Optimal Control 2018

Kaoru Yamamoto

Optimal Control 2018

L1: Functional minimization, Calculus of variations (CV) problem
L2: Constrained CV problems, From CV to optimal control

L3: Maximum principle, Existence of optimal control

L4: Maximum principle (proof)

L5: Dynamic programming, Hamilton-Jacobi-Bellman equation
L6: Linear quadratic regulator

L7: Numerical methods for optimal control problems

Exercise sessions (20%):

Solve 50% of problems in advance. Hand-in later.
Mini-project (20%):

Study and present your own optimal control problem.
Written take-home exam (60%).

Summary of Lecture 2

e Calculus of variations problems
* Integral, non-integral constraints, Lagrange multipliers
o Piecewise C! curves, corner points, necessary conditions for
strong extrema
* Optimal control via calculus of variations
e The first variation and the Hamiltonian
» Conjectured necessary conditions for optimality (Hamiltonian
maximization)

Limitations in the variational approach

e U = R™ guarantees u* to be an interior point. What if U has a
boundary and u* € QU ? The Hamiltonian still takes a maximum
at u*(t) but cannot be established by variational approach.

o S ={t1} x {x1}instead of S = {¢1} x R"™ = Admissible £
changes and §.J (u*, &) = — tf]‘(Hu(Lx*?uﬁp*),{)dt =0is
no longer strong enough to conclude H, (¢, z*, u*, p*) = 0.

Differentiability of H w.r.t. u was assumed =- differentiability of f
and L is assumed. e.g., J(u) = ftfa' [u(t)|dt not allowed.

Only small deviation in both x and u allowed. Some reasonable
control laws left out.

Outline

e Maximum principle for
o basic fixed-endpoint control problem
¢ basic free-endpoint control problem

o Other types of problems by change of variables

e Time-optimal control problems and related problems
o linear systems = often bang-bang principle

e Minimun time-fuel control and bang-off-bang principle
o Fuller’s problem and Zeno behavior

e A sparsity property of L°- and L'- optimal control
e Maximum hands-off control
o Existence of optimal control

* necessary conditions could be misleading if no solution exists.

Basic problem formulation

Find a control «w € U C R™ that minimizes the cost

.t/l
T(u) = / Lix(t), u(t)) dt + K (z;)
ty N ——
time independent
where
o= f(a:(t),u(t)), I(tﬂ) =0, T € ]an K(If) = 07 (tfvxf) es
time independent

o f, fz, L, L, continuous

» Basic fixed-endpoint problem (BFEP) (¢ free, x fixed)
S = [tg,00) x {z1}
« Basic variable-endpoint problem (BVEP) (¢, free, ; € S1)
S = [tg,0) x S1
Si={x eR": hi(z) = ho(x) = - hp—i(z) =0}
h; €CYR" = R),i=1,...,n—k.

Maximum principle

Define the Hamiltonian

H(z,u7p,p0) = (pvf(xvu» +p0L(I7U)'

Assume that the basic problem has a solution (u*(t), z*(t)). Then
there exist a function p* : [to, 7] — R™ and a constant p§ < 0
satisfying (pg, p*(t)) # (0,0) Vt € [to,ts] and

1) = Hﬁ(t7x*7U*7p*)7 p* = 7Hz(t¢$*7U*7p*)‘

2) H(z*(t),u*(t), p"(t),p5) > H(z"(¢),u(t),p*(t), pj)
Vit € [to,th Yu e U.

3) H(a"(t),u"(),p"(t),p5) =0 Vi € [to, t;]
4) (p*(tg),d) =0 Vde Type(t;)S1  (Only for BVEP)

Tp+()S1 + tangent space to Sy. Transversality condition.

Transversality condition

0" (t),d) =0 Vd € Tpu(yySi- m

Tz*(tf)Sl = {d eR™: (Vhl(x*(tf)),d> =0,i=1,...n— k}

(1) means p*(ty) is a linear combination of Vh;(x*(ty)).

e Sy ={x1} = (1)istrue forall p*(ty).

e S =R"(ie, k=n) = p*(ty) =0.

e In general, k degrees of freedom for 2*(¢ ) and n — k degrees of
freedom for p*(t¢).




Remarks

e The maximum principle gives necessary conditions.
e [t gives all possible optimal control candidates.

e An optimal control may not even exist!
(It does exist, in fact, for many problems of interest.)

e p: abnormal multiplier.
e p; = 0: abnormal case (L does not matter.)
o piy # 0= (p§, p*(t)) can be normalized so that pj = —1.

Cases not in the basic setting

¢ Fixed terminal time

e Time-dependent system and cost
e Terminal cost

e Initial sets

Changes of variables can make them fit into our framework.

Time-optimal problems

tr
Minimize J(u) =ty —ty = 1dt

With control constraints |u;(t)| < ul®

¢ often bang-bang control as a solution for linear systems.

Example: double integrator

o4
s

¥1=u, wel[-1,1].

o L=1,2:=(21,22)7, & = (w2,u)T = H = p1x2 + pou + po.
e The adjoint equation

i _ —Hg, |* _ 0 2 _ C1
ok - - * = * - N
2 7H12 |* —P1 P2 —cit +co

e The Hamiltonian maximization.

What is u*?

Example: double integrator cont.

o L=1,2:=(21,22)7, & = (w2,u)T = H = p1x2 + pou + po.

e The adjoint equation
p; _ _Htl |* _ 0 p;lf _ C1
| = = .| = | = .
P2 7sz |* —P1 P2 —cit + o

e The Hamiltonian maximization.

1 if pi(t) >0,
u(t) = sgn(ps(t)) = ¢ =1 if p5(t) <0,
7 if pi(t) = 0.

Note that p3(t) = 0= pj(t) =0 = H|. = pj = 0.

.. p5(t) # 0 (nontriviality condition).

Bang-bang time-optimal control of the double integrator

&

trajectories for u = —1

trajectories foru = 1

Bang-bang principle for linear systems

Consider a system with general linear time-invariant dynamics
&= Az + Bu

where z € R™and u; € [-1,1],i =1,...,m.
Objective: steer = from xg (given) to =1 (given) in minimal time.

Assume Ju that achieves the task in some time (for well-posedness.)

Bang-bang principle for linear systems cont.

Consider a system with general linear time-invariant dynamics
&= Az + Bu
where z € R™and u; € [-1,1],i=1,...,m.

Hamiltonian: H (z,u,p,po) = (p, Ax + Bu) + po
o Maximize H = (p*(t),bi)u}(t) = ‘m%(p*(t),bi)ui(t).
Ui |S

1 if (p*(t),b;) >0,
u; (1) = sgn((p™(t),bs)) = { —1 if (p*(t),b;) <O,
? it (p*(t),b;) = 0.
o The adjoint equation p* = —A”'p* allows us to investigate “?”.

= If (A, b;) controllable (i.e., the system is normal), (p*(-), b;) # 0 on
any time interval. (finitely many switches)




Remark

Minimum time-fuel problem

If not all (A, b;) controllable?

A bang-bang control is a time-optimal control for every linear control
system and every U that is a convex polyhedron.

(can reach from x( to x1 in the same time by other controls)

minimize J(u) = /tf(

Jto

1+ blu(t)])dt

where &1 =u, wu € [-1,1].

x = (21,22)7, & = (w2,u)T, H = p1za + pou + po(1 + blu|).
The adjoint equation

(09) - (k) - ()= G2) = ()
123 —Hyy s —p] 12 —cat+e)’
The Hamiltonian maximization.

-1 if p3(t) > b,

0 if —b<pit)<b,

1 if p3(t) < —b,

T if pi(t) = +b.

Bang-off-bang control

Remarks

Maximum hands-off control (scalar)

o J(u) = [ (1+blu(t)))dt
minimum time-fuel control, or finite horizon Ll—optimal control

A sparsity property (directly related to L “norm”)

L' optimality as a convex relaxation of L°-optimal control
problems.

Maximum hands-off control (e.g., [Nagahara et al., TAC 16])

Sparsity promoting control (e.g., [Jovanovic and Lin, ECC 13])

Define ||ullo £ mr,(supp(u)) (the length of the support of u)

Maximum hands-off control: Jo(u) = #lullo
L'-Optimal Control: Ji(u) = % [T ju(t)|dt
The solution set of the maximum hands-off control problem is

equivalent to that of Ll—optimal control problem under the
normality assumption. [M. Nagahara et al. TAC, vol. 61, no. 3, 2016]

Fuller’s problem

Fuller’s problem cont.

t
minimize J(u) = / ! z3(t)dt

to

where (i1, d2)" = (22,u)", we [-1,1], = [to,00) x {(0,0)7}.

H = pixa + pau +pux%

We again have

1 if p3(t) >0,
u*(t) =sgn(ps(t)) = ¢ —1 if p3(t) <0,
it p3(t) =0,

but the adjoint equation is different to the time-optimal control:

PL = —2pori, Py =—pi.

Optimal controls are bang-bang with infinitely many switches.
Switching takes place on the curve

{(w1,22)T : 21 +7|22|z2 = 0} where  ~ 0.445.

Time intervals between consecutive switches decrease in
geometric progression.

Fuller's phenomenon, Zeno behaviour, or chattering.

T

switching curve

t
T(u) = [y lea ()]t
v € [0, 7]: at most one switch, v > U: Zeno behaviour. 7 =~ 0.35.

Existence of optimal control

Perron’s paradox: Let N be the largest integer. If N > 1, then
N2 > N contradicting the definition of N. Hence N = 1.

* Does an optimal solution exist to our problem?

At least one control must exist that drives (to, zo) to .S.
— controllability.

Is this enough?
e Example: minimal-time control for & = v € R, 29 = 0,27 = 1.
U =R is unbounded.

How about the case u € [0,1)?
U = [0,1) is not closed.

Compact reachable sets

R!(z0): the set of points reachable from (o) = x¢ at time
t > to. (U given)

RY(z() must be compact, i.e., bounded and closed.

t* — tg fastest transfer time = x1 € OR! ()

What are the conditions to guarantee the compactness of Rf(z¢)?




Filippov’s theorem

Filippov’s theorem
Given a control system & = f(t,x,u), z(tg) = zo with u € U,
assume that

* its solutions exist on [to, ¢ ] for all controls u(-) and

o for every pair (¢, z) the set { f(t,z,u) : u € U} is compact and
convex.

Then R'(xo) is compact for each ¢ € [to, ¢y].

» A sufficient condition for compactness of reachable sets.

e applies to, e.g., # = f(z) + G(x)u with compact and convex U.

o For linear systems & = Ax + Bu, Rt(x) is compact if U is
compact and convex.

Existence of time-optimal controls for linear systems

Consider the linear control system
&= Ax + Bu

u € U compact and convex.
Objective: steer x from given z(ty) = z¢ to given z1 in minimal time.

21 € RY(xp) for some t >ty = a time-optimal control exists.

Sketch of proof

Let t* = inf{t > to: 21 € R'(20)}. f 21 € R" (20), we are done.

o Ity \ ¥ sit. 21 € R (x0) with a corresponding uy, s.t.
zF(ty) = 21.

e Show that z¥(t*) — x1 as t;, — t*.

e = 11 € R (x0) since the closedness property of R'" ()
guaranteed by Filippov’s theorem.

Information on Mini-project

o Date: March 20 (Tue)?
e Formulate your own optimal control problem.
¢ You can pair up.

e Solve the problem numerically. JModelica, or your preferred
method.




