovich

problem (with c(x, y) = d(x, y)p ):

W p
p (µ,ν) := min

π∈Γ(µ,ν)

∫
d(x, y)p dπ(x, y).
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In particular, for µ,ν ∈ Pp (Rn), W p
p (µ,ν) = minπ∈Γ(µ,ν)

∫ |x − y |p dπ(x, y). As in functional analysis, p =
1,2,+∞ are the most interesting cases. We prove that Wp defines a metric or distance on Pp (X ), i.e., we

need check for µ,ν,σ ∈Pp (X ), the three properties:

1) Wp (µ,ν) ≥ 0 and Wp (µ,ν) = 0 iff µ= ν;

2) Wp (µ,ν) =Wp (ν,µ);

3) Wp (µ,σ) ≤Wp (µ,ν)+Wp (ν,σ).

First we prove 2). Let i : Y ×X → X ×Y be defined by i (x, y) = (y, x), then∫
d(x, y)dπ(x, y) =

∫
Y ×X

d ◦ i (y, x)d(i−1)#π(y, x)

and π ∈ Γ(µ,ν) iff (i−1)#π ∈ Γ(ν,µ). Thus

min
π∈Γ(µ,ν)

∫
X×Y

d(x, y)dπ(x, y) = min
π∈Γ(ν,µ)

∫
Y ×X

d(y, x)dπ(y, x).

For 1), the only nontrivial claim we need to prove is Wp (µ,ν) = 0 implies µ= ν. Suppose Wp (µ,ν) = 0,

then x = y for π-a.e. (x, y) ∈ X ×Y . Then for any f ∈Cb(X ),∫
f dµ=

∫
f (x)dµ(x) =

∫
f (x)dπ(x, y) =

∫
f (x)dπ(x, x) =

∫
f (y)dπ(y, x) =

∫
f dν

Thus µ= ν.

It remains to prove 3). We need the following technical lemma.

Lemma 4.3 (Dudley). Let (Xi ,µi ), i = 1,2,3 be Polish spaces, π12 ∈ Γ(µ1,µ2) and π23 ∈ Γ(µ2,µ3). Then

there exists π ∈P(X1 ×X2 ×X3) such that

p12
# (π) =π12, p23

# (π) =π23

where p i j (x1, x2, x3) = (xi , x j ).

Now let π12 and π23 be optimal plans between µ,ν and ν,σ respectively. Let π be such that p12
# (π) =

π12 and p23
# (π) =π23. Since p13

# π ∈ Γ(µ,σ),

Wp (µ,σ)p ≤
∫

X 2
d(x1, x3)p dp13

# π(x1, x3)

=
∫

X 3
d(x1, x3)p dπ(x1, x2, x3) (change of measure)

≤
∫

X 3
[d(x1, x2)+d(x2, x3)]p dπ(x1, x2, x3)

≤
{(∫

X 3
d(x1, x2)p dπ(x1, x2, x3)

)1/p

+
(∫

X 3
d(x2, x3)p dπ(x1, x2, x3)

)1/p
}p

(Hölder)

=
{(∫

X 2
d(x1, x2)p dπ12(x1, x2)

)1/p

+
(∫

X 2
d(x2, x3)p dπ23(x2, x3)

)1/p
}p

= (Wp (µ,ν)+Wp (ν,σ))p

which is the desired triangle inequality.

In fact, we can say more:

Proposition 4.12. If (X ,d) is a complete metric space, then (Pp (X ),Wp ) is also complete.

The proof of this proposition relies on a generalization of Dudley’s lemma. Since it is only of theoret-

ical interest to us, we omit the proof.
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4.3.2 Geodesic structure

Given two probability measures µ and ν, suppose that we are interested not only in the initial/final des-

tination, but also in the “path” used to move the mass in between. An application that motivates this

problem can be interpolating two given images of a growing tumor at different times. This is analogous

to finding the geodesic joining two points on a manifold, i.e., we care not only of the distance between

points, but also of the shortest path (geodesic) joining the two points.

Let (X ,d) be a complete metric space, and consider the Wasserstein space (P2(X ),W2). A path join-

ing the initial and final measures µ and ν is a map µ· : [0,1] →P2(X ) such that µ0 =µ and µ1 = ν. Our ob-

jective is to characterize the path between two points (measures) with the shortest length, but the length

of a curve in P2(X ) is yet to be defined. Remember that for a curve in Euclidean space γ : [0,1] → Rn ,

the length of γ is defined as
∫ 1

0 |γ′(t )|dt . That is, to define the length of a curve, one needs the defini-

tion of derivative, or velocity of the curve, and that the derivative is defined only for functions which are

differentiable almost everywhere. A wide class of curves in Rn that are differentiable almost everywhere

are absolutely continuous curves. However, we will not need this and instead define absolute continuity

according to the following more useful form:

Definition 4.10 (Metric derivative). Let (X ,d) be a metric space. We say that a curve γ : [a,b] → X is

absolutely continuous and we write γ ∈ AC ([a,b]; X ) if there exists g ∈ L1(a,b) such that

d(γ(x),γ(y)) ≤
∫ y

x
g (t )d t , ∀a ≤ x ≤ y ≤ b. (4.28)

And the metric derivative of γ ∈ AC ([a,b]; X ), denoted |γ′(t )|, is the limit (when exists, otherwise set to

∞)

|γ′(t )| := lim
h→0

d(γ(t ),γ(t +h))

|h| . (4.29)

The following result justifies our definition:

Proposition 4.13. For any γ ∈ AC ([a,b]; X ), the lower limit (4.29) is a limit which exists for L 1-a.e. t ∈
[a,b] and |γ′(·)| is the minimal g , up to L 1-negligible sets that satisfies (4.28).

With this proposition at hand, we can finally define the length of a curve in metric space.

Definition 4.11 (Length). Given a curve γ ∈ AC ([a,b]; X ), the length of curve is defined as

ℓ(γ) :=
∫ b

a
|γ′(t )|dt .

As usual, the length of curve is invariant under reparametrization, i.e., if φ : [a,b] → [c,d ] is strictly

increasing, then

ℓ(γ) = ℓ(γ◦φ).

Thus we can always find a reparametrization φ such that γ̃ := γ ◦φ has constant speed, i.e., |γ̃′(t )| is

constant for L 1-a.e. t .

Note that the length should be defined in a way that it is always larger than the distance between

the two endpoints. This is indeed true since by Proposition 4.13 and formula (4.28), d(γ(a),γ(b)) ≤∫ b
a |γ′(t )|dt . When the inequality becomes equality, we call the curve γ a geodesic:

153



Definition 4.12 (Geodesic). We say that γ ∈ AC ([a,b]; X ) is a geodesic if

ℓ(γ) = d(γ(a),γ(b)).

An important property to notice is that the restriction of a geodesic on any interval is again geodesic

(verify!).

Definition 4.13 (Geodesic space). Denote Geo(X ) the space of constant speed geodesic on [0,1]. We say

that (X ,d) is geodesic if for all x, y ∈ X , there exists γ ∈ Geo(X ) with γ(0) = x and γ(1) = y .

The following are some obvious properties of the space Geo(X ):

1) For γ ∈ Geo(X ), the length of γ is ℓ(γ) = d(γ(0),γ(1));

2) The speed of γ is d(γ(0),γ(1)), i.e., |γ′(t )| = d(γ(0),γ(1)) for a.e. t ;

3) A continuous curve γ ∈C ([0,1], X ) is in Geo(X ) if and only if

d(γ(s),γ(t )) = |t − s|d(γ(0),γ(1)), ∀s, t ∈ [0,1]. (4.30)

To see this, assumeγ ∈ Geo(X ), then d(γ(s),γ(t )) = ∫ t
s |γ′| = |t−s|d(γ(0),γ(1)). Conversely, ifγ ∈C ([0,1], X )

is such that the above equality holds for any s < t ∈ [0,1], then for s < s′ < t ′ < t , we have

d(γ(0),γ(1)) ≤ d(γ(0),γ(s))+d(γ(s),γ(t ))+d(γ(t ),γ(1))

= (s + (t − s)+1− t )d(γ(0),γ(1))

= d(γ(0),γ(1))

thus the inequality is equality and (4.30) holds. This implies that γ is absolutely continuous and |γ′(t )| =
d(γ(0),γ(1)). Through the proof we see that the condition (4.30) can be relaxed to

d(γ(s),γ(t )) ≤ |t − s|d(γ(0),γ(1)), ∀s, t ∈ [0,1]. (4.31)

The following is our main theorem of this subsection: it says that we (Pp (X ),Wp ) is a geodesic space

whenever (X ,d) is, and that we can lift the geodesic in X to Pp (X ) in a rather simple manner.

Theorem 4.12. If (X ,d) is a geodesic space, then

1) (Pp (X ),Wp ) is also geodesic.

2) Let µ0,µ1 ∈Pp (X ), andπ an optimal plan for the cost c(x, y) = d(x, y)p , γx,y : [0,1] → X the geodesic

joining x to y, then

µt = (Γt )#π

is a constant speed geodesic in Pp (X ) connecting µ0 and µ1, where Γt (x, y) = γx,y (t ).

3) If µ0 has a density, and that there exists an optimal map T , then

µt = (Tt )#µ0

is a geodesic connecting µ0 to µ1 where Tt (x) = γx,T (x)(t ).

Proof. Let π by an optimal plan between µ0 and µ1. We will need to show that t 7→ µt = (Γt )#π is a

constant speed geodesic in Pp (X ). By (4.31), it suffices to show

Wp (µs ,µt ) ≤ |t − s|Wp (µ0,µ1), ∀t , s ∈ [0,1].
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Indeed,

W p
p (µs ,µt ) ≤

∫
d(x, y)p d(Γs ,Γt )#π

=
∫

d(γx,y (s),γx,y (t ))p dπ(x, y)

since (Γs ,Γt )#π ∈ Γ(µs ,µt ). Now that γx,y is a geodesic, then d(γx,y (s),γx,y (t )) = |s − t |d(x, y) and

W p
p (µs ,µt ) ≤ |s − t |p

∫
d(x, y)p dπ(x, y) = |s − t |pW p

p (µ0,µ1)

as desired. This proves 1) and 2). To prove 3), it’s sufficient to note that an optimal plan is induced by an

optimal map T .

Example 4.14. If X = Rn and d is the usual Euclidean metric, then Γt (x, y) = (1− t )x + t y and Tt (x) =
(1− t )x + tT (x) = [(1− t )id+ tT ](x).

4.3.3 Benamou-Brenier formula

Let us take a look at the third item of Theorem 4.12. For convenience, we focus on Euclidean space, i.e.,

X =Rn equipped with Lebesgue measure L n . Suppose that

µ0 = ρ0(x)dx

it is then tempting to ask if the µt = (Tt )#µ0 also has a density along the geodesic. Obviously, for this to

hold, µ1 should also have a density, say ρ1. Next, assume that µt has a density ρt (x), i.e.,

(Tt )#µ0(dx) = ρt (x)dx,

we would like to find the expression for ρt . Notice that the last equation implies that for all compactly

supported f :Rn →R, there holds ∫
f (x)d(Tt )#µ0(x) =

∫
f (x)ρt (x)dx.

Differentiate this w.r.t. t , we get (remember that f is compactly supported):

d

d t

∫
f (x)ρt (x)dx =

∫
f (x)

∂ρt

∂t
dx = d

d t

∫
f ◦Tt (x)ρ0(x)dx

=
∫

∇ f · ∂Tt

∂t
ρ0(x)dx

=−
∫

f (x)div

[
ρ0(x)

∂Tt (x)

∂t

]
dx (integration by parts)

By Fundamental lemma, the first and third line imply

∂ρt

∂t
+div

(
ρ0vt

)= 0

where

vt (x) = (T − id)◦T −1
t (x) (4.32)

since
∂Tt (x)

∂t
= T (x)−x = (T − id)◦T −1

t (Tt (x)).
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In other words, Tt (x) is the solution to the following non-autonomous Cauchy problemγ̇x (t ) = vt (γx (t ))

γx (0) = x
(4.33)

Remark 4.2. On the other hand, by formula (4.14), we see

ρt (x) = ρ0

det∇Tt
◦ (Tt )−1(x).

The metric derivative of Wp , by definition is

|µ′
t | = lim

h→0

Wp (µt ,µt+h)

|h| .

We want to show that for any µt induced by the flow of the ordinary equation (4.33), i.e., µt = (X t )#µ0,

where X t is the flow, the metric derivative of the curve t 7→µt satisfies

|µ′
t |p ≤

∫
Rn

|vt (x)|p dµt (x) = ||vt (·)||pLp (µt ).

In fact, by definition, µt+h = (X t+h ◦X −1
t )#µt . Thus we have

W p
p (µt ,µt+h) ≤

∫
|x −X t+h ◦X −1

t (x)|p dµt

=
∫

|X t ◦X −1
t (x)−X t+h ◦X −1

t (x)|p dµt (x)

=
∫ ∣∣∣∣∫ t+h

t
vr (Xr ◦X −1

t (x))dr

∣∣∣∣p

dµt (x)

≤
{∫ t+h

t

[∫
|vr (Xr ◦X −1

t (x)|p dµt (x)

]1/p

dr

}p

(Minkowski inequality)

=
{∫ t+h

t

[∫
|vr (x)|p dµr (x)

]1/p

dr

}p

(def. of µt )

=
{∫ t+h

t
||vr (·)||Lp (µr )dr

}p

which implies |µ′
t | ≤ ||vt (·)||Lp (µt ) for all t ∈ [0,1].

When t 7→µt is a geodesic, then |µ′
t | = ||vt (·)||Lp (µt ). Indeed, let T be the optimal map between µ0 and

µ1, then

W p
p (µs ,µt ) = |s − t |pW p

p (µ0,µ1)

= |s − t |p
∫

|x −T (x)|p dµ0(x)

= |s − t |p
∫

|(id−T )◦T −1
t (x)|p d(Tt )#µ0(x)

= |s − t |p
∫

|vt (x)|p dµt (x)

as expected. Thus for µ0 = ρ0d x, µ1 = ρ1d x, we have

W p
p (µ0,µ1) = min

ρt ,vt

{∫ 1

0
||vt (·)||Lp (ρt d x)dt :

∂ρt

∂t
+div(ρt vt ) = 0

}
. (4.34)

This is a special case of a more general formula, called Benamou-Brenier formula once its meaning is

properly understood:
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Theorem 4.13 (Benamou-Brenier formula). For µ0,µ1 ∈Pp (Rn), one has

W p
p (µ0,µ1) = min

{∫ 1

0
||vt (·)||Lp (µt )dt :

∂µt

∂t
+div(vtµt ) = 0 in (0,1)×Rn

}
where the minimization is among all curves µ· ∈ AC ([0,1],Pp (Rn)) and Borel vector field vt : Rn → Rn .

The partial differential equation in the minimization is understood in the distributional sense, i.e.,∫ ∞

0

∫
Rn

[
∂ρ

∂t
(t , x)+ vt (x) ·∇ρ(t , x)

]
dµt (x)dt = 0, ∀ρ ∈C∞

c ((0,∞)×Rn). (4.35)

To see the motivation of (4.35), let µt =φ(t , x)dx, then∫ ∞

0

∫
Rn

[
∂ρ

∂t
+ vt ·∇ρ

]
φdxdt =

∫
Rn

∫ ∞

0

∂ρ

∂t
φdtdx +

∫ ∞

0

∫
Rn

(vt ·∇ρ)φdxdt

=−
∫
Rn

∫ ∞

0
ρ
∂φ

∂t
dtdx −

∫ ∞

0

∫
Rn
ρdiv(φvt )dxdt

=−
∫ ∞

0

∫
Rn
ρ

[
∂φ

∂t
+div(φvt )

]
dxdt

= 0

from which we deduce the equation in (4.34) (replacing φ with ρt ).

4.4 Miscellaneous topics

4.4.1 L1 optimal transport

In Section 4.3.2, we studied optimal transport for cost function c(x, y) = d(x, y)p , p ∈ (1,∞) on a Polish

space (X ,d). In this subsection, we consider the special case p = 1. The reason to treat this case sep-

arately is that it has some distinguishing features from the other cases with p > 1. We call this type of

problems L1 optimal transport.

A first distinguishing feature of L1 optimal transport is that c-concavity in this case is equivalent to

Lipschitz continuity with Lipschitz constant 1 – denoted as Lip1(X ). In fact, a c-concave function has the

form

φ(x) = inf
i

d(x, yi )+α(yi ),

since |d(x, y)−d(x ′, y)| ≤ d(x, x ′), the mapping x 7→ d(x, y) is in Lip1(X ), so isφby Lemma 4.2. Conversely,

if φ is in Lip1(X ), then φ(x)−φ(y) ≤ d(x, y) for all x, y ∈ X . Thus

φ(x) = inf
y

d(x, y)+φ(y) = (−φ)c (x)

which by definition, is c-concave. To summarize:

Proposition 4.14. Assume c(x, y) = d(x, y), where d is the metric on X . Then a function φ : X → [−∞,∞)

is c-concave if and only if φ ∈ Lip1(X ). The c-conjugate of φ is φc =−φ.

Now by Proposition 4.7, strong duality holds:

min
π∈Γ(µ,ν)

∫
X×X

d(x, y)dπ(x, y) = max
φ∈Lip1(X )

∫
X
φd(µ−ν). (4.36)
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and

suppπ⊆ {(x, y) ∈ X ×Y :φ(x)−φ(y) = d(x, y)}

if φ is a Kantorovich potential.

Let X = Rn and assume µ is absolutely continuous w.r.t. L n . In this case, c(x, y) = |x − y | where | · |
is the Euclidean 2-norm. Now since c is differentiable almost everywhere, φ ∈ Lip1 if and only if φ is

continuous, differentiable a.e. and |∇φ| ≤ 1. Thus formula (4.36) can also be written as

min
π∈Γ(µ,ν)

∫
Rn×Rn

d(x, y)dπ(x, y) = max
φ∈Lip1(X )

∫
Rn
φd(µ−ν) = max

|∇φ|≤1

∫
Rn
φd(µ−ν) (4.37)

We can now proceed as in the quadratic case to arrive at the conclusion that the optimal plan π is sup-

ported on Gr(∂cφ) for someφ ∈ Lip1. Thus for any (x, y) ∈ suppπ, the mapping x ′ 7→ |x ′−y |−φ(x) achieves

minimum at x ′ = x. Since φ is Lipschitz, it’s differentiable almost everywhere. Differentiating w.r.t. x, we

get

∇φ(x) = x − y

|x − y |
from which we conclude that

y = x − t∇φ(x)

for any t > 0, and |∇φ(x)| = 1. Thus if an optimal transport map is to exist, at the current stage we only

know the direction of the transport. This is quite different from the quadratic case. Example 4.12 shows

that optimal transport maps may not be unique for L1-optimal transport.

Let us now come back to the right most maximization of (4.37). If d(µ− ν)(x) can be written as

div(w)dx for some function w ∈C∞
c (Rn ;Rn), then using integration by parts, we get

max
|∇φ|≤1

∫
Rn
φd(µ−ν) = max

|∇φ|≤1

∫
Rn

−∇φ(x) ·w(x)dx =
∫
Rn

|w(x)|dx.

More generally,

max
|∇φ|≤1

∫
Rn
φd(µ−ν) = max

φ

{∫
φd(µ−ν)+ inf

w

∫
|w(x)|−∇φ(x) ·w(x)dx

}
(4.38)

since

inf
w

∫
|w |−∇φ ·wdx =

0, if |∇φ| ≤ 1

−∞, else
.

If we can swap max and inf in (4.38), then we would get

max
|∇φ|≤1

∫
Rn
φd(µ−ν) = inf

w

∫
|w(x)|dx +max

φ

{∫
φd(µ−ν)−

∫
∇φ ·wdx

}
= inf

w

{∫
|w(x)|dx :

∫
φd(µ−ν)−

∫
∇φ ·wdx = 0, ∀φ

}
in which the constraint

∫
φd(µ−ν)− ∫ ∇φ · wdx = 0, for all φ is exactly div(w)dx = d(µ−ν)(x) for w ∈

C∞
c (Rn ;Rn). This motivates us consider the following so called Beckmann’s problem.
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Beckmann’s problem

Problem. Consider the minimization problem

inf
w

{∫
|w(x)|dx : w :Rn →Rn , divw =µ−ν

}
(B)

where the divergence divw is understood in the following sense∫
φ(x)divw(x)dx =−

∫
∇φ(x) ·w(x)dx

for all φ ∈C∞
c (Rn). This problem is called Beckmann’s minimization, denoted (B).

Our previous discussions are justified by the following theorem:

Theorem 4.14. Beckmann’s problem admits a minimizer. Moreover, its minimal value is equal to that of

the Kantorovich problem with cost c(x, y) = |x − y |, i.e.,

min
w

{∫
|w(x)|dx : divw =µ−ν

}
= min
π∈Γ(µ,ν)

∫
|x − y |dπ(x, y).

Proof. First, the inequality min(K) ≤ min(B) is guaranteed by weak duality, see (4.37) and (4.38). We

need only prove the reverse inequality min(B) ≤ min(K). It is sufficient to construct a solution w to the

divergence equation from an optimal transport plan π such that
∫ |w |dx ≤ ∫ |x − y |dπ. We provide only a

formal proof. Consider the following linear operator

L(ξ) =
∫
Rn×Rn

∫ 1

0
γ′x y (t ) ·ξ(γx y (t ))dtdπ(x, y)

on C0(Rn), where γx y (t ) = (1− t )x + t y . Invoking Riesz representation theorem, there exists a (vector)

measure wπ, such that

L(ξ) =
∫
ξ(x) ·wπ(dx).

To verify that wπ is indeed a solution to the divergence equation, we need to show

L(−∇φ) =
∫
φd(µ−ν)

for φ ∈C∞
c (Rn). Now by definition of L(·),∫

−∇φ(x) ·wπ(dx) =
∫
Rn×Rn

∫ 1

0

dφ(γx y (t ))

d t
dtdπ(x, y)

=
∫
Rn×Rn

[φ(y)−φ(x)]dπ(x, y)

=
∫
φd(µ−ν).

as desired. Next, we show
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Figure 4.11: From left to right: input, target and output

class 1

class 2

𝑇𝑇
class 1

class 2

Figure 4.12: Domain adaptation

4.4.2 Image processing

Color transfer

Domain adaptation

Image interpolation

4.4.3 Control and optimal transport

Fluid dynamics viewpoint

Optimal steering

4.5 Numerical methods

Continuous methods: Brenier-Benamou formula

Discretization: Entropy regularization and matrix scaling
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5
APPENDIX

ODE

The solution φ(t ;0, x) with initial condition x(0) = x of the ODE

ẋ = f (t , x)

satisfies the semigroup property

φ(t ; s,φ(s,0, x)) =φ(t ;0, x).

Proof. Let

ϕ(t , s) =φ(t ; s,φ(s;0, x)), t ≥ s

We have to show

ϕ(t , s) =ϕ(t ,0).

It suffices to show that
∂ϕ(t , s)

∂s
= 0, ∀s ≤ t .

We calculate

ϕ(t , s) =φ(s;0, x)+
∫ t

s
f (r,ϕ(r, s))dr

Then

∂ϕ(t , s)

∂s
= f (s,ϕ(s, s))− f (s,ϕ(s, s))+

∫ t

s

∂ f

∂x
(r,ϕ(r, s))

∂ϕ(r, s)

∂s
dr

=
∫ t

s

∂ f

∂x
(r,ϕ(r, s))

∂ϕ(r, s)

∂s
dr

d

d t

∂ϕ(t , s)

∂s
= ∂ f

∂x
(t ,ϕ(t , s))

∂ϕ(t , s)

∂s
,
∂ϕ(t , s)

∂s

∣∣∣∣
t=s

= 0

Hence ∂ϕ(t ,s)
∂s = 0 for all s ≤ t .
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Gaussian vectors

We gather some freqently used properties of Gaussian variables.

• Let x and y be independent Gaussian variables

x ∼ N (µx ,Σx ), y ∼ N (µy ,Σy )

then [
x

y

]
∼ N

([
µx

µy

]
,

[
Σx

Σy

])

• If x ∼ N (µ,Σ), let y = Ax, then

y ∼ N (Aµ, AΣAT )

• Suppose x and y are jointly Gaussian[
x

y

]
∼ N

([
µx

µy

]
,

[
Σx Σx y

ΣT
x y Σy

])

then

x|y ∼ N
(
µ+Σx yΣ

−1
y (y −µy ), Σx −Σx yΣ

−1
y ΣT

x y

)
Hence

E [x|y] =µ+Σx yΣ
−1
y (y −µy )

Furthermore, y and x −E [x|y] are independent.
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