
L5: Relaxed dynamic programming and Q-learning

• Relaxed Dynamic Programming

○ Application to switching systems

○ Application to Model Predictive Control

Literature:
[Lincoln and Rantzer, Relaxing Dynamic Programming, TAC 51:8, 2006]

[Rantzer, Relaxing Dynamic Programming in Switching Systems,
IEE Proceeding on Control Theory and Applications, 153:5, 2006]

Who decides the price of a Volvo?

Subcontractor

Subcontractor

Car manufacturer

Car dealer

Customer

Valuation by the customer

-10
-5

0
5

10 -10

-5

0

5

10

0

20

40

60

80

100

price

size, etc performance, etc

Valuation by the car dealer

-10 -8 -6 -4 -2 0 2 4 6 8 10 -10

-5

0

5

10

0

20

40

60

80

100

120

Customers: Andersson, Pettersson and Lundström

The key: Simplified valuation

Exact value-iteration gives absurd complexity.

Every subcontractor of Volvo would have to modify his prices
when Andersson expands his garage.

Of course, pricing is not done like that.
Approximations are done in every step.

Dynamic Programming in Discrete Time

Minimize
∞
X

t=0

#(x(t), u(t))

subject to x(t+ 1) = f (x(t), u(t)) x(0) = x

0

Let J

*(x
0

) denote the minimal value. The value function J

*

satisfies the Bellman equation

J

*(x) = min

u

[#(x, u) + J

*(f (x, u))]

If J(x) ≤ min

u

[J(f (x, u)) + #(x, u)], then J is a lower bound
on the optimal cost.

Conversely, if min

u

[J(f (x, u)) + #(x, u)] ≤ J(x) then J is an
upper bound on the optimal cost.

Relaxed Value Iteration

Replace the Bellman equation by an inequality:

min

u

[J(f (x, u)) + #(x, u)/a] ≤ J(x) ≤ min

u

[J(f (x, u)) +a#(x, u)]

where a > 1.

From the inequalities, it follows that

J

*(x)/a ≤ J(x) ≤ a J

*(x)

The recursive conditions become

min

u

[J
k

(f (x, u)) + #(x, u)/a] ≤ J

k+1

(x) ≤ min

u

[J
k

(f (x, u)) +a#(x, u)]

The interval for J

k+1

(x) makes it possible to work with a simplified
parameterization of J

k

.

Relaxed Dynamic Programming

-1 -0.5 0 0.5 1
1.6

1.8

2

2.2

2.4

2.6

2.8

3

J

k+1

(x)

J

k+1

(x)

J

k+1

(x)

min

u

n

J

k

�

f (x, u)
�

+ #(x, u)/a
o

| {z }

J

k+1

(x)

≤ J

k+1

(x) ≤ min

u

n

J

k

�

f (x, u)
�

+a#(x, u)
o

| {z }

J

k+1

(x)

1

L5: Relaxed dynamic programming and Q-learning

○ Relaxed Dynamic Programming

• Application to switching systems

○ Application to Model Predictive Control

Example: Switched voltage converter

A step-down DC/DC converter.

LoadSwitch
+

V

in

R

C

x

2

L

x

1

I

load

I A linear system except for the switching actuator
I Objective: Keep output voltage constant.

Optimize switches for continuous dynamics

x(t+ 1) = F
i j

x(t) + G
i j

u(t)

x(t+ 1) = F
j j

x(t) + G
j j

u(t)

i

j

Minimize
P

t

x(t)T Q

i(t) j(t)x(t) + u(t)T R

i(t) j(t)u(t)

Two types of inputs, both affect the penalty

Example: Switched voltage converter

LoadSwitch
+

V

in

R

C

x

2

L

x

1

I

load

2

4

ẋ

1

ẋ

2

ẋ

3

3

5 =

2

6

4

1

C

⇣

x

2

− I

load

⌘

− 1

L

x

1

− R

L

x

2

+ 1

L

s(t)V
in

V

ref

− x

1

3

7

5

#(x) = q

P

(x
1

− V

ref

)2 + q

I

x

2

3

+ q

D

(x
2

− I

load

)2

Example: Switched voltage converter

0 50 100 150 200
0

10

20

30

40

50

60

Iteration number

C
om

pl
ex

ity
, n

o
of

 q
ua

dr
at

ic
s

Value function complexity

Example: Switched voltage converter

Example: Switched voltage converter

50 100 150 200 250 300 350 400
0

0.5

Vo
lta

ge

Simulation of switched power controller

50 100 150 200 250 300 350 400
-0.5

0
0.5

C
ur

re
nt

50 100 150 200 250 300 350 400
-1

0

1

Sample

Sw
itc

h
si

gn

I

load

=
{0.3A 0.1A − 0.2A 0.3A}

Example: Switched voltage converter
Frequency weights in the cost function can be used to suppress
undesired harmonics. This increases state dimension, but has
no significant effect on computational complexity.

20 40 60 80 100 120 140
0

0.5

Vo
lta

ge

Simulation of switched power controller

0 50 100 150
-2

0

2

C
ur

re
nt

20 40 60 80 100 120 140
-1

0

1

Sample

Sw
itc

h
m

od
e

2

More on Control of DC-DC Converters Optimal control: 60 discrete states, 30 continuoous

120 edges 120& 30 eigenvalues

0 0.5 10

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

Minimize
P

t

z(t)T Q

i(t)u(t)z(t)

Continuous dynamics: z(t+ 1) = A

i(t)u(t)z(t) z(0) = z

0

∈ R30

Discrete jumps: i(t+ 1) = u(t) i(0) = i

0

Four iterations give P

1

, . . . , P

120 ∈ R30&30 such that the
following switch rule is within a factor 3.81 from optimality:

From node i, jump to node n = arg min

n

�

z

T [AT

in

P

n

A

in

+ Q

in

]z
�

Two versions of relaxed value iteration

min

u

[J
k

(f (x, u)) + #(x, u)/a] ≤ J

k+1

(x) ≤ min

u

[J
k

(f (x, u)) + #(x, u)]

Decentralized computations!

min

u

[J
k

(f (x, u)) + #(x, u)/a] ≤ J

k+1

(x) ≤ min

u

[J
k+1

(f (x, u)) + #(x, u)]

Global convergence!

If simple approximation exists, we will find one!

Assume J

s is “simple” and satisfies

min

u

[J*(f (x, u)) + #(x, u)/a] ≤ J

s(x) ≤ min

u

h

J

s(f (x, u)) + #(x, u)
i

Then J

*/a < J

s < J

* and the following relaxed value iteration with
J

0

= 0 is feasible in every step:

min

u

[J
k

(f (x, u)) + #(x, u)/a] ≤ J

k+1

(x) ≤ min

u

[J
k+1

(f (x, u)) + #(x, u)]

Moreover

J

*(x)/a < lim sup

k→∞
J

k

(x) < J

*(x)

L5: Relaxed dynamic programming and Q-learning

○ Relaxed Dynamic Programming

○ Application to switching systems

• Application to Model Predictive Control

Model Predicitive Control (Receding Horizon Control)

70 1 2 3 4 5 6

x

t

At time t:

1. Measure the state x(t)

2. Use model to optimize trajectory for t+ 1, . . . , t+ N

3. Apply the optimization result u(t) to the system
4. After one sample, go to 1 to repeat the procedure

The MPC Control Law
Consider

J

N

(x
0

) = inf

u,x

N−1

X

t=0

#(x(t), u(t))

where infimum is taken over x(t) ∈ X , u(t) ∈ U satisfying
x(t+ 1) = f (x(t), u(t)) and x(0) = x

0

.

The MPC control law

µ
N

(x) := arg min

u

{J
N−1

(f (x, u)) + #(x, u)}

gives the cost

J

µ
N

∞ (x0

) =
∞
X

t=0

#
�

xµ
N

(t), µ
N

(xµ
N

(t))
�

Notice that J

1

≤ J

2

≤ . . . ≤ J

N

≤ . . . ≤ J∞ ≤ J

µ
N

∞

Example 1 — Double Integrator

J

N

(x
0

) = inf

u,x

N−1

X

t=0

()x(t))2 + u(t)2)

x(t+ 1) =



1 1

0 1

�

x(t) +



0

1

�

u(t) x(0) = x

0

=



1

0

�

2 4 6 80

1

2

3

4

5

J

N

J

µ
N

∞

N

3

Example 1 — Double Integrator

J

N

(x
0

) = inf

u,x

N−1

X

t=0

()x(t))2 + 1000u(t)2)

x(t+ 1) =



1 1

0 1

�

x(t) +



0

1

�

u(t) x(0) = x

0

=



1

0

�

2 4 6 8 100

5

10

15

20

J

N

J

µ
N

∞

N

Longer horizon required. Why?

Long horizon need not help!

For the system
(

x

1

(t+ 1) = u(t)

x

2

(t+ 1) = −2x

1

(t) + u(t)

the cost function

N−1

X

t=0

x

2

(t)2

is minimized by the control law u(t) = 2x

1

(t), which gives the
unstable dynamcs

x

1

(t+ 1) = 2x

1

(t)

The transfer function from u to x

2

has an unstable zero at z = 2!

Major Issues of MPC Theory

I Can we guarantee stability?

I Can we guarantee performance?

I What prediction horizon is needed?

MPC with Terminal cost

Assume that

W(f (x, µ(x)) + #(x, µ(x)) ≤ W(x) for all x

Define the MPC control law µ
N

using the minimization

J

N

(x
0

) = inf

u,x

"

N−1

X

t=0

#(x(t), u(t)) +W(x(N))
| {z }

terminal cost

#

with x(t) ∈ X , u(t) ∈ U , x(t+ 1) = f (x(t), u(t)), x(0) = x

0

.

Then µ
N

is stabilizing and J∞ ≤ J

µ
N

∞ ≤ J

N

≤ . . . ≤ J

2

≤ J

1

.

Terminal cost and terminal constraint

Assume existence of a function W(x) ≥ 0, a control law
u = µ(x) and a number ✏ > 0 such that
W(x) ≤ ✏+ W(f (x, µ(x)) + #(x, µ(x)) ≤ W(x).

Define the MPC control law µ
N

using the minimization

J

N

(x
0

) = inf

u,x

"

N−1

X

t=0

#(x(t), u(t)) +W(x(N))
| {z }

terminal cost

#

subject to x(t) ∈ X , u(t) ∈ U , x(t+ 1) = f (x(t), u(t)),
x(0) = x

0

and the terminal constraint W(x) ≤ ✏.

Then µ
N

is stabilizing and J∞ ≤ J

µ
N

∞ ≤ J

N

≤ . . . ≤ J

2

≤ J

1

.

When is MPC Stabilizing Without Terminal Cost?

Consider

J

N

(x
0

) = inf

u,x

N−1

X

t=0

#(x(t), u(t))

where infimum is taken over x(t) ∈ X , u(t) ∈ U satisfying
x(t+ 1) = f (x(t), u(t)) and x(0) = x

0

. The MPC control law

µ
N

(x) := arg min

u

{J
N−1

(f (x, u)) + #(x, u)}

gives

J

N

(x) = #(x, µ
N

(x)) + J

N−1

(f (x, µ
N

(x)))

so J

N

is a Lyapunov function provided that the right hand side
is bigger than J

N

(f (x, µ
N

(x)))!

Exponential stabilizability

Suppose there exist numbers C > 0 and s ∈ (0, 1) such that for
every x

0

∈ X there exists a sequence u(0), u(1), . . . ∈ U with

#(x(t), u(t)) ≤ Cs t#*(x
0

) for all t ≥ 0

where #*(x
0

) = min

v

#(x
0

, v). This can be viewed as a
condition of exponential stabilizability.

Then the MPC control law µ
N

(x) is stabilizing provided that

N ≥ 2g lng

where g = C

1−s .

[Grüne and Rantzer, TAC 53:9, 2009, Proposition 4.7]

Dynamic Programming versus MPC

I Dynamic Programming (Explicit MPC)
I Corresponds to MPC with N = 2 and accurate terminal cost
I Heavy off-line computations and memory requirements
I Extremely fast on-line

I Model Predictive Control
I No off-line computations
I Heavy on-line computations
I Wide range of industrial applications exist

4

R
einforcm

entLearning

Q
-learning,S

A
R

S
A

,D
ualC

ontrol

B
o

B
ernhardsson

based
on

G
abrielIngesson’s

presentation
in

D
L

course
and

”A
Tutorialon

Linear
Function

A
pproxim

ators
for

D
P

and
R

L”,
G

eram
ifard

etal(M
IT)

0/22

N
otation

-M
arkov

D
ecision

P
rocess

(M
D

P
)

A
finite

M
arkov

D
ecision

P
rocess

is
a

tuple
<

S
,A

,P
,R

,
“

>
w

here

S
is

a
finite

setofstates.

A
is

a
finite

setofactions.

P
is

a
transition

probability
m

atrix:P
as
s Õ

=
P

[
S

t+
1

=
s Õ|

S

t
=

s
,
A

t
=

a
]

R
is

a
rew

ard
function:R

as
s Õ

=
E

[
R

t+
1 |

S

t
=

s
,
A

t
=

a
,
S

t+
1

=
s Õ

]

“
is

a
discountfactor

“
œ

[
0
,
1
).

The
core

problem
ofM

D
P

s
is

to
find

a
policy

forthe
agent,thatm

axim
izes

return
given

the
M

D
P.

1/22

R
einforcem

entLearning

2/22

Initially,the
agentdoes

nothave
to

know
anything

aboutthe
environm

ent.

The
agentrecieves

a
rew

ard
signaland

the
environm

entstate.

A
djusts

its
actions

in
orderto

m
axim

ize
the

cum
ulative

rew
ard.

E
xam

ples

Pancake
R

obot

A
tariG

am
e

3/22

S
tate-Value

Function,V
fi(s)

E
valuates

a
state,given

a
policy

fi
.

The
state-value

function
V

fi
(
s
),is

a
prediction

ofthe
discounted

return
given

a
policy

and
the

currentstate
S

t :

V

fi
(
s
)

=
E

fi
[

Œÿt=
0
“

t
R

t |
S

0
=

s
]

is
used

to
evaluate

a
state

and
helps

to
selectactions.

4/22

A
ction-Value

Function,Q
fi(s,a)

E
valuate

an
alternative

action,given
a

policy
fi

.

The
action-value

function
Q

fi
(
s
,
a
)

is
the

expected
return

starting
from

state
s,taking

a,and
then

follow
ing

policy
fi

Q

fi
(
s
,
a
)

=
E

fi
[

Œÿt=
0
“

t
R

t |
S

0
=

s
,
A

0
=

a
]
.

is
used

to
evaluate

actions
and

helps
to

update
the

policy.

5/22

D
P

-B
ellm

an
E

quation

The
value

functions
can

be
decom

posed
into

im
m

ediate
rew

ard
plus

discounted
value

ofsuccessorstate

A
recursive

relationship
((Õ)denotes

subsequentstate/action):

V

fi
(
s
)

=

ÿaœ
A

P
as
s Õ ÿs Õœ

S

(R
as
s Õ

+
“

V

fi
(
s Õ

)
)

Q

fi
(
s
,
a
)

=

ÿs Õœ
S P

as
s Õ ÿa Õœ

A

(R
as
s Õ

+
“

Q

fi
(
s Õ

,
a

Õ
)
)

N
ote

thatifP
as
s Õ

,R
as
s Õ and

fi
are

know
n,these

are
linearequations

system
s.

O
ften

too
large

though.

6/22

O
ptim

alstate-value
function

The
optim

alvalue
functions

is
the

m
axim

um
value

function
overall

policies:

V

ú
(
s
)

=
m

a
x

fi
V

fi
(
s
)

Q

ú
(
s
,
a
)

=
m

a
x

fi
Q

fi
(
s
,
a
)

7/22

B
ellm

an
O

ptim
ality

E
quation

V

ú
(
s
)

=
m

a
x

a

ÿs Õœ
S P

ass Õ
(R

ass Õ
+

“
V

ú
(
s Õ

)
)

=
m

a
x

a
Q

ú
(
s
,
a
)

Q

ú
(
s
,
a
)

=

ÿs Õœ
S P

ass Õ
(R

ass Õ
+

“
m

a
x

a
Õ

Q

ú
(
s Õ

,
a

Õ
)
)

N
on-linearsystem

ofequations,high
com

putationalcost

A
pproxim

ate
solutions

Value
Iteration

Policy
Iteration

Q
-learning

S
arsa

8/22

Iterative
Policy

E
valuation

&
Im

provem
ent

1.Initialize
V

(
s
)œ

R
and

fi
(
s
)œ

A
(
s
)

arbitrarily
forall

s
œ

S
.

2.Policy
E

valuation:
R

epeat�
Ω

0

Foreach
s

œ
S

v
Ω

V
(
s
)

V
(
s
)Ω

q
s Õ,r

p
(
s Õ

,
r|

s
,
fi

(
s
)
)
[
r

+
“

V
(
s Õ

)
]

�
Ω

m
a
x
(
�

,|
v≠

V
(
s
)|

)

until
�

Æ
‘

3.Policy
Im

provem
ent:

policy-stable
Ω

true
Foreach

s
œ

S
:

old
action

Ω
argm

ax
a q

s Õ,r
p
(
s Õ

,
r|

s
,
a
)
[
r

+
“

V
(
s Õ

)
]

Ifold
action

”=
fi

(
s
),then

policy-stable
Ω

false
Ifpolicy-stable,then

stop
and

return
V

¥
V

ú
and

fi
¥

fi

ú
else

go
to

2

9/22

M
onte-C

arlo
(”Trajectory

B
ased”)

R
einforcem

entLearning

M
odelfree,no

priorknow
ledge

aboutthe
environm

ent.

M
onte

C
arlo

m
ethods

require
only

experience,i.e.sam
ple

sequences
ofstates,actions,and

rew
ards

from
interaction

w
ith

the
environm

ent.

Learns
from

com
plete

episodes,updates
policy

from
com

puted
return

10/22

Large-S
cale

R
einforcem

entLearning

R
einforcem

entlearning
can

be
used

to
solve

large
problem

s,e.g.

B
ackgam

m
on

1
0 20

states

C
om

puterG
o:

1
0 170

states

H
elicopter:continuous

state
space

S
o

farw
e

have
represented

the
value

functions
as

lookup
table,this

becom
es

slow
and

m
em

ory
expensive

forlarge
problem

s.

A
solution

is
to

estim
ate

the
value

function
w

ith
function

approxim
ation:

V

fi
(
s
)¥

˜

V
(
s
,
◊
)

Q

fi
(
s
,
a
)¥

˜

Q
(
s
,
a
,
◊
)

U
pdate

the
param

eter
◊

from
trajectories

11/22

Function
A

pproxim
ators

E
xam

ples
ofapproxim

ators:

Linear,
˜

V
(
s
,
◊
)

=

q
i
◊

i
„

(
s
),

˜

Q
(
s
,
a
,
◊
)

=

q
i
◊

i
„

(
s
,
a
),

N
onlinear,neuralnetw

orks

O
bjectives

to
m

inim
ize:

C

V
(
◊
)

=

ÿ

s

w
e
i
g
h
t
(
s
)
[
V

fi
(
s
)≠

˜

V
(
s
,
◊
)
] 2

C

Q
(
◊
)

=

ÿs,a

w
e
i
g
h
t
(
s
,
a
)
[
Q

fi
(
s
,
a
)≠

˜

Q
(
s
,
a
,
◊
)
] 2

Learn
from

experience

B
ack-propagation,stochastic

gradientdescent

12/22

E
xploitation

vs.E
xploration

H
ow

do
w

e
getexperience?

W
hat

(
s
,
a
)

to
visit?

E
xam

ple

fi

‘Q
(
s
)

=

I
argm

ax
aœ

A
Q

(
s
,
a
)

w
.p.

1≠
‘

random
a

w
.p.

‘

13/22

Q
-learning

U
se

som
e

fixed
policy

fi
(i.e.

fi

‘
(
s
))to

generate
sam

ples
(
s
,
a
,
r
,
s Õ

)

Initialize
◊,

s
and

a
:
=

fi
(
s
)

W
hile

tim
e

leftrepeat
In

state
s

take
action

a,receive
rew

ard
r

and
nextstate

s Õ

Q

+
(
s
,
a
)

:
=

r
+

“
m

a
x

a
Õ
Q

(
s Õ

,
a

Õ
)

◊
:
=

◊≠
–

ˆ[Q
+

(s
,a)≠

Q̃
(s

,a
,◊)] 2

ˆ
◊

(
s
,
a
)

:
=

(
s Õ

,
fi

(
s Õ

)
)

R
eturn

fi

n
e
w

greedy
w

.r.t.
˜

Q

Q

+
(
s
,
a
)≠

˜

Q
(
s
,
a
,
◊
)

is
called

the
tem

poraldifference
(TD

)error

S
om

etim
es

w
orks

w
ell.E

xam
ples

w
ith

convergence
issues

14/22

S
A

R
S

A

U
pdate

the
policy

fi
w

hen
you

learn
˜

Q

W
hile

tim
e

leftrepeat
In

state
s

take
action

a,receive
rew

ard
r

and
nextstate

s Õ

a

Õ
:
=

fi

‘
(
s Õ

)

Q

+
(
s
,
a
)

:
=

r
+

“
Q

(
s Õ

,
a

Õ
)

◊
:
=

◊≠
–

ˆ[Q
+

(s
,a)≠

Q̃
(s

,a
,◊)] 2

ˆ
◊

(
s
,
a
)

:
=

(
s Õ

,
a

Õ
)

R
eturn

fi

n
e
w

greedy
w

.r.t.
˜

Q

Less
convergence

issues.

A
lso

called
o
n
-
p
o
l
i
c
y

learning

15/22

S
arsa:

TD
controlalgorithm

S
tate-A

ction-R
ew

ard-S
tate-A

ction
(S

A
R

S
A

)

Q
(
S

,
A

)
depends

on
(
S

,
A

,
R

Õ
,
S

Õ
,
A

Õ
)

Policy
evaluation,

Q
¥

q

fi :

Q
(
S

,
A

)Ω
Q

(
S

,
A

)
+

–
(
R

Õ
+

“
Q

(
S

Õ
,
A

Õ
)≠

Q
(
S

,
A

)
)

Policy
im

provem
entis

then
chosen

‘-greedy
w

.r.t.
Q

(
S

,
A

).

16/22

TD
-G

am
m

on

U
sed

a
m

ulti-layerartificialneuralnetw
ork

trained
by

TD
(
⁄)to

evaluate
each

possible
m

ove.

A
chieved

a
levelofplay

justslightly
below

thatofthe
top

hum
an

backgam
m

on
playerin

1992.

Found
new

strategies.

17/22

P
layground:

O
penA

IG
ym

O
penA

IG
ym

:

A
toolkitfordeveloping

and
com

paring
reinforcem

ent-learning
algorithm

s.

From
sim

ulated
robots

to
A

tarigam
es.

A
site

forcom
paring

and
reproducing

results.

m
iniproject,ifinterested

in
neuralnetw

orks

R
un

a
R

L
algorithm

on
one

ofthe
O

penA
I-gym

exam
ples

S
tartw

ith
trying

an
already

w
orking

im
plem

entation:

Pong
B

reakout
S

pace
Invaders

18/22

G
oogle

D
eepm

ind’s
D

eep
Q

-N
etw

ork
(D

Q
N

)

19/22

M
nih,Volodym

yr,etal.”P
laying

atariw
ith

deep
reinforcem

entlearning.”(2013)

D
avid

S
ilver’s

presentation
on

function
approxim

ation

D
ualcontroland

a
research

challenge

E
fficientexploration

and
learning

ofuncertain
controlsystem

s

Å
ström

,B
ohlin,S

ternby,...

E
xam

ple:
”D

ualC
ontrolofa

firstordersystem
w

ith
tw

o
possible

gains”,
B

ernhardsson
(1989),Int.Jour.ofA

daptive
C

ontroland
S

ignalP
rocessing

x

t+
1

=
a
x

t
+

b
u

t
+

e

t
,

e

t œ
N

(
0
,
‡

)

S
ay

a
and

‡
are

know
n

but
b

is
unknow

n,either
b

=
1

or
b

=
≠

1

P
r
o
b
(
b

=
1
)

=
p0 ,

P
r
o
b
(
b

=
≠

1
)

=
1≠

p0 ,

Find
policy

u

t
=

fi
(
x

[0,t]
)

thatm
inim

izes
expected

loss
(horizon

N
)

E

fi

Nÿt=
1 |

x
(
t
)| 2

20/22

D
ualC

ontrol-exam
ple

continued

N
=

1:If
p

=
0
.
5

then
u

ú
(
x

)
=

0
is

unique
optim

alsolution

C
autious

control,neverlearns

N
>

1:P
robing

occurs:
u

ú
(
x

)”=
0

even
if

x
=

0
(if

p
¥

0
.
5)

D
ualcontrollerthatprobes

the
system

to
actively

learn
b.

21/22

D
ualC

ontrol-exam
ple

continued

N
>

1:P
robing

occurs:
u

ú
(
x

)”=
0

even
if

x
=

0
(if

p
¥

0
.
5)

D
ualcontrollerthatprobes

the
system

to
actively

learn
b.

22/22

D
ualC

ontrol-Learning
S

ystem
s

R
epresentalso

the
uncertainty

aboutthe
system

H
yperstate

-a
probability

function
ofstate

and
param

eters

C
an

w
e

representthe
hyperstate

efficiently
using

recentprogress
in

M
L,D

L,M
C

M
C

...

23/22

