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L1: Functional minimization, Calculus of variations (CV) problem
L2: Constrained CV problems, From CV to optimal control

L3: Maximum principle

L4: Maximum principle, Existence of optimal control

L5: Dynamic programming, Hamilton-Jacobi-Bellman equation

L6: Linear quadratic regulator

L7: Numerical methods for optimal control problems

Exercise sessions (20%):

Solve 50% of problems in advance. Or make hand-in later.
Mini-project (20%):

Study and present your own optimal control problem.
Written take-home exam (60%).

Optimal control problem

Find a control u € U C R™ that minimizes the cost

J(u) = /t:’ L(t,2(8), u(t)) dt + K (t7,5)

running cost terminal cost

subject to
&= f(t,2,u), z(to) = xo, v € R".

o J(u): a function of a function u(t). = cost functional
e How do we find such u?

¢ Reuvisit finite-dimensional function minimization.

Finite-dimensional function minimization

Consider f : R™ — R. Let D C R™. A point z* is a local minimum if
Jde > 0s.t. Vo € D satisfying |z — 2*| < ¢,

f@") < f(=).

Unconstrained optimization - first-order condition

Consider the case where D is an open subset of R".
= z* is an interior point of D.

Extrema (minima or maxima) occur
at stationary points.

First-order necessary condition for
optimality

where Vf := (fuy, .oy fon)T

o Note: we need f € C.

¢ Alocal minimum? = second-order
conditions.

Unconstrained optimization - second-order conditions

o Pick an arbitrary vector d € R™.
e Since D an open set, z* + ad € D for a real parameter o ~ 0.
o The Taylor expansion for f around o = 0 gives

f@* 4+ ad) = f(z*) + Vf(z*) -da + Ly f(@*)da® + o(a?)
N—_—— 2
=0
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where

Vife= o o
Jenz - Jonan

* Second-order necessary condition for optimality

» Second-order sufficient condition for optimality
[V/(@*) =0 and V2f(z*) > 0]
 Note: we need f € C2.

Constrained optimization - Lagrange mulipliers

minimize  f(x)
subjectto  hj(z) = ha(z) =+ = hy(z) =0

where f and h;,i = 1,...,m are C! functions from R” to R.

First-order necessary condition for constrained optimality:

[VF@*) + M VA (@) + -+ Ay, Vhn(2*) = 0.]

e \7: Lagrange multipliers.
o Intuition: z* occurs at a point of
tangency.

e Proof: [Liberzon 1.2.2] & E2.

Functional minimization

Minimize a functional J : V' — R.

e Many different choices for V.
-e.g., C*([a,b],R") (k-times continuously differentiable)

e “Local minima” of J?
— notion of closeness (i.e., norm || - ||) for functions

Let A C V (V equipped with || - ||.) A function y* € A is a local
minimum if 3e > 0 s.t. Vy € A satisfying ||y — y*|| <,

J(y*) < J(y).

e Common norms in function spaces:
0-norm: [lyflo = max, |y(z)|.

1-norm: |y||: :

© b !
Dnax, ly(z)| + Jnax, ly'(@)|.




Basic calculus of variations problem

Consider afunction L : R x R x R — R.

Basic Calculus of Variations Problem:
Among all y € C*([a,b] — R) satisfying given boundary conditions

y(a) = yo, y(b) = y1
find (local) minima of the cost functional
L !
Iw) = [ Ley(@)y @)
a

L: Lagrangian or running cost

— Note: C! assumption not needed if 3/ does not appear in L.
— multiple-degree-of-freedom (MDOF) case:

y:la,b > R", L: RxR" xR"” - R.

Dido’s isopermetric problem

A legend about the foundation of Carthage around 850 B.C.
Dido was allowed to have the land along the North Africa coastline that
could be enclosed by an oxhide. She sliced the hide into very thin
strips so that she was able to enclose a large area.

e Assume a straight coast line.
* Maximize the area given by

J(y) = /ab y(z)dz, y : [a,b] — R.

e Constraint:
e yla) =y(b) =0,

o /b V14 (¥ (z))?de = Cy.

Catenary (Galileo, 1630s)

A fixed length chain with uniform mass Y
density suspended between two fixed
points.

What will be the shape of this chain?

Galileo claimed parabola - wrong!

o The chain will take the shape of minimal
potential energy.

Minimize
b
@) = [ v I+ @ @Pde, y: (et = 0.)
subject to

y(a) = yo, y(b) = y1 and /: 1+ (y/(x))2dx = Cp.

Weak and strong extrema

e Extrema of J(y), y € C([a,b] — R) w.rt
0-norm = c)| — stron,
llyllo Jex, ly(z)| g
1-norm = ! — weak
llylly = max [y(x)| + max, |y/(z)] - wea

e y* astrong extremum = y* a weak extremum (easier)
e Weak minima — not suitable in optimal control.

* no compelling reason for y’.

o C! requirement too strict.

o piecewise C! instead.

First variation and first-order necessary condition

e Recall f(z* + ad) = f(z*) + Vf(2*) - da+ o(a), a = 0.
e Consider y + an where y,n € V, a € R. (n: perturbation.)
e n € Visadmissibleif y* +ane A CV, Va =~ 0.

A linear functional 0.J : V' — R is called the first variation of .J at y if
Vn, o we have

J(y+an) = J(y) +dJ(y,na + o(a).

i L@t om) = J(y)

a—0 «

3 J(y,m) =

First-order necessary condition for optimality: V. admissible,

(Gateaux derivative of J).

8J(y*,m) =0

Euler-Lagrange equation

o For basic calculus of variations, we have
V =CY[a,b] » R), A={y €V :y(a) = yo, y(b) = 11},

b
Iw) = [ L)y @)

o J(y+an)=J(y)+6J(y,na+ o).
o For 7 to be admissible, we need 7(a) = n(b) = 0.

b
T+ an) = [ L(@y(@) +an@).y'@) + an/(2))de

a

= ./ab(L(Ir y(I), y’(x)) + LU(I, y(z)7 y’(z))an(z)
+ Ly’(x»l/(l“), y'(x))an’(gg) + U(Oé))dx

Euler-Lagrange equation (cont.)

b
3J(y,m) :/ (Ly(@.y(@), v (@)n(x) + Ly (@, y(@), y' ()0 (2)) dz
———

a
must be 0

b d
= / (Ly(m,ym,y’(m» - @Ly«z,y(m),y’(z))) n(x) da

=¢(x)
+ Ly (2, y(2), 9 (2))n()]}, -
=0

b
/ &(z)n(x)dx = 0, continuous Vn admissible = &(z) = 0.

Euler-Lagrange equation:

Shortest path between two points

Find the shortest path between two points a and b in the plane.
b
) = [ 1+ @)z
Ja

d
Since L, =0, %Ly/ = 0 (Euler-Lagrange equation).

0= %Lw(w,y(x),y’(x)) ==

= 4/ constant.
—> y a straight line.




Euler-Lagrange equation — MDOF case

y=(y1,...yn)" €R™.

Euler-Lagrange equation:

L,=—Ly i=1..n

Detailed look at Euler-Lagrange equation

39m) = [ (1o u@ @)~ L0t/ @) (o)

must be 0

=:¢(z)

L@ 9(@). (@) = Lya(ary(z) 1/ ()
+ Ly (2, y(2),y' (2))y (x)
+ Lyy (2, y(2), )y (2).
For ¢ to be continuous, L € C2 &y € C2 (!)

Alternative formulation

b
6J(y,m) :/ (Ly(z,y(x),y' (@))n() + Ly (2, y(x), ¥ (2)7' (x)) dz

must be 0
b T

- / (Ly/cr,y(z),y’(z)) - / Ly(w,y<w>,y’<w>>dw)n'<z>dm
=(a)

T b

+ (@) / Ly (w, y(w), ' (w))

=0

a

b
/ &(x)n' (x)dz = 0, € continuous, V1 admissible = £(x) constant.

([Liberzon, Lemma 2.2., proof: E1])

Alternative formulation (cont.)

Ly(eyta).i/ @) = [ Ly y(w).y/@)dw +C
= @) @) = Ly, ),y ()

Euler-Lagrange equation recovered without extra assumptions.

Variable-endpoint problems

30 m) = [ (Lo y(@) @) = 29t/ ) (o) e

must be 0

=¢(z)
+ Ly (ey(),y (@)n()|

=L, (by(b)y' (b))n(b)

* RHS must be 0 V7 admissible, including 7 s.t. n(b) = 0.
e = The Euler-Lagrange equation must hold.
e = The entire integral is 0 V) admissible.
(not only for the ones with n(b) = 0)
e The final term must vanish!

An additional necessary condition for optimality:

[y (b,(0), 5/ (8)) = 0]

Shortest path from a point to a vertical line

Find the shortest path from a point a to a vertical line.

I = [ Vi @

Ly (b.y(b).y' ) = )

V1t (Y'(2))?

=0 = y/(b)=0.

r=b

e a horizontal tangent at the final point.
» the optimal path between two points - a straight line
¢ y a horizontal line

Hamilton’s canonical equations

d
The Euler-Lagrange equation L, — %Ly« = 0 is equivalent to

d
%(Ly"y/*L)*Lz:O

proof: homework. (hint: ¢ = L, + L, -y’ + L,/ - y")

momentum p = Ly (2,y,y)
Hamiltonian H(z,y,y',p) =p-y + L(z,y,v’)

Hamiltonian’s canonical equations:

y=H, p= 7Hy‘

Maximizing the Hamiltonian

momentum p = Ly (z,y,y’)
Hamiltonian H(z,y,y',p) =p-vy — L(z,y,y’)

Observe that

Hy (z,y,9',p) = p — Ly (z,y,y") = 0.

e = H has a stationary point as a function of 3’ along an optimal
curve (z, y(x), p fixed).

o H*(2) =p-z— L(z,y,z) then L (y/(2)) = 0.

e This stationary point is actually a maximum (= the maximum
principle, L3 — L4)




Principle of least action

Hamilton’s principle of least action
Trajectories of mechanical systems are extremals of the functional

/t T vyat

0

which is called action integral.

L= omq-d)-Ula), a=(r,,2)"

N —
T

d d

‘r.=r £ ) = —

ati=Te = g (md) Yy

momentum force

H=Li;-¢g—L=T+U (total energy)




