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Today’s lecture

operators and their properties

monotone operators

Lipschitz continuous operators
averaged operators

cocoercive operators

relation between properties
monotone inclusion problems

e special case: composite convex optimization
resolvents and reflected resolvents
Douglas-Rachford splitting

® convergence



Power set

o the power set of the set X is the set of all subsets of X.

e notation: 2% (since if number of elements in X is finite (n), then
number of elements in the power set is 2™).



Operators

an operator A : H — 2% maps each point in # to a set in H
called set-valued operator
Az (or A(z)) means A operates on z (and gives a set back)

if Az is a singleton for all x € H, then A single-valued

e can construct operator B : H — H with {Bz} = Az forall z € H
o with slight abuse of notation, we treat these to be the same

example:

e the subdifferential operator Of is a set-valued operator
o the gradient operator V f is a single-valued operator

the graph of an operator A : H — 2 is defined as

gphA = {(z,y) | y € Az}

(gphA is a subset of H x H)



Graphical representation

e a set-valued operator A : H — 2%

e depending on where the set Ax is, A has different properties



Special operators

e the identity operator is denoted Id and is defined as
xz = 1d(z)
e inverse of an operator
gphA™" = {(y,2) | (z,y) € gphA}

(therefore y € Ax if and only if z € A~ 1y)



Fixed points

e a fixed-point y to the operator A : H — H satisfies y = Ay
e the set of fixed-points to A : H — H is denoted fixA



Monotone operators

e an operator A : H — 2™ is monotone if
(x —y,u—v) >0

for all (z,u) € gphA and (y,v) € gph4
e graphical representation

then u — v in gray area (since scalar product positive)
(or set Az & Ay in gray area)



Monotonicity 1D

e which of the following operators A : R — 2R are monotone?

(a) (b)
e e

(c) / (d) /
/\




Monotonicity 1D

e which of the following operators A : R — 2R are monotone?

(a) (b)
e e

—

S /

(<) / (d) 1 /
o~ /

monotone: (a) and (c)
(y — x > 0 implies v — u > 0 where (z. u), (y,v) € gph(A))




Examples of monotone mappings

o the subdifferential f of a proper, closed, convex function f

o proof: by convexity we have

for any v € 9f(y) and u € 9f(z), add these to get

(u—v,x—y)>0
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Example of monotone mappings

o the subdifferential of the conjugate to a proper, closed, and
convex function f, i.e., Of* where

() é51;p{<y,ar> — f(x)}

e we have (0f)~1 = of*
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Examples of monotone mappings

e a (linear) skew-symmetric mapping (i.e., A = —A*)
e proof:

(Az — Ay,z —y) = (z —y, A"(z —y)) = —(z —y, Az — v))
=—(A(r-y)z-y) =0

e graphical representation

then Ax — Ay on thick black line
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Examples of monotone mappings

e rotation Ry : R* — R* with || <
e proof: letv=a —y

(Rox — Roy,x — y) = (Rpv,v) = <{COS€ B sm@] v, v>

sinf  cosf
B <[v1 cos@ — vy sin b

s
2

2 2
p— >
U1Sin0+U2COSH:|’U> vy cost + vy cost > 0

e graphical representation

then Rg(x — y) on thick semi-circle 13



Maximal monotonicity

e a monotone operator A : H — 2% is maximal monotone if no
monotone operator B : H — 2" exists such that gphA C gphB

e which of the following operators are maximal monotone

(a) / (b) /
s a




Maximal monotonicity

e a monotone operator A : H — 2% is maximal monotone if no
monotone operator B : H — 2" exists such that gphA C gphB

e which of the following operators are maximal monotone

(a)
/

—T

e

e maximally monotone: (b)

(b)

-

-
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Maximal monotonicity

e a monotone operator A : H — 2% is maximal monotone if no
monotone operator B : H — 2" exists such that gphA C gphB

e which of the following operators are maximal monotone

(a) / (b)

-

s a

e maximally monotone: (b)

o subdifferentials of proper, closed, and convex functions are

maximally monotone (not shown here)
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Strongly monotone operators
e an operator A is o-strongly monotone if

(@ —y,u—v)>ole—y|

for all (z,u) € gphA and (y,v) € gph4
e graphical representation

0x =Yy

g

then w — v in gray area (or set Az S Ay)
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Strong convexity and strong monotonicity

e the subdifferential of a o-strongly convex function is o-strongly
monotone

e proof:
e by o-strong convexity we have

f@) > fly) + v,z —y) + Sz —y|?
f) > f@) + (u,y — ) + Zllz — yl?

for any v € 9f(y) and v € Of(z), add to get
(u—v,2—y) >ole—y|’

e (0 = 0 shows that convexity of f implies monotonicity of 9f)
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Skew symmetric operator

e skew symmetric operator A = —A* (from before)
(Az — Ay, z —y) =0

e not strongly monotone
e graphical representation
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Rotation operator

e rotation operator Ry with |0 < 7 (from before)
(Row — Roy, w —y) > cos Oz — y]|?

e Ry is cos f-strongly monotone
e graphical representation (6 = %)
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Lipschitz continuous operator

e an operator A is -Lipschitz continuous if
Az — Ay|| < Bllz — y||

e A is single-valued (show by letting y = = and use contradiction)
e graphical representation

then Ax — Ay is in gray area
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Alternative graphical representation

e assume A has a fixed point z = AZ then

[Az — z|| = [[Ax — Az|| < Bllx — |

then Ax in gray area
e interpretation: [ relates to distance to fixed-point
e 3 < 1: contractive
e 3 =1: nonexpansive
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Examples

e a rotation is 1-Lipschitz continuous (nonexpansive)
e a linear mapping M=z is || M ||-Lipschitz continuous
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Convergence of contractive operator

e a contractive (3 < 1) operator A has a unique fixed-point Z
(Banach-Picard fixed-point theorem)

e the iteration z¥*1 = Az* converges linearly to the fixed-point (7)
if A is S-contractive:

2"+t — 2| = [|Ae* — Az|| < Blla* —z|| < B2 — 2|

22
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(Banach-Picard fixed-point theorem)
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Convergence of contractive operator

e a contractive (3 < 1) operator A has a unique fixed-point Z
(Banach-Picard fixed-point theorem)

e the iteration z¥*1 = Az* converges linearly to the fixed-point (7)
if A is [B-contractive:

2" — 2| = | Ae® — Az|| < Blla” — 2|l < B2 — 2|

22



Fixed-points of nonexpansive operator

e nonexpansive operator need not have a fixed-point

e example:
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Fixed-points of nonexpansive operator

nonexpansive operator need not have a fixed-point
example: Az =2+ 2

Ar=x+2#=x

forallz € R
it is nonexpansive (1-Lipschitz continuous)

[Az — Ayl = [z +2—y = 2] = |l — y|l
iteration zFt1 = Azk:

F
(EO
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Fixed-points of nonexpansive operator

nonexpansive operator need not have a fixed-point
example: Az =2+ 2

Ar=x+2#=x

forallz € R
it is nonexpansive (1-Lipschitz continuous)

[Az — Ayl = [z +2—y = 2] = |l — y|l

iteration ¢t = Azk:
I

r T T

20 x! z? 23
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Fixed-points of nonexpansive operator

nonexpansive operator need not have a fixed-point
example: Az =2+ 2

Ar=x+2#=x

forallz € R
it is nonexpansive (1-Lipschitz continuous)

[Az — Ayl = [z +2—y = 2] = |l — y|l

iteration ¢t = Azk:
I
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Fixed-points of nonexpansive operator

nonexpansive operator need not have a fixed-point
example: Az =2+ 2

Ar=x+2#=x

forallz € R
it is nonexpansive (1-Lipschitz continuous)

[Az — Ayl = [z +2—y = 2] = |l — y|l

iteration ¢t = Azk:
I

r T T

20 x! z? z3 x? x°
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Convergence of nonexpansive operator

k

e if fixed-point Z exists, iteration 2**t! = Az* must not converge

e example: rotation by 25°

e however, the iterates are bounded
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Convergence of nonexpansive operator

k

e if fixed-point Z exists, iteration 2**t! = Az* must not converge

e example: rotation by 25°

e however, the iterates are bounded
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Averaged operators
e an operator A is a-averaged if and only if for some nonexpansive
B and a € (0,1):
A=(1-a)ld+aB

o graphical representation for a« = 0.5:

r—=Yy =y r—=y

Bz — By aBx — aBy Ax — Ay

e for & = 1 we get B =2A —1d: A 0.5-averaged if and only if
2A — Id nonexpansive

1

e S-averaged is called firmly nonexpansive

25



Additional graphical representation

e assume that Z is a fixed-point to A, which is a-averaged, then
A, can be represented as:

O - 0.75-averaged O — 0.5-averaged © — 0.25-averaged
where A,z in respective gray areas
o why?
e letT =y
o shiftby Z: (0 > Z, o —% >z, Av — AT — Az — AT + T = Ax)
e distance to fixed-point strictly decreased (except for if already at

fixed-point) 26



Fixed-points

e the fixed-points of A = (1 — «)Id + aB and B coincide
(if they exist)
e proof
e a fixed point Z to B is a fixed-point to A:

Az =(1-a)Z+aBi=(1—-a+a)T =7
e 2 fixed-point Z to A is a fixed-point to B:

Br=1(A+(a-DId)z=L1(14+a-Nz=2z

27



Averaged operator formula

e q-averaged operator satisfies
22 = Az — (I = Ayl* + Az — Ay|]* < ||z - y]|?
1

e graphical representation for o = 3:

e can be used to show sub-linear convergence

28



Convergence

e the iterates for 2! = Az* converge
e proof:

R0 la® = 2™ = 121 - A)a® — (1 = A)a*||?

[ e e

IA

e summing over k:
n
(n+ Dl =2 P < Y [l - 2t
k=0

aY iy (I2* —27|® — [lz*** — 2*]?)

IN

11—«
afz® — 2*|
11—«
e that is
afz® — 2|
(n+1)(1—-aw)
e optimize w.r.t. « gives &« — 0 (not very informative since
consecutive iterates close if short steps)

||$n+1 _ anQ S

29



Convergence

convergence towards fixed-point:
proof:

1— +1 21— 2
ol =T = (- a)2” + aB(@") -2

=a(l —a)|B(") — 2|

therefore
|2 = 2*|?

B"—TLQ:L n+1_n2<

optimize constant by letting a = 1:

4z° — 2|2

1B~ < T

30



Convergence example - o = 0.5

e rotation operator Ry with § = 50°
o fixed-point Z at origin
o iterate 0.5-averaged operator
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Convergence example - o = 0.5

e rotation operator Ry with § = 50°
o fixed-point Z at origin
o iterate 0.5-averaged operator
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Example - a = 0.25

e rotation operator Ry with § = 50°
o fixed-point Z at origin
o iterate 0.25-averaged operator
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Example - a = 0.25

e rotation operator Ry with § = 50°
o fixed-point Z at origin
o iterate 0.25-averaged operator
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Example - a = 0.75

e rotation operator Ry with § = 50°
o fixed-point Z at origin
o iterate 0.75-averaged operator
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Example - a = 0.75

e rotation operator Ry with § = 50°
o fixed-point Z at origin
o iterate 0.75-averaged operator
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Cocoercive operators

e an operator A is §-cocoercive if SA is %-averaged

e Ax — Ay in gray area (dotted area shows that SAx — fAz is
1-averaged)
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Cocoercive operator properties

e an operator A is §-cocoercive if SA is %-averaged, i.e.
I(1 = BA)z — (I = BAY|P* + [ BAz — BAY|* < ||z — y]|?
e equivalently (by expanding the first square and div. by f3)
(Ax — Ay, x —y) > || Az — Ay|?

35



Properties

e [-cocoercivity implies y-Lipschitz continuity:
e estimate 7

36



Properties

e [-cocoercivity implies y-Lipschitz continuity:
e estimate 7
[ ] ")/ = %

Bl Az — Ay|]” < (Az — Ay,z —y) < [|lz — y|l]| Az — Ay|

36



Summary properties

e we have discussed operators A with the following properties

r—y r—y
Strong mono. Lipschitz
Averaged op. Cocoercive

e the set (or point) Az & Ay is in the respective gray areas

37



Exercise |

e assume that A is B-cocoercive
e estimate a small Lipschitz constant to 24 — %Id
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Exercise |

e assume that A is S-cocoercive

e estimate a small Lipschitz constant to 24 — %Id

1

e a Lipschitz constant is 3

“proof”:
1. due to cocoercivity of A we have Az — Ay in dotted circle
2. multiply by 2 (2Az — 2Ay in dashed)
3. shift by —%Id ((2A - %Id)m — (24— %Id)y in gray)

38



Exercise Il

e assume that A is 2-cocoercive
e Id — A is a-averaged, compute «

39



Exercise Il

e assume that A is 2-cocoercive
e Id — A is a-averaged, compute «
e Id — A is 0.25-averaged
“proof”:
1. due to 2-cocoercivity of A, we have Az — Ay in dotted circle
2. multiply by -1 (—Axz + Ay in dashed)
3. shift by Id ((Id — A)z — (Id — A)y in gray)

39



Relation to (strong) monotonicity?

e can relate Lipschitz continuity, cocoercivity, and averagedness by
scaling and shifting (they are all circles)

e cannot relate to (strong) monotonicity

40



Dual properties |

consider the following list of properties
(i) A is B-strongly monotone
(i) A~ is B-cocoercive
(i) A™'is 4-Lipschitz continuous
we have (i)<(ii) and (ii)=(iii)
the result also holds with A and A~! interchanged

41



Dual properties |l

o for proper, closed, and convex f, the following are equivalent:

(i) f is B-strongly convex
f@) > fy) + (w,z —y) + 5llz -yl

for all uw € 0f(y)
(i) Bf is B-strongly monotone
(iii) @f* is B-cocoercive
(iv) of*is —-L|psch|tz continuous
)

(v f* is l-smooth

Fr (@) < () +{V (@), 2 = y) + 55llz — y]”

e the result also holds with f and f* interchanged

e we have implication (iv)=-(iii) as opposed to general case

e (recall 9f* = (9f)~1)

42



Exercise | revisited

e A~!is o-strongly monotone
e estimate a small Lipschitz constant to 24 — %Id
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Exercise | revisited

e A~!is o-strongly monotone
e estimate a small Lipschitz constant to 24 — %Id
e a Lipschitz constant is %
“proof”:
1. (i)=(ii) implies A is o-cocoercive (Az — Ay in dotted)
2. multiply by 2 (2Az — 2Ay in dashed)
3. shift by —11d ((24 — L1d)z — (2A — 21d)y in gray)
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Exercise |11

e Ais 1-strongly convex

o A~ ! is a-averaged, compute o

44



Exercise |11

e Ais 1-strongly convex
o A~ ! is a-averaged, compute o
e Al is i averaged

" 2
“proof”:

1. (i)=(ii) gives that A~' is 1-cocoercive (A~ 'z — A~ 'y in gray)
1

2. l-cocoercivity defined as ;-averagedness
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Summary

we have discussed the following operator properties
1. (strong) monotonicity

2. Lipschitz continuity (nonexpansiveness, contractiveness)
3. averaged operators
4. cocoercive operators

2., 3., and 4. are related to each other by scaling and translating
2., 3., and 4. are related to 1. through the inverse operator
iteration of averaged operators converge (sublinearly)

iteration of contractive operators converge linearly
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Monotone inclusion problems

we want to solve monotone inclusion problems of the form
0€ A(x) + B(x)

where A and B are maximal monotone operators

special case:
0€ df(x)+ dg(x)
is equivalent to
minimize  f(x) + g(z)

how to use the presented framework?
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Creating algorithms

e state optimal point x as a fixed-point equation of some operator
e show that operator is either

e a-averaged (sublinear convergence)
e (3-contractive (linear convergence)
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Resolvent

e resolvent J4 : D — H to monotone operator is defined as
Ja = (Id + A)_l

o if A maximally monotone, then D = H
(important for algorithms involving the resolvent)

48



Resolvent

resolvent J4 : D — H to monotone operator is defined as
Ja = (Id + A)_l

if A maximally monotone, then D =H
(important for algorithms involving the resolvent)

subdifferential case A = Jf:
Jop(z) = argmin { f(z) + 1|z — 2|*} = prox;(z)

then resolvent called prox operator

proof: z = prox,(z) if and only if
0€df(zx)+z—=z
z€0f(x)+x
z€ (Id+0f)x

& r=Id+0f) 'z

t ¢

48



Properties of resolvent

e assume A o-strongly monotone (o = 0 implies monotone)
e Id+ A is (1 4 o)-strongly monotone

(Az — Ay + (z —y),x —y) 2 ollz —y|* + |z = y[I* = (1 + o)z — y]|?
e properties of J4 = (Id + A)~1?
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Properties of resolvent
assume A o-strongly monotone (o = 0 implies monotone)
Id + A is (1 + o)-strongly monotone
(Az — Ay + (z —y),x —y) 2 ollz —y|* + |z = y[I* = (1 + o)z — y]|?

properties of J4 = (Id + A)~1?
Ja = (Id+ A)~tis (1 + o)-cocoercive
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Properties of resolvent

e assume A o-strongly monotone (o = 0 implies monotone)
Id + A is (1 + o)-strongly monotone

(Az — Ay + (2 —y), 2 —y) 2 ollz = y|* + o =yl = (1 + o) |2 -yl

e properties of J4 = (Id + A)~1?
Ja = (Id+ A)~tis (1 + o)-cocoercive

0 x_y

e 0 =0: Jais 1-averaged (or 1-cocoercive)
e g>0:

49



Properties of resolvent

e assume A o-strongly monotone (o = 0 implies monotone)
Id + A is (1 + o)-strongly monotone

(Az — Ay + (2 —y), 2 —y) 2 ollz = y|* + o =yl = (1 + o) |2 -yl

e properties of J4 = (Id + A)~!
Ja = (Id+ A)~tis (1 + o)-cocoercive

0 x_y

e 0=0:Jyis §—averaged (or 1-cocoercive)
e 0g>0: Jyis T -contractive
e (iteration of the resolvent converges to a fixed-point)
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Further properties

e assume A is -Lipschitz continuous
e Id+ A is (1 4 f)-Lipschitz continuous

[Az — Ay + 2 —y|| < [[Az — Ayl + [lz —yl| < (1 + B)ll= — vl
e J4 = (Id + A)~! satisfies (by definition of inverse operator)

lz —yll < (1 + B)llJaz — Jayl

where Jaz — Jay outside dashed region (with radius ﬁ)
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Suboptimal characterization

e still assume A is S-Lipschitz continuous
e previous characterization (1 + /-Lipschitz) of Id + A not tight!

e dotted: Az — Ay
o gray: (Id+ A)z — (Id+ A)y
o dashed: (1 + B)-Lipschitz continuity circle
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Improved property

o still assume A is S-Lipschitz continuous
e property of A + S1d?
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Improved property

o still assume A is S-Lipschitz continuous
e property of A + S1d?

e itis %—cocoercive

e dotted: Ax — Ay
o gray: (BId+ A)z — (BId + A)y
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Improved property

o still assume A is S-Lipschitz continuous
e property of A + S1d?

e itis %—cocoercive

e dotted: Ax — Ay
o gray: (BId+ A)z — (BId + A)y

e using fId = Id + (B — 1)Id, the definition of a cocoercive
operator, and the definition of the inverse, we get:

2(Jax = Jay,x —y) = o —y|* + (1= B2)[[Jaz — Jay|?
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Comparison of properties

e assume A is §-Lipschitz continuous

e compare the two properties for J for =1
|

I
I
I
|
|
I
1
1
]
I
I
I
I
I
|
!
i
I

o first property: Jax — Jay outside dotted region
e improved property: Jaxz — Jay to the right of dashed line
(Ja is 2-monotone)
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Combining properties

e let A be 1-Lipschitz and o-strongly monotone (with 0 < ¢ < 1)
e strong monotonity of A implies cocoerciveness of J4
e Lischitz continuity of A implies “improved property” of Ja

e intersect regions to find region when both properties are present

o Jyx — Jay ends up in gray region
e (0 =5 and B8 =11in figure)
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Proximal operator

can properties be tighter when the resolvent is a prox operator?
recall

Jo(2) = prox;(z) = argmin {f(@) + 5lle — 21}

define b = % - ||> + f, properties:
e fis o-strongly convex implies h is (1 + o)-strongly convex
e fis B-smooth implies h is (1 + B)-smooth
e we have 0h = (Id + 9f)

the prox operator satisfies

prox(z) = (Id + Of) "tz = (0h) "'z = Vh*(2)
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Proximal opertor properties

we have prox;(z) = Vh*(z) where h = 3| - ||> + f
recall equivalent dual properties
(i) f is B-strongly convex
(i) Of is B-strongly monotone
(i) 9f* is p-cocoercive
(iv) 9f* is 5-Lipschitz continuous
(v) f*is L-smooth

this gives
f h Vh* = prox;
o-str. cvx (14 o)-str. cvx. ﬁ—cocoercwe
B-smooth (1 + B)-Lipschitz  g75-str. mono.

first property same and in general case, second property different
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Graphical representation

e consider the case 5 =1

the same as in the general case

e can be improved
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Improved property

assume that f is 8-smooth (and o-strongly convex 0 < o < f3)
then VA* = prox; is ﬁ—strongly monotone and =-Lipschitz
further h* is ——-strongly convex and ——smooth

;]
* 1
and h* — 2(1+5)H 12 is (155 — m) Smooth

finally VA* — 51d is ————-cocoercive

o« VA* — mId = prox; — H_ﬁId |n5|de dashed circle

e Vh™ = prox; in gray area (shift by Id)

o (figure has B =% and 0 = )
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Comparison

e assume A is a general operator and that B = 0f
e assume that A and 0f are 1-Lipschitz and o-strongly monotone
e the prox operator ends up in:

xy

where Jax — Jay in light area and Jorx — Jary in darker area
e (o0 =0 in figure, i.e., only monotonicity is assumed)
e conclussion: under Lipschitz assumptions, the resolvent of
subdifferentials are confined to smaller regions
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Reflected resolvent

o the reflected resolvent R4 to a monotone operator A is defined as
Ra:=2J4—-1

e it gives the reflection point (therefore its name)
RA.’L'
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Properties of reflected resolvent

e in the general case, A monotone
o reflected resolvent R4 is S-Lipschitz, what is 87
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Properties of reflected resolvent

e in the general case, A monotone
o reflected resolvent R4 is S-Lipschitz, what is 87
e =1, i.e., Ry is nonexpansive

proof:

1.

Jax — Jay within dashed region (since Ja 1-cocoercive in general
case)

2J4x — Jay within dotted region (multiply by 2)

(2Ja —Id)z — (2J4 —Id)y = (2Jaz — 2J4ay) — (z — y) in gray
area (shift by —Id)
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Further properties of reflected resolvent

o properties under different assumptions obtained by multiplying
resolvent area by 2 (radially) and shifting by —Id (—(z — y))

e examples: subdifferential operator A is S-smooth and o-strongly
monotone

N[
=
I
-
Q
Il
o

/B:O0,0':

e contractive if 3 < oo and o > 0
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How to use these operators?

e how to use these operators to solve monotone inclusion problems

0€ A(x) + B(x)
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Optimality conditions

e inclusion problem with A and B maximally monotone
0€ A(z) + B(x)
e 1 solves inclusion problem iff
2= RyaR Bz z=Jya(z)

with v > 0, i.e., z is a fixed-point to composition R, 4R+ p

e algorithm: find fixed-point to R, 4R, to solve problem
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(Generalized) Douglas-Rachford splitting

iterate R, 4R+ to find fixed-point (Peaceman-Rachford splitting)
ZICJrl = RWARWBZ]C

R, 4 and R,p are nonexpansive in general case, so is composition
= algorithm not guaranteed to converge in general case

need an averaged or contractive operator to converge

introduce averaging with a € (0,1):

= ((1 - a)ld + aR 4R, 5)z"

a= % usually called Douglas-Rachford splitting (here for all «)
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Convergence to fixed-point

o the Douglas-Rachford algorithm converges to fixed point of
(1—-a)Id+ aRyaRyp

e fixed points coincide with fixed points of R, 4Rp (shown earlier)

e convergence is sublinear (shown earlier)
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Linear convergence

we get linear convergence if either of the following hold

e A is o-strongly monotone and (-Lipschitz
e A is o-strongly monotone and B is SB-Lipschitz continuous

reason: (1 — a)ld + aR,4Rp contractive
can choose v and « to optimize rates
different rates in general case and subdifferential case
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ADMM

ADMM = the alternating direction method of multipliers
consider the problem

minimize  f(z) + g(y)
subjectto Az =1y

dual problem

maximize 1Tnyf (f() +9(y) + p" (Az —y))
rewrite by identifying conjugates (f*(z) = sup {(z,z) — f(x)})

minimize  d(p) + g* (1)

where d(u) = f*(=A"p)

apply DR to dual to get ADMM

all convergence properties from DR translate to ADMM (use
“Dual properties II" to infer properties of d and ¢g* from f and g)
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Project

e provide linear convergence rates for Douglas-Rachford splitting in
general case under assumptions
e A is o-strongly monotone and (-Lipschitz
e A is o-strongly monotone and B is 8-Lipschitz
e optimize Douglas-Rachford algorithm parameters v and «

e provide examples that achieve the rate exactly (if possible)
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Summary

introduced operators with different properties

e (strong) monotonicity

e Lipschitz continuity, nonexpansiveness, contractiveness
e averaged operators

® cocoercive operators

dual properties

stated monotone inclusion problems

introduced resolvent and reflected resolvent

described Douglas-Rachford splitting and “showed” convergence
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