
L5: Relaxed dynamic programming and Q-learning

• Relaxed Dynamic Programming

○ Application to switching systems

○ Application to Model Predictive Control

Literature:
[Lincoln and Rantzer, Relaxing Dynamic Programming, TAC 51:8, 2006]

[Rantzer, Relaxing Dynamic Programming in Switching Systems,
IEE Proceeding on Control Theory and Applications, 153:5, 2006]
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Customers: Andersson, Pettersson and Lundström

The key: Simplified valuation

Exact value-iteration gives absurd complexity.

Every subcontractor of Volvo would have to modify his prices
when Andersson expands his garage.

Of course, pricing is not done like that.
Approximations are done in every step.

Dynamic Programming in Discrete Time

Minimize
∞
X

t=0

#(x(t), u(t))

subject to x(t+ 1) = f (x(t), u(t)) x(0) = x

0

Let J

*(x
0

) denote the minimal value. The value function J

*

satisfies the Bellman equation

J

*(x) = min

u

[#(x, u) + J

*( f (x, u))]

If J(x) ≤ min

u

[J( f (x, u)) + #(x, u)], then J is a lower bound
on the optimal cost.

Conversely, if min

u

[J( f (x, u)) + #(x, u)] ≤ J(x) then J is an
upper bound on the optimal cost.

Relaxed Value Iteration

Replace the Bellman equation by an inequality:

min

u

[J( f (x, u)) + #(x, u)/a ] ≤ J(x) ≤ min

u

[J( f (x, u)) +a#(x, u)]

where a > 1.

From the inequalities, it follows that

J

*(x)/a ≤ J(x) ≤ a J

*(x)

The recursive conditions become

min

u

[J
k

( f (x, u)) + #(x, u)/a ] ≤ J

k+1

(x) ≤ min

u

[J
k

( f (x, u)) +a#(x, u)]

The interval for J

k+1

(x) makes it possible to work with a simplified
parameterization of J

k

.

Relaxed Dynamic Programming
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L5: Relaxed dynamic programming and Q-learning

○ Relaxed Dynamic Programming

• Application to switching systems

○ Application to Model Predictive Control

Example: Switched voltage converter

A step-down DC/DC converter.

LoadSwitch
+
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x
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I

load

I A linear system except for the switching actuator
I Objective: Keep output voltage constant.

Optimize switches for continuous dynamics

x(t+ 1) = F
i j

x(t) + G
i j

u(t)

x(t+ 1) = F
j j

x(t) + G
j j

u(t)

i

j

Minimize
P

t

x(t)T Q

i(t) j(t)x(t) + u(t)T R

i(t) j(t)u(t)

Two types of inputs, both affect the penalty

Example: Switched voltage converter
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Example: Switched voltage converter
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Example: Switched voltage converter
Frequency weights in the cost function can be used to suppress
undesired harmonics. This increases state dimension, but has
no significant effect on computational complexity.
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More on Control of DC-DC Converters Optimal control: 60 discrete states, 30 continuoous

120 edges 120& 30 eigenvalues
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Minimize
P

t

z(t)T Q

i(t)u(t)z(t)

Continuous dynamics: z(t+ 1) = A

i(t)u(t)z(t) z(0) = z

0

∈ R30

Discrete jumps: i(t+ 1) = u(t) i(0) = i

0

Four iterations give P

1

, . . . , P

120 ∈ R30&30 such that the
following switch rule is within a factor 3.81 from optimality:

From node i, jump to node n = arg min

n

�

z

T [AT

in

P

n
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in

+ Q
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]z
�

Two versions of relaxed value iteration

min

u

[J
k

( f (x, u)) + #(x, u)/a ] ≤ J

k+1

(x) ≤ min

u

[J
k

( f (x, u)) + #(x, u)]

Decentralized computations!

min

u

[J
k

( f (x, u)) + #(x, u)/a ] ≤ J

k+1

(x) ≤ min

u

[J
k+1

( f (x, u)) + #(x, u)]

Global convergence!

If simple approximation exists, we will find one!

Assume J

s is “simple” and satisfies

min

u

[J*( f (x, u)) + #(x, u)/a ] ≤ J

s(x) ≤ min

u

h

J

s( f (x, u)) + #(x, u)
i

Then J

*/a < J

s < J

* and the following relaxed value iteration with
J

0

= 0 is feasible in every step:

min

u

[J
k

( f (x, u)) + #(x, u)/a ] ≤ J

k+1

(x) ≤ min

u

[J
k+1

( f (x, u)) + #(x, u)]

Moreover

J

*(x)/a < lim sup

k→∞
J

k

(x) < J

*(x)

L5: Relaxed dynamic programming and Q-learning

○ Relaxed Dynamic Programming

○ Application to switching systems

• Application to Model Predictive Control

Model Predicitive Control (Receding Horizon Control)

70 1 2 3 4 5 6

x

t

At time t:

1. Measure the state x(t)

2. Use model to optimize trajectory for t+ 1, . . . , t+ N

3. Apply the optimization result u(t) to the system
4. After one sample, go to 1 to repeat the procedure

The MPC Control Law
Consider

J

N

(x
0

) = inf

u,x

N−1

X

t=0

#(x(t), u(t))

where infimum is taken over x(t) ∈ X , u(t) ∈ U satisfying
x(t+ 1) = f (x(t), u(t)) and x(0) = x

0

.

The MPC control law

µ
N

(x) := arg min

u

{J
N−1

( f (x, u)) + #(x, u)}

gives the cost

J

µ
N

∞ (x0

) =
∞
X

t=0

#
�

xµ
N

(t), µ
N

(xµ
N

(t))
�

Notice that J

1

≤ J

2
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N

≤ . . . ≤ J∞ ≤ J

µ
N

∞

Example 1 — Double Integrator
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Example 1 — Double Integrator
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Longer horizon required. Why?

Long horizon need not help!

For the system
(

x

1

(t+ 1) = u(t)

x

2

(t+ 1) = −2x

1

(t) + u(t)

the cost function

N−1

X

t=0

x

2

(t)2

is minimized by the control law u(t) = 2x

1

(t), which gives the
unstable dynamcs

x

1

(t+ 1) = 2x

1

(t)

The transfer function from u to x

2

has an unstable zero at z = 2!

Major Issues of MPC Theory

I Can we guarantee stability?

I Can we guarantee performance?

I What prediction horizon is needed?

MPC with Terminal cost

Assume that

W( f (x, µ(x)) + #(x, µ(x)) ≤ W(x) for all x

Define the MPC control law µ
N

using the minimization

J

N

(x
0

) = inf

u,x

"

N−1

X

t=0

#(x(t), u(t)) +W(x(N))
| {z }

terminal cost

#

with x(t) ∈ X , u(t) ∈ U , x(t+ 1) = f (x(t), u(t)), x(0) = x

0

.

Then µ
N

is stabilizing and J∞ ≤ J

µ
N

∞ ≤ J

N

≤ . . . ≤ J

2

≤ J

1

.

Terminal cost and terminal constraint

Assume existence of a function W(x) ≥ 0, a control law
u = µ(x) and a number ✏ > 0 such that
W(x) ≤ ✏+ W( f (x, µ(x)) + #(x, µ(x)) ≤ W(x).

Define the MPC control law µ
N

using the minimization

J

N

(x
0

) = inf

u,x

"

N−1

X

t=0

#(x(t), u(t)) +W(x(N))
| {z }

terminal cost

#

subject to x(t) ∈ X , u(t) ∈ U , x(t+ 1) = f (x(t), u(t)),
x(0) = x

0

and the terminal constraint W(x) ≤ ✏.

Then µ
N

is stabilizing and J∞ ≤ J

µ
N

∞ ≤ J

N

≤ . . . ≤ J

2

≤ J

1

.

When is MPC Stabilizing Without Terminal Cost?

Consider

J

N

(x
0

) = inf

u,x

N−1

X

t=0

#(x(t), u(t))

where infimum is taken over x(t) ∈ X , u(t) ∈ U satisfying
x(t+ 1) = f (x(t), u(t)) and x(0) = x

0

. The MPC control law

µ
N

(x) := arg min

u

{J
N−1

( f (x, u)) + #(x, u)}

gives

J

N

(x) = #(x, µ
N

(x)) + J

N−1

( f (x, µ
N

(x)))

so J

N

is a Lyapunov function provided that the right hand side
is bigger than J

N

( f (x, µ
N

(x)))!

Exponential stabilizability

Suppose there exist numbers C > 0 and s ∈ (0, 1) such that for
every x

0

∈ X there exists a sequence u(0), u(1), . . . ∈ U with

#(x(t), u(t)) ≤ Cs t#*(x
0

) for all t ≥ 0

where #*(x
0

) = min

v

#(x
0

, v). This can be viewed as a
condition of exponential stabilizability.

Then the MPC control law µ
N

(x) is stabilizing provided that

N ≥ 2g lng

where g = C

1−s .

[Grüne and Rantzer, TAC 53:9, 2009, Proposition 4.7]

Dynamic Programming versus MPC

I Dynamic Programming (Explicit MPC)
I Corresponds to MPC with N = 2 and accurate terminal cost
I Heavy off-line computations and memory requirements
I Extremely fast on-line

I Model Predictive Control
I No off-line computations
I Heavy on-line computations
I Wide range of industrial applications exist
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