L5: Relaxed dynamic programming and Q-learning

¢ Relaxed Dynamic Programming
o Application to switching systems

o Application to Model Predictive Control

Literature:
[Lincoln and Rantzer, Relaxing Dynamic Programming, TAC 51:8, 2006]

[Rantzer, Relaxing Dynamic Programming in Switching Systems,
IEE Proceeding on Control Theory and Applications, 153:5, 2006]

Who decides the price of a Volvo?

Subcontractor D)

Subcontractor (, ,,>

Car manufacturer

Car dealer

Customer

Valuation by the customer

size, etc

Customers: Andersson, Pettersson and Lundstrom

The key: Simplified valuation

Exact value-iteration gives absurd complexity.

Every subcontractor of Volvo would have to modify his prices
when Andersson expands his garage.

Of course, pricing is not done like that.
Approximations are done in every step.

Dynamic Programming in Discrete Time

Minimize ig(x(t),u(t))
=0
subject to x(t+ 1) = f(x(2),u(t)) x(0) = xo

Let J*(xo) denote the minimal value. The value function J*
satisfies the Bellman equation

J*(x) = min [g(x, u) + " (£ (x,u))]

If J(x) < min, [J(f(x,u)) + g(x,u)], then J is a lower bound
on the optimal cost.

Conversely, if min, [J(f(x,u)) + g(x,u)] < J(x) then J is an
upper bound on the optimal cost.

Relaxed Value lteration

Replace the Bellman equation by an inequality:
min [J(f(x,u)) + g(x,u)/a] < J(x) < min[J(f(x,u)) + ag(x,u)]
where a > 1.
From the inequalities, it follows that
J*(x)/a < J(x) < o (x)
The recursive conditions become
min [T (f(x,u)) + g(x,u) /@] < Jpia(x) < min [Tp(f(x,u)) + @g(x,u)]

The interval for ;.1 (x) makes it possible to work with a simplified
parameterization of J.

Relaxed Dynamic Programming

B -0.5 0 0.5 1

muin{Jk(f(x,u)) + g(x,u)/a} < Jp1(x) < muin{Jk(f(x,u)) + ag(x,u)}

Iy (%) Irp1(x)

L5: Relaxed dynamic programming and Q-learning

o Relaxed Dynamic Programming
o Application to switching systems

o Application to Model Predictive Control

Example: Switched voltage converter

A step-down DC/DC converter.

R X9 L I load

Vin Ji— Switch i)xl Load
I T

» A linear system except for the switching actuator
» Objective: Keep output voltage constant.

Optimize switches for continuous dynamics

x(¢+ 1) = Pjjx(t) + Diju(t) /
&:\/

x(t+1) = @jx(t) + Tjju(t)

Minimize Zz x(t)TQi(,)j(t)x(t) + u(t)TR,-(,)j(,)u(t)
Two types of inputs, both affect the penalty

Example: Switched voltage converter

R X L Load

2
Vin Ji— Switch * >x1 Load
T T

X1 %(xZ - Iload)
Y2| = —tx1— o + 1)V
*3 Vref — X1

9(x) = gp(x1 — Vre)® + q1%3 + qp (%2 — Doaa)®

Example: Switched voltage converter

Value function complexity

D
o

o
o

N
(=]

Complexity, no of quadratics
n (]
o o

-
o

G0 50 100 150 200
Iteration number

Example: Switched voltage converter

x, at switch

0
Integrator Xg

. 0.4
Voltage x, $ 0p 05

Example: Switched voltage converter

Simulation of switched power controller

o
&)

Voltage

o

Current
S o
9 o »

Switch sign
Lo 4

50 100 150 200 250 300 350 400
Sample

{0.3A 0.14 —024 0.3A}

Loaa =

Example: Switched voltage converter

Frequency weights in the cost function can be used to suppress
undesired harmonics. This increases state dimension, but has
no significant effect on computational complexity.

Simulation of switched power controller

§o5
k)
>
0
20 40 60 80 100 120 140
2
5
St
]
-2
° 0 50 100 150
§ A\mr—— —
=
2
21
@ 20 40 60 80 100 120 140

Sample

More on Control of DC-DC Converters

1126 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 18, NO. 5, SEPTEMBER 2010

Comparison of Hybrid Control Techniques for Buck
and Boost DC-DC Converters

Sébastien Mariéthoz, Member, IEEE, Stefan Almér, Mihai Bja, Andrea Giovanni Beccuti, Diego Patino,

Andreas Wernrud, Jean Buisson, Hervé Cormerais, Tobias Geyer, Member, IEEE, Hisaya Fujioka, Member, IEEE,

UIf T. Jénsson, Member, IEEE, Chung-Yao Kao, Member, IEEE, Manfred Morari, Fellow, IEEE,
Georgios Papafotiou, Member, IEEE, Anders Rantzer, Fellow, IEEE, and Pierre Riedinger

Optimal control: 60 discrete states, 30 continuoous

120 x 30 eigenvalues

Minimize

3 2() T Qigu(nz(t)

Rl 05 0 05 1

Continuous dynamics: 2(t + 1) = A;u2(t) 2(0) = z0 € R®
Discrete jumps: i(t+1)=u(®) i(0) = ig

Four iterations give P1,..., P120 ¢ R30%30 gych that the
following switch rule is within a factor 3.81 from optimality:

From node i, jump to node n = argmin, (zT[A-T PrA;, + Qin]z)

in

Two versions of relaxed value iteration

min [Jx(f(x,u)) + g(x,u)/@] < Jppa(x) < min [Jo(f(x,u)) + g(x,u)]

Decentralized computations!

min [J5(f(x,u)) + g(x,u)/a] < Jppa(x) < min [T (f(x,1)) + g(x,u)]

Global convergence!

If simple approximation exists, we will find one!

Assume JS is “simple” and satisfies

muin W (f(x,w) + g(x,u)/a] < JS(x) < muin [Js(f(x,u)) + g(x,u)}

Then J*/a < J% < J* and the following relaxed value iteration with
Jo = 0 is feasible in every step:
min [J4(£(5,)) + 9(x,0)/@] < Tisa(x) < min [Ty (F(x0)) + 9(x,0)]

Moreover

J*(x)/a < limsup J(x) < J*(x)
k00

L5: Relaxed dynamic programming and Q-learning

o Relaxed Dynamic Programming
o Application to switching systems

o Application to Model Predictive Control

Model Predicitive Control (Receding Horizon Control)

At time ¢:
1. Measure the state x(¢)
. Use model to optimize trajectory for ¢ + 1,...,t + N
. Apply the optimization result u(z) to the system
. After one sample, go to 1 to repeat the procedure

A W N

The MPC Control Law

Consider
I (wo) = inf 3 g(x(t), u(t))
where infimum is taken over x(¢) € X, u(¢) € U satisfying

x(t+1) = f(x(t), u()) and x(0
The MPC control law

~

= X0-

Ay (x) = argmin{Jy 1 (f(x,u)) + g(x,u)}

gives the cost

JEN (20) = Y 9 (%uy (), in (Xuy (1))

t=0

Notice that J; < Ja < ... < Iy < ... < Joo < JEY

Example 1 — Double Integrator

N-1

I (x0) = iur}xfE:(lx(t)l2 +u(t)?)
t=0

x(t+1) = [(1) ﬂ x(t) + m u(t) x(0) = x9 = H

JﬂN

[o9)

3

2 JN

1

3 7 6 8 N

Example 1 — Double Integrator

N-1

JIn(xg) = iunxfz (Jx(2) 2 + 1000u(2)?)
=0

2(t+1) = B i x(t) + H u(t)

Longer horizon required. Why?

Long horizon need not help!

For the system
x1(t+1) =u(t)
xg(t+1) = —2x1(¢) + u(?)

the cost function

N-1
x(t)?
=

is minimized by the control law u(¢) = 2x1(¢), which gives the
unstable dynamcs

xl(t + 1) = 2x1(t)

The transfer function from u to x5 has an unstable zero at z = 2!

Major Issues of MPC Theory

» Can we guarantee stability?
» Can we guarantee performance?

» What prediction horizon is needed?

MPC with Terminal cost

Assume that

W(f(x,1(x)) + g(x, u(x)) < W(x) forallx

Define the MPC control law g using the minimization

N-1
Tnlwo) = inf | 3 g(x(0),u(t) +W(x(V))
t=0

terminal cost
with x(t) € X, u(t) € U, x(t + 1) = f(x(t),u(?)), x(0) = xo.
Then uy is stabilizing and J,, < JA& < Jny < ... < Jg < J5.

Terminal cost and terminal constraint

Assume existence of a function W(x) > 0, a control law
u = u(x) and a number e > 0 such that
W(x) < e= W(f(x, u(x)) + g(x, u(x)) < W(x).

Define the MPC control law g using the minimization

N-1
Tv(xo) = inf | 3 g(a(0),u(t) +W(x(V))
t=0

terminal cost

subjectto x(t) € X, u(t) € U, x(t + 1) = f(x(t),u(?)),
x(0) = x¢ and the terminal constraint W (x) < e.

Then uy is stabilizing and Jo, < JEY < Iy < ... < Jg < J5.

When is MPC Stabilizing Without Terminal Cost?

Consider

N-1

Ty (wo) = inf Y~ g(x(2),u(0)

t=

where infimum is taken over x(¢) € X, u(t) € U satisfying
x(t+1) = f(x(¢),u(t)) and x(0) = x¢. The MPC control law

u(x) = argmin{Jy_1(f(x,0)) + g(x, 1)}
gives
In(x) = g(x, un(x)) + In-a(f(x, 4 (x)))

so J is a Lyapunov function provided that the right hand side
is bigger than Jn (f(x, un(x)))!

Exponential stabilizability

Suppose there exist numbers C > 0 and ¢ € (0,1) such that for
every xo € X there exists a sequence «(0),u(1),... € U with

g(x(8),u(t)) < Colg*(xo) forallt >0

where g*(x9) = min, g(xo,v). This can be viewed as a
condition of exponential stabilizability.

Then the MPC control law uy (x) is stabilizing provided that
N >2ylny

where y = &

[Griine and Rantzer, TAC 53:9, 2009, Proposition 4.7]

Dynamic Programming versus MPC

» Dynamic Programming (Explicit MPC)
» Corresponds to MPC with N = 2 and accurate terminal cost
» Heavy off-line computations and memory requirements
» Extremely fast on-line

» Model Predictive Control
» No off-line computations
» Heavy on-line computations
» Wide range of industrial applications exist

Reinforcment Learning
Q-learning, SARSA, Dual Control

Bo Bernhardsson
based on Gabriel Ingesson’s presentation in DL course and
”A Tutorial on Linear Function Approximators for DP and RL”,
Geramifard et al (MIT)

v_ Agent __ 1
reward action
n a,

' s, | Environment

@ Initially, the agent does not have to know anything about the environment.

@ The agent recieves a reward signal and the environment state.

@ Adjusts its actions in order to maximize the cumulative reward.

Notation - Markov Decision Process (MDP)

A finite Markov Decision Process is a tuple < S, A, P, R,~ > where
@ Sis afinite set of states.

@ A s afinite set of actions.

@ P is a transition probability matrix: P¢ , = P[S; 41 = §'|St = 5, Ay = d]
Ss

@ Risareward function: R¢, = E[Ry11|S; =5, Ay = a,S¢11 = §']

@ + is a discount factor -y € [0,1).

The core problem of MDPs is to find a policy for the agent, that maximizes
return given the MDP.

Examples

@ Pancake Robot

@ Atari Game

State-Value Function, V" (s)

Evaluates a state, given a policy .

The state-value function V™ (s), is a prediction of the discounted
return given a policy and the current state S;:

V™(s) =Ex[>_7'Re| So=s]
t=0

is used to evaluate a state and helps to select actions.

DP - Bellman Equation

The value functions can be decomposed into immediate reward plus
discounted value of successor state

A recursive relationship ((') denotes subsequent state/action):

V()= Y P> (R +9V7(s)
acA s'es
Q"(s,a)= Y P, Y (Riy+7Q7(s',a))
m\m,m. m\m\»

S

Note that if P¢ ,, R, and 7 are known, these are linear equations systems.
Ss

Often too large though.

Action-Value Function, Q7 (s,a)

Evaluate an alternative action, given a policy 7.

The action-value function Q™ (s,a) is the expected return starting from
state s, taking a, and then following policy m

Q"(s,a) =Ex[> +'Ri| Sy =s,40=al.
t=0

is used to evaluate actions and helps to update the policy.

Optimal state-value function

The optimal value functions is the maximum value function over all
policies:

° V*(s) =max, V"™(s)

° Q*(s,a) =max,; Q" (s,a)

Bellman Optimality Equation

V*(s) = max > PR +V () = max (s, a)
s'es
Q(5,0) = 3" P (R +ymaxQ*(s),a')

ses

@ Non-linear system of equations, high computational cost
@ Approximate solutions

o Value lteration
o Policy Iteration
o Q-learning

e Sarsa

Monte-Carlo (" Trajectory Based”)
Reinforcement Learning

@ Model free, no prior knowledge about the environment.

@ Monte Carlo methods require only experience, i.e. sample
sequences of states, actions, and rewards from interaction with
the environment.

@ Learns from complete episodes, updates policy from computed
return

Iterative Policy Evaluation & Improvement

1. Initialize V'(s) € R and 7 (s) € A(s) arbitrarily for all s € S.

2. Policy Evaluation:

Repeat 5
A+0 (vr) >
Foreachse S a
v+ V(s) > > >x
V(s) Mm\,ﬁﬁmm\uﬂ_m“ﬁﬂmv:ﬁ+Q<Am\: OO0 OO0 O 0O¢
A+ max(A,|v—V(s)|)
until A < e

3. Policy Improvement:
policy-stable < true
Foreach s € S:
old action <« argmax,, Mum\%imn rls,a)[r+~V(s')]
If old action # 7 (s), then policy-stable «+ false
If policy-stable, then stop and return V ~ V* and 7 = 7, else go to 2

Large-Scale Reinforcement Learning

Reinforcement learning can be used to solve large problems, e.g.

@ Backgammon 10%° states
@ Computer Go: 10'7 states
@ Helicopter: continuous state space

So far we have represented the value functions as lookup table, this
becomes slow and memory expensive for large problems.

A solution is to estimate the value function with function approximation:

V7(s) ~ sz@a 0)

Q"(s,a) = Q(s,a,0)

Update the parameter from trajectories

Function Approximators

Examples of approximators:
@ Linear, az\mmu%v = Ms %s%Amv. @Am“bj%u = M~ %&%Amugv.
@ Nonlinear, neural networks

Objectives to minimize:
Cv(0) = weight(s)[V(s) = V(s,0)]”

Co(0) = Méﬁmbﬁﬁ a)[Q™(s,a) — Q(s,a,0))?

s,a

Learn from experience

Back-propagation, stochastic gradient descent

Q-learning

Use some fixed policy 7 (i.e. 7¢(s)) to generate samples (s,a,r,s’)

Initialize 6, s and a := 7 (s)

While time left repeat
In state s take action a, receive reward r and next state s’
Qt(s,a) :==r+ymax, Q(s',a’)

L ®©+ s,a)—Q(s,a,0 2
§im g o212 (:0)-Qs00)

(s,a0) :=(s',7(s"))

Return 7™¢" greedy w.r.t. @

Q7 (s,a) — Q(s,a,0) is called the temporal difference (TD) error

Sometimes works well. Examples with convergence issues

Exploitation vs. Exploration

How do we get experience? What (s, a) to visit ?

Example
argmax,c 4Q(s,a) wp. 1—e

mH(s) =
QA) random a w.p. €

Update the policy = when you learn Q

While time left repeat
In state s take action a, receive reward r and next state s’
a :=me(s")
Q*(s,0) = +1Q(s,a)
0:—0— Qm_aim,iﬁw\m@??&_w

(s,a):=(s',d)

Return 7€ greedy w.r.t. @

Less convergence issues.

Also called on-policy learning

Sarsa: TD control algorithm

State-Action-Reward-State-Action (SARSA)
Q(S,A) depends on (S, A, R',S" A"

Policy evaluation, Q) = ¢;:
Q(S,A4) < Q(S,A) + (R +7Q(S5", A) — Q(S, 4))

Policy improvement is then chosen e- greedy w.r.t. Q(.S, A).

Playground: OpenAl Gym

OpenAl Gym:

@ A toolkit for developing and comparing reinforcement-learning
algorithms.

@ From simulated robots to Atari games.
@ A site for comparing and reproducing results.
miniproject, if interested in neural networks

@ Run a RL algorithm on one of the OpenAl-gym examples
@ Start with trying an already working implementation:
e Pong

o Breakout
@ Space Invaders

TD-Gammon

@ Used a multi-layer artificial neural network trained by TD(\) to
evaluate each possible move.

@ Achieved a level of play just slightly below that of the top human
backgammon player in 1992.

@ Found new strategies.

It's your turn.

Google Deepmind’s Deep Q-Network (DQN)

Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning.” (2013)

32 4x4 filcers 256 hidden units Fully-connected linear

output layer

ﬂ

Stack of 4 previous i Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

David Silver’s presentation on function approximation

Dual control and a research challenge

Efficient exploration and learning of uncertain control systems
Astrém, Bohlin, Sternby, .

Example: "Dual Control of a first order system with two possible gains”,
Bernhardsson (1989), Int. Jour. of Adaptive Control and Signal Processing
Ter1 = axy + bug + ey, et € N(0,0)

Say a and ¢ are known but b is unknown, eitherb=1or b= —1
Prob(b=1)=py, Prob(b=-1)=1-—py,

Find policy u; = (o) that minimizes expected loss (horizon N)

N > 1: Probing occurs: u*(x) # 0 even if z = 0 (if p ~ 0.5)

Dual controller that probes the system to actively learn b.

Dual Control - example continued

N =1:1f p= 0.5 then u*(z) = 0 is unique optimal solution
Cautious control, never learns
N > 1: Probing occurs: u*(x) # 0 even if z = 0 (if p ~ 0.5)

Dual controller that probes the system to actively learn b.

Dual Control - Learning Systems

Represent also the uncertainty about the system
Hyperstate - a probability function of state and parameters

Can we represent the hyperstate efficiently using recent progress in
ML, DL, MCMC ...

