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Introduction

◮ PID control is widely used in all areas where control is applied
Solves almost all control problems
Often combined with other PID, feedforward, and nonlinear elements

◮ A PID controller is more than meets the eye
◮ The autotuning adventure (Tore+KJ)

Telemetric, Eurotherm 1979
Adaptive control and auto-tuning
STU, patents, NAF (Sune Larsson) SDM20
Satt Control, Alfa Laval Automation, ABB
Fisher Control, Emerson 1979–
Research and the PID books 1988, 1995, 2006, ?
Interactive Learning Modules Guzman, Dormido http://aer.ual.es/ilm/

◮ Technology transitions
Pneumatic, mechanical,electric, electronic, computer

◮ Modeling: the FOTD model P(s) = K
1+sT e−sL

The Magic of Feedback

Feedback has some amazing properties, it can
◮ make good systems from bad components,
◮ make a system insensitive to disturbances and component variations,
◮ stabilize an unstable system,
◮ create desired behavior, for example linear behavior from nonlinear

components.
The major drawbacks are that
◮ feedback can cause instabilities
◮ sensor noise is fed into the system

PID control is a simple way to enjoy the Magic!

PID versus More Advanced Controllers

Present

FuturePast

t t + Td
Time

Error

u(t) = kpe + ki

∫ t

0
e(τ)dτ + kd

de
dt

, Td = kd/kp

◮ PI does not predict
◮ PID predicts by linear extrapolation
◮ The derivative time Td is the prediction horizon
◮ Advanced controllers predict using a mathematical model

The Amazing Property of Integral Action

Consider a PI controller

u = ke + ki

∫ t

0
e(τ)dτ

Assume that all signals converge to constant values e(t)→ e0, u(t)→ u0 and
that

∫t
0 (e(τ)− e0)dτ converges, then e0 must be zero.

Proof: Assume e0 ,= 0, then

u(t) = ke0 + ki

∫ t

0
e(τ)dτ = ke0 + ki

∫ t

0

(

e(τ)− e0
)

dτ + kie0t

The left hand side converges to a constant and the left hand side does not
converge to a constant unless e0 = 0, futhermore

u(∞) = ki

∫∞

0

(

e(τ)− e0
)

dτ

A controller with integral action will always give the correct steady state provided
that a steady state exists. It adapts to changing disturbances. Integral action is
sometimes even called adaptive.

Entech Experience & Protuner Experiences

Bill Bialkowsk Entech - Canadian consulting company for pulp and paper
industry Average paper mill has 3000-5000 loops, 97% use PI the
remaining 3% are PID, MPC, adaptive etc.
◮ 50% works well, 25% ineffective, 25% dysfunctional

Major reasons why they don’t work well
◮ Poor system design 20%
◮ Problems with valve, positioners, actuators 30%
◮ Bad tuning 30%

David Ender Techmation Control Engineering 1993 Process Performance
is not as good as you think.
◮ More than 30% of installed controllers operate in manual
◮ More than 30% of the loops increase short term variability
◮ About 25% of the loops use default settings
◮ About 30% of the loops have equipment problems

Predictions about PID Control
◮ 1982: The ASEA Novatune Team 1982 (Novatune is a useful general

digital control law with adaptation):
PID Control will soon be obsolete

◮ 1989: Conference on Model Predictive Control:
Using a PI controller is like driving a car only looking at the rear view
mirror: It will soon be replaced by Model Predictive Control.

◮ 2002: Desborough and Miller (Honeywell):
Based on a survey of over 11 000 controllers in the refining, chemicals
and pulp and paper industries, 98% of regulatory controllers utilise
PID feedback. The importance of PID controllers has not decreased
with the adoption of advanced control, because advanced controllers
act by changing the setpoints of PID controllers in a lower regulatory
layer. The performance of the system depends critically on the
behavior of the PID controllers

◮ 2016: Sun Li
A recent investigation of 100 boiler-turbine units in the Guangdong
Province in China showed 94.4% PI, 3.7% PID and 1.9% advanced
controllers

◮ Similar studies in Japan and Germany
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Number of publications by year for control (blue), PID (red) and model
predictive control (green) from Scopus search for the words in title,
abstract and keywords.

Tore – 40 Years of Collaboration
◮ Phd student 1978, PhD 1983; New

Estimation Techniques for Adaptive
Control

◮ Relay auto-tuning - patent 1983
◮ NAF 1985-89 - development of

autotuners
◮ Back to the department at LTH 1989
◮ Three books

2007 Raymond D Molloy Award. Best selling book at ISA

Recent Student Project
◮ Kristian Soltesz 2013 On automation in Anesthesia
◮ Fredrik Bagge Carlson Projects: Optimization Julia programming
◮ Vanessa Romero PhD 2014 CPU Resource Management and Noise

Filtering for PID Control
◮ Olof Garpinger PhD 2015 Analysis and Design of Software-Based

Optimal PID Controllers
◮ Martin Hast PhD 2015 Design of Low-Order Controllers using

Optimization Techniques
◮ Josefin Berner PhD 2017 Automatic Controller Tuning using

Relay-based Model Identification
◮ Jonas Hansson and Magnus Svensson MS 2020 Next Generation

Relay Autotuners Analysis and Implementation at ABB
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A PID Algorithm

A PID controller is much more than

u(t) = kpe(t) + ki

∫ t

t0
e(τ)dτ + kd

de(t)
dt

We have to consider

◮ Filtering
◮ Set point weigthing
◮ Actuator limitations
◮ Rate limitations

◮ Integrator Windup
◮ Mode switches
◮ Bumpless parameter changes
◮ Computer implementation

Dealing with these issues is a good introduction to practical aspects of any
control algorithm.

Derivative and Integral Action from First Order Lag
Integral action or automatic reset by
positive feedback around a first order
systems. We have

U = K
(

1 +
1

sTi

)

E

a PI controller!
Physical interpretation!!

Derivative action can be obtained by
a parallel connection with a first order
system. We have

U = kp

(

1− 1
1 + sTd

)

= kp
sTd

1 + sTd
E

ΣK

I

e u

    

1

1+ sTi

u
Σkp

e

−1
1 + sTd

Is this how the body does it?

Filtering

Filter only derivative part

Cfb(s) = k
(

1 +
1

sTi
+

sTd

1 + sTf

)

= kp +
ki

s
+

kds
1 + sTf

Filter the measured signal (several advantages)
◮ Better noise attenuation and robustness due to high frequency roll-off
◮ Process dynamics can be augmented by filter and design can be

made for an ideal PID

Cfb(s) =
kds2 + kps + ki

s(1 + sTf)
= ki

1 + sTi + s2TiTd

s(1 + sTf)

Cfb(s) =
kds2 + kps + ki

s(1 + sTf + s2T2
f /2)

= ki
1 + sTi + s2TiTd

s(1 + sTf + s2T2
f /2)

High frequency rolloff improves robustness and noise sensitivity

2DOF in PID Controllers
A 2DOF structure makes set-point response independent of disturbance
response. Set-point weighting “Poor man’s” 2DOF, allows a moderate
adjustment of set point response through parameters b and c. Comment
on practical controllers.

U(s) = kp
(

bR(s)− Y(s)
)

+
ki

s
(R(s)− Y(s)) + kds

(

cR(s)− Y(s)
)

Controller

kp

kds

ki/s

Σ

−1

e
Σ

r u
P(s)

y

Controller

kp

kds

ki/sΣ

Σ
u

r

y
P(s)

−1

b = 1 = 1 b = c = 0
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The Proportional Controller - Proportional Band

u = Ke + ub, K gain, ub bias or reset
The proportional band PB is the range where the output does not saturate,
often given as percentage of error or measured signal.

u

e

Proportional band

Slope K

    umax

  ub

    umin

Avoiding Windup
Feedback is broken when the actuator saturates?

P(s)Σ
y

ΣΣ

ν u

+−

e = r − y

−y

es

Actuator

kds

kp

ki
1
s

kt

A local feedback loop keeps integrator output close to the actuator limits.
The gain kt or the time constant Tt = 1/kt determines how quickly the
integrator is reset. Intuitive Explanation - Cherchez l’erreur! Useful to
replace kt by a general transfer function.

Dow Chemical Version of Anti-windup
Many process industries (also in Sweden) had their own control
departments and they developed their own systems based on standard
computers. Dow, Monsanto and Billerud were good examples.

− +

− dy
dt

e

e

kp

ki

kd

I v w u
1
s sat satΣ

Σ

Σ

Σ

ε
kt

The integrator is reset based on its output and not based on the nominal
control signal as in previous scheme.

Dedicated Controller with Filtering and Antiwindup

  
y

r

u

e

Filter

Actuator
Model

Gf(s)

uff

−yf

−ẏf

kt

1
s

kd

kp

ki
− +

µ
Σ

ΣΣΣ

es

The filter (can be combined with antialias filter)

d
dt

[

x1
x2

]

=

[

0 1
−T−2

f −T−1
f

] [

x1
x2

]

+

[

0
T−2

f

]

y,

has the states x1 = yf and x2 = dyf/dt. The filter thus gives filtered
versions of the measured signal and its derivative. The second-order filter
also provides good high-frequency roll-off.

Anti-windup in Series Implementation

ΣK
e

I

u

    

1

1+ sTi

1

1+ sTi

u

I

ΣKe

◮ These schemes are natural for pneumatic controllers
◮ Have been used by Foxboro (Invensys) for a long time
◮ Tracking time constant Tt = Ti

Manual and Automatic Control

◮ Most controllers have several modes
Manual/automatic

◮ In manual control the controllers output is adjusted manually by an
operator often by increase/decrease buttons

◮ Mode switching is an important issue
◮ Switching transients should be avoided
◮ Easy to do if the same integrator is used for manual and automatic

control

PID Controller with Tracking Mode

+ –

SP

MV PID

TR

yspysp

y

y

e

w

w

v

v

b

−1

1
s

1
Tt

K

sKTd

1 + sTd/N

K
Ti

P

D

I

No tracking if w = v!

Anti-windup for Controller with Tracking Mode

− +Σ

Σ

Σ

Actuator
model Actuator

−y

e

K/Ti

KTds

1/s

1/Tt
es

K
v u

Act ator model

SP
MV
TR

PID Act ator
v

u

u

u

◮ Notice that there is no tracking effect if u = v!

◮ The tracking input can be used in many other ways
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Computer Implementation

Practically all control systems are today implemented using computers. We
will briefly discuss some aspects of this.
AD and DA converters are needed to connect sensors and actuators to the
computer. A clock is also needed to synchronize the operations. We will
discuss
◮ Sampling and aliasing
◮ A basic algorithm
◮ Converting differential equations to difference equations
◮ Wordlength issues
◮ Bump-less parameter changes

Basic Algorithm

The following operations are executed by the computer.
1. Wait for clock interrupt
2. Convert setpoint ysp and process output y to numbers
3. Compute control signal u

4. Convert control signal to analog value
5. Update variables in control algorithm
6. Go to step 1

Desirable to make time between 1 and 4 as short as possible. Defer as
much as possible of the computations to step 5.

Alias and Anti-aliasing Filters

0 1 2 3 4 5

−1

0

1

◮ Nyquist frequency = (Sampling frequency)/2

◮ High frequencies may appear as low frequencies after sampling

◮ To represent a continuous signal uniquely from its samples the continuous
signal cannot have frequencies above the Nyqyist frequency which which is
half the sampling frequency

◮ Anti-aliasing filters that reduce the frequency content above the Nyquist
frequency is essential.

The PID Algorithm

The PID controller is described by:

U(s) = P(s) + I(s) + D(s)

P(s) = k
(

bYsp(s)− Y(s)
)

I(s) = k
1

sTi
(Ysp(s)− Y(s))

D(s) = −k
sTd

1 + sTd/N
Y(s)

Computers can only add and multiply, it cannot integrate or take
derivatives. To obtain a programmable algorithm we must approximate.
There are many ways to do this.
Introduce the times tk when the clock ticks, assume that tk − tk−1 = h,
,where h is the sampling period.

Proportional and Integral Action

p(tk) = k ∗ (bysp(tk)− y(tk))

Integral part

i(t) =
k
Ti

∫ t
e(s)ds

Differentiate
di
dt

=
k
Ti

e(t)

Approximate the derivative by a difference

i(tk+1)− i(tk)
h

=
ke(tk)

Ti

This equation can be written as

i(tk+1) = i(tk) +
kh
Ti

e(tk)

Derivative Part

D(s) = −k
sTd

1 + sTd/N
Y(s)

Hence
(1 + sTd/N)D(s) = −ksTdY(s)

In time domain
d(t) +

Td

N
dd
dt

= −kTd
dy
dt

Approximate derivative by backward difference

d(tk) +
Td

N
d(tk)− d(tk−1)

h
= −kTd

y(tk)− y(tk−1)

h

Derivative Part ...

d(tk) +
Td

N
d(tk)− d(tk−1)

h
= −kTd

y(tk)− y(tk−1)

h
Hence

(

1 +
Td

Nh

)

d(tk) =
Td

Nh
d(tk−1)−

kTd

h
(

y(tk)− y(tk−1)
)

or
d(tk) =

Td

Td + Nh
d(tk−1)−

kTdN
Td + Nh

(

y(tk)− y(tk−1)
)

Notice that the algorithm works well even if Td is small, this is not the case
if forward approximations are used.

Add Windup-protection

p(tk) = k ∗ (bysp(tk)− y(tk))

d(tk) =
Td

Td + Nh

(

d(tk−1)− kN
(

y(tk)− y(tk−1)
)

)

v = p(tk) + i(tk) + d(tk)

u(tk) = sat(v)
e(tk) = ysp(tk)− y(tk)

i(tk+1) = i(tk) +
kh
Ti

e(tk) +
kh
Tr

(

u − v
)

◮ Useful to precompute parameters
◮ Make sure updating is done safely
◮ Organize the code right
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Organize Computations

p(tk) = k ∗ (bysp(tk)− y(tk))

e(tk) = ysp(tk)− y(tk)

d(tk) =
Td

Td + Nh

(

d(tk−1)− kN
(

y(tk)− y(tk−1)
)

)

v = p(tk) + i(tk) + d(tk)

u(tk) = sat(v)

i(tk+1) = i(tk) +
kh
Ti

e(tk) +
kh
Tr

(

u − v
)

◮ Useful to precompute parameters
◮ Make sure updating is done safely
◮ Organize the code right

Fix Point Implementation Word-length Issues

Over and under-flow
Consider updating of the integral part

i(tk+1) = i(tk) +
kh
Ti

e(tk)

Example
◮ h=0.05 s
◮ Ti=5000 s
◮ k=1

◮ kh
Ti

= 10−5

If the error has 3 digits the integral need to be updated with 8 digits (28
bits) to avoid rounding off the errors!

Bump-less Parameter Changes

A PID controller is often switched between three modes: off, manual and
automatic control. It is important that there are no switching transients.
◮ Notice the difference between

I = ki(t)
∫ t

0
e(τ)dτ, I =

∫ t

0
ki(τ)e(τ)dτ

◮ Integration and multiplication with a time varying function do not
commute!

◮ Some controllers require that you switch to manual mode to change
parameters

◮ Problem is avoided by proper coding

"Compute controller coefficients

p1=K*b "set-point gain

p2=K+K*Td/(Tf+h) "PD gain

p3=Tf/(Tf+h) "filter constant

p4=K*Td*h/((Tf+h)*(Tf+h)) "derivative gain

p5=K*h/Ti "integral gain

p6=h/Tt "anti-windup gain

"Bumpless parameter changes

I=I+Kold*(bold*ysp-y)-Knew*(bnew*ysp-y)

"Control algorithm

adin(ysp) "read set point

adin(y) "read process variable

v=p1*ysp-p2*y+x+I "compute nominal output

u=sat(v,ulow,uhigh) "saturate output

daout(u) "set analog output

x=p3*x+p4*y "update derivative

I=I+p5*(ysp-y)+p6*(u-v) "update integral
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Circular Constraints on Sensitivities

eplacements

Ms = Mt = 2 Ms = Mt = 1.4

Contour Center Radius
Ms −1 1/Ms

Mt − M2
t

M2
t − 1

Mt

M2
t − 1

Ms, Mt −Ms(2Mt − 1)− Mt + 1
2Ms(Mt − 1)

Ms + Mt − 1
2Ms(Mt − 1)

Ms = Mt = M −2M2 − 2M + 1
2M(M − 1)

2M − 1
2M(M − 1)

Stability Region for P = (s + 1)−4

– Derivative Cliff!
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Explains why derivative action is difficult
Don’t fall off the edge!

Robustness Region for P = (s + 1)−4 & Ms ≤ 1.4

0

0.5

1

1.5 0
0.5

1
1.5

2
2.5

3
3.5

0
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1

kp

k i

kd

Compare with stability region
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Projections on the kp − ki plane - Edge constraints
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kd = 0 kd = 1 kd = 2

kd = 3 kd = 3.1 kd = 3.3

Edges Correspond to Cusps in the Nyquist Plot

Re Gl(iω)

Im Gl(iω)

−1

Nyquist curve of the loop transfer function for PID control of the process
P(s) = 1/(s + 1)4, with a controller having parameters kp = 0.925,
ki = 0.9, and kd = 2.86.
Cusps are avoided in this example by minimizing IAE instead (dashed
curve) kp = 1.33, ki = 0.63, and kd = 1.78

Time Responses

0 10 20 30 40 50
0

0.5

1

1.5

0 10 20 30 40 50

0

0.5

0 10 20 30 40 50
0

0.5

1

1.5

0 10 20 30 40 50
0

0.5

1

yy

uu

Step in set point Step in load disturbance

Process P(s) = 1/(s + 1)4, with controller having parameters
kp = 0.925, ki = 0.9, and kd = 2.86 (max ki solid lines IAE=3.0) and
kp = 1.33, ki = 0.63, and kd = 1.78 (min IAE=2.2 dashed lines).
Damping ratios of zeros ζ = 0.16 and 0.37.
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Requirements

Disturbances
◮ Effect of feedback on disturbances
◮ Attenuate effects of load disturbances
◮ Moderate measurement noise injection

Robustness
◮ Reduce effects of process variations
◮ Reduce effects of modeling errors

Command signal response
◮ Follow command signals
◮ Architectures with two degrees of freedom (2DOF)

Tune for Load Disturbances - Shinskey 1993
“The user should not test the loop using set-point
changes if the set point is to remain constant most of
the time. To tune for fast recovery from load changes,
a load disturbance should be simulated by stepping
the controller output in manual, and then transfer-
ring to auto. For lag-dominant processes, the two re-
sponses are markedly different.”

Process control: Tune kp, ki , kd and Tf for load disturbances,
measurement noise and robustness, then tune β , and γ for setpoint
response (set point weighting)

u(t) = kp
(

β r(t)− yf(t)
)

+ ki

∫ t

0

(

r(τ)− yf(τ)
)

dτ + kd

(

γ dr
dt
− dyf

dt

)

Yf(s) =
1

1 + sTf + s2Tf
2/2

Y(s)

Performance
Disturbance reduction by feedback

Ycl = SYol =
1

1 + PC
Yol

Load disturbance attenuation (typically low frequencies)

Gyd =
P

1 + PC
( s

ki
, −Gud =

PC
1 + PC

Measurement noise injection (typically high frequencies)

Gxn =
PC

1 + PC
, −Gun =

C
1 + PC

( C = Gf(kp +
ki

s
+ kds)

Command signal following

Gxr =
PGf(γkds2 + βkps + ki)

s + PGf(kds2 + kps + ki)
, Gur =

Gf(γkds2 + βkps + ki)

s + PGf(kds2 + kps + ki)

Effects ofLoad Disturbances

Compare open and closed loop systems!

Ycl

Yol
=

1
1 + PC

= S

Geometric interpretation: Disturbances
with frequencies outside are reduced.
Disturbances with frequencies inside the
circle are amplified by feedback, the max-
imum amplification is Ms.
Disturbances with frequencies less than
sensitivity crossover frequency ω sc are
reduced by feedback.

−1−1−1
ωmsωmsωms

ω scω scω sc
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Load Disturbance Attenuation
Transfer function from load disturbance d to process outpur y ( P(0) = K )

Gyd =
P

1 + PC
= SP ( 1

C
( ski , low frequencies

Gyd =
P

1 + PC
= SP ( P, high frequencies

P = 2(s + 1)−4 PI: kp = 0.5, ki = 0.25

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

ω

pG
xd
(ω

)p

Criteria IE and IAE

Traditionally the criteria

IE =

∫∞

0
e(t)dt, IAE =

∫∞

0
pe(t)pdt, IE2 =

∫∞

0
e2(t)dt

ITAE =

∫∞

0
t pe(t)pdt, QE =

∫∞

0
(e2(t) + ρu2(t))dt

where e is the error for a unit step in the set point or the load disturbance
have often been used to evaluate PID controllers
Notice that for a step u0 in the load disturbance we have

u(∞) = ki

∫∞

0
e(t)dt

For a unit step disturbance we have u(∞) = 1 and hence IE = 1/ki . If
the responses are well damped we have IE ( IAE and integral gain is then
a measure of load disturbance attenuation.

Advantages and Disadvantages with IE

Advantage: IE =
1
ki

, the difficulty is that it gives poor damping in some
cases

0 10 20 30
−0.1

0

0.1

t

y(
t)

Step response

−3 −2 −1 0 1
−3

−2

−1

0

1

ℜ L(iω)

ℑ
L(

iω
)

Nyquist plot

IE Curvature Constraint or IAE for P = (s + 1)−3

CIE = 3.31 +
6.62

s
+ 6.26s

IAE = 0.74

Cκ = 3.61 +
3.20

s
+ 3.34s

IAE = 0.57

CIAE = 3.81 +
3.33

s
+ 4.25s

IAE = 0.53 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

0 2 4 6 8 10 12 14 16 18 20
−0.1

−0.05

0

0.05

0.1

0.15

0.2

Robustness

Gain and phase margins gm and φm
Maximum sensitivities Ms = maxω pS(iω)p, Mt = maxω pT(iω)p

H =
1

1 + PC

[

1 P
C PC

]

=







1
1 + PC

P
1 + PC

C
1 + PC

PC
1 + PC







Dimensions! For SISO systems the H∞ norm of Gs is

γ 2 = max
(1 + pPp2)(1 + pCp2)

p1 + PCp2

Scale process P → αP and controller C → C/α, minimize with respect
to α

γ = max
1 + pPCp
p1 + PCp = max

(
∣∣∣ 1
1 + PC

∣∣∣ +
∣∣∣ PC
1 + PC

∣∣∣
)

≤ Ms + Mt

Measurement Noise Injection

x

−Gg

Controller Process

CPID PΣ Σ
yu

d n

Controller transfer function

Gf =
1

1 + sTf + s2T2
f /2

CPID(s) = kp +
ki

s
+ kds, C = CPIDGf

Transfer function from measurement noise n to control signal u

−Gun(s) = −
C

1 + PC
= −SC ( − s

s + Kki
$ ki + kps + kds2

s(1 + sTf + (sTf)2/2)

Only controller parameters and K = P(0)

Stochastic Modeling of Measurement Noise
Measurement noise stationary with spectral density Φ(ω)

σ 2
u =

∫∞

−∞
pGun(iω)p2Φ(ω)dω, σ 2

yf
=

∫∞

−∞
pGf(iω)p2Φ(ω)dω

Gun(s) ( −
ki + kps + kds2

(s + Kki)(1 + sTf + (sTf)2/2)

σ 2
u (π

(

ki

K
+

k2
p − 2kikd

Tf
+ 2

k2
d

T3
f

)

Φ0, σ 2
yf
=

π
Tf

Φ0

Noise gain kn = σu/σyf and SDU (standard deviation of u with white
measurement noise Φ0 = 1)

knw =
σu

σyf

(
√

kiTf

K
+ k2

p − 2kikd + 2
k2

d

T2
f

πΦ0 = 1 [ σu = SDU =

√√√√
(

ki

K
+

k2
p − 2kikd

Tf
+ 2

k2
d

T3
f

)

Measurement Noise Injection

P = (s + 1)−4 PID: kp = 1, ki = 0.2 , kd = 1, Td = 1 Tf = 0.2

10
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10
−1

10
0

10
1

10
2

10
0

10
1

ω

pG
un
(ω

)p

First order filter (dashed), second order filter (full)

−Gun = CS ( kds2 + kps + ki

s(1 + sTf + (sTf)2/2)
$ s

s + Kki

Peaks of Gun at ωms and at ω (
√

2/Tf
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Bode Plots of Noise Transfer Function Gun
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Delay dominated

◮ Validity of approximation (error in mid frequency range Ms peak)
◮ Differences PI/PID lag dominated/delay dominated

PID Control

1. Introduction
2. The Controller
3. Performance and Robustness
4. Empirical Tuning Rules
5. Tuning based on Optimization
6. Relay Auto-tuning
7. Limitations of PID Control
8. Summary

Theme: The most common controller.

Empirical Tuning Rules

◮ When do you need rules?
◮ Why not model by physics or experiments and design a controller?
◮ Typical processes - essentially monotone - modeled by FOTD
◮ Ziegler-Nichols Tuning 1942 (for historical reasons)
◮ Lambda tuning - Common in pulp and paper industry
◮ SIMC - Skogestad: Probably the best simple PID tuning rules in the

world
◮ Optimization, criteria and constraints
◮ AMIGO - Minimize IE, maiximze Integral gain subject to robustness

constraint and edge constraint for PID
◮ MIAEO - Minimize IAE subject to robustness constraint (for local

reasons and insight)
◮ How to get the models?

The FOTD Model - A Common Special Case

P(s) =
K

1 + sT
e−sL

◮ L time delay, T time constant or lag
◮ Approximation of processes with (almost) monotone step responses
◮ Commonly used in process control and for PID tuning
◮ Performance limited by time delay ωgcL < 1. Useful to have a simple

model that captures performance limitations
◮ Average residence time Tar = L + T
◮ Delay ratio τ = L/Tar = L/(L + T) 0 ≤ τ ≤ 1 is useful to classify

dynamics
Lag dominant: τ close to 0
Balanced: τ around 0.5
Delay dominant τ close to 1

A Difficulty in Step Response Modeling

Normalized step responses for

P(s) =
1

(1 + sT1)(1 + sT2)
, T1/T2 = 0, 0.1, . . . 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

t/(T1 + T2)

y

Difficult to estimate T1 and T2

Ziegler-Nichols Tuning - Commissioning

Process control scenario: You have a controller with adjustable parameters
and a process. How do you find suitable values of the controller
parameters? Ziegler-Nichols idea was to tune controller based on simple
experiments on the process
◮ The step response method - open loop experiment

Make an open loop step response (bump test)
Pick out features of the step response and determine parameters from
a table

◮ The frequency response method - closed loop
Connect the controller change controller parameters, observe process
behavior and adjust parmeters

The rules were developed by picking out typical process models, tuning
controller by hand or simulation (MITs differential analyzer and pneumatic),
and correlating controller parameters to process features

Assessment of Ziegler-Nichols Methods

Great simple idea: base tuning on simple process experiments,
◮ Published in 1942 in Trans. ASME 64 (1942) 759–768.
◮ Tremendously influential for establishing process control
◮ Slight modifications used extensively by controller manufacturers and

process engineers
◮ The Million $ question: What structure (series or parallel) did they

use?
BUT poor execution
◮ Uses too little process information: only 2 parameters

Step response method: a, L
Frequency response method: Tu, Ku

◮ Basic design principle quarter amplitude damping is not robust, gives
closed loop systems with too high sensitivity (Ms > 3) and too poor
damping (ζ ( 0.2)

Lambda Tuning
Process model and desired command response

P(s) =
Kp

1 + sT
e−sL. Gyysp =

1
1 + sTcl

e−sL.

The controller becomes

C(s) = P−1(s)
Gyysp(s)

1− Gyysp(s)
=

1 + sT
Kp(1 + sTcl − e−sL)

,

Cancellation of the process pole s = −1/T !! Approximations of e−sL give
PI and PID controllers, for example e−sL ( 1− sL

C(s) =
1 + sT

Kp(L + Tcl)s
=

T
Kp(L + Tcl)

(

1 +
1

sT

)

PI controller with the parameters

kp =
1

Kp

T
L + Tcl

, ki =
1

Kp(L + Tcl)
, Ti = T .

Closed loop response time Tcl = λf T is a design parameter, common
choices λf = 3 (robust tuning), λf ≤ 1 aggressive tuning.
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Lambda Tuning - Gang of Four

S =
s(L + Tcl)

s(L + Tcl) + e−sL (
s(L + Tcl)

1 + sTcl

PS =
sKp(L + Tcl)

(s
(

L + Tcl) + e−sL
)

(1 + sT)
e−sL ( sKp(L + Tcl)

(1 + sTcl)(1 + sT)
e−sL

CS =
s(T + Tcl)(1 + sT)

(s
(

L + Tcl) + e−sL
)

(1 + sT)
( (L + Tcl)(1 + sT)

K(L + Tcl)(1 + sTcl)

T =
e−sL

s(L + Tcl) + e−sL (
1

1 + sTcl
e−sL.

◮ Very nice to have a tuning parameter Tcl with good physical
interpretation

◮ Perhaps better to pick Tcl proportional to L
◮ Notice presence of canceled mode s = −1/T in PS, very poor load

disturbance response if Tcl < T

Skogestad SIMC
Process models

P1(s) =
Kp

1 + sT
e−sL, P2(s) =

Kp

(1 + sT1)(1 + sT2)
e−sL.

Desired closed-loop transfer function

Gyysp =
1

1 + sTcl
e−sL.

Hence

C(s) =
1
P
$ Gyysp

1− Gyysp

=
1 + sT

Kp(1 + sTcl − e−sL)
( 1 + sT

sKp(Tcl + L)

typical choices of design parameter Tcl = λf L. Control law

kp =
1

Kp

T
L + Tcl

, Ti = min
(

T , 4(Tcl + L)
)

.

Fixes after lots of simulations SIMC++

kp =
1

Kp

T + L/3
L + Tcl

, Ti = min
(

T + L/3, 4(Tcl + L)
)

, Tcl = λL.

Tore’s One Third Rule “Tredjedels regeln”

◮ Make a unit step test
◮ Determine the static gain Kp and the time Tp for the process to reach

95% of its steady state value
◮ The controller parameters are

K =
1

3Kp
, Ti =

TP

3
= T +

L
3

Some Tuning Rules for PI Control
◮ Ziegler-Nichols step

kp =
0.9
KvL

, ki =
0.27
KvL3 , Ti = L/0.3

◮ Ziegler-Nichols frequency

kp = 0.45ku, ki = 0.54
ku

Tu
, Ti = Tu/1.2

◮ Lambda Tuning - Tcl = T , 2T , 3T

kp =
T

K(Tcl + L)
, ki =

1
K(Tcl + L)

, Ti = T

◮ Skogestad SIMC Like Lambda but Ti = min(T , 4(Tcl + L))
◮ Skogestad SIMC+

kp =
T + L/3

K(Tcl + L)
, Ti = min(T + L/3, 4(Tcl + L))

◮ Tore One Third Rule
kp =

1
3K

, Ti = T +
L
3

◮ AMIG0 (Ms, Mt = 1.4)

kp =
0.15

K
+

(

0.35− LT
(L + T)2

) T
KL

, Ti = 0.35L +
13LT 2

T 2 + 12LT + 7L2
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Tuning based on Optimization
A reasonable formulation of the design problem is to optimize performance
subject to constraints on robustness and noise injection.
◮ Performance criteria IE or IAE for load disturbance attenuation

Small differences between IE and IAE for PI
Larger differences for PID because of derivative cliff use IAE
With IE it is necessary to use an edge constraint

◮ Constraints
Robustness Ms and Mt

Noise injection max pGun(iω)p or ppGunpp2
◮ Pick a class of representative processes
◮ Pick a design criterion: Maximize integral gain subject to constraints

on robustness Ms and Mt MIGO (M-constrained Integral Gain
Optimization)

◮ Relate controller parameters to FOTD model Ke−sL/(1 + sT)
◮ Rules for PI control, conservative rules for PID control
◮ Insight and understanding

Solving the Optimization Problem

Boyd Hast Berhardsson

◮ Load disturbance attenuation IAE!
◮ Robustness Ms Mt

◮ Measurement noise SDU, kn

◮ Loop transfer function

Gl = PGf
(

kp +
ki

s
+ kds

)

◮ Convex optimization

−2 −1 0
−2

−1

0

ℜ L(iω)

ℑ
L(

iω
)

How to Get the Models

Bump test

0 2 4 6 8 10 12
0

1

2

3

4

5

6

y

Relay feedback
Model reduction - Skogestads half rule
System identification
Modeling and control design should match
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The Test Batch

P1(s) =
e−s

1 + sT
, P2(s) =

e−s

(1 + sT)2

P3(s) =
1

(s + 1)(1 + sT)2 , P4(s) =
1

(s + 1)n

P5(s) =
1

(1 + s)(1 + αs)(1 + α2s)(1 + α3s)

P6(s) =
1

s(1 + sT1)
e−sL1 , T1 + L1 = 1

P7(s) =
T

(1 + sT)(1 + sT1)
e−sL1 , T1 + L1 = 1

P8(s) =
1−αs
(s + 1)3

P9(s) =
1

(s + 1)((sT)2 + 1.4sT + 1)

Essentially Monotone Step Responses

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

0

0.2

0.4

0.6

0.8

1

t/Tar

y

Step responses for test batch mormalized by the average residence time
Tar =

∫
tg(t)dt/

∫
g(t)dt = −P′(0). Empirical criterion for monotonicity

a =

∫∞
0 e(t)dt∫∞

0 pe(t)pdt
, essentially positive if a > 0.8

Positive systems is a research issue (Sontag)

PI Control: Minimize IAE M = 1.4 - Correlation with FOTD
parameters
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PI Control can be based on an FOTD model

PID Control: Minimize IAE, Ms, Mt ≤ 1.4
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◮ Tuning rules based on FOTD can be found for τ > 0.3
◮ More complex models required for lag dominated dynamics
◮ Limiting cases K

1+sT e−sL and K
(1+sT/2)2 e−sL

An Observation
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10
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10
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10
2

τ = L/(L + T)

ω
gc

L

◮ Compare with fundamental limit due to time delay
ω scL < 2(Ms−1)

Ms
( 0.57

◮ Close to limit for P1 (red circles) for all τ
◮ Close to limit for whole batch for τ > 0.3
◮ Reason for large variability for small τ is that the FOTD model

overestimates L for lag dominated systems, high order dynamics
approximated by time delay

Benefit of Derivative Action
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ki [PID]/ki [PI] vs τ

◮ Derivative action gives small benefits for processes with delay dominated dynamics
(derivative is a poor predictor for systems which are dominated by time delay)

◮ Derivative action doubles performance for τ = 0.5
◮ Significant may be possible for small τ , but better modeling may be required, notice

difference between P1 (red circles) and P2 (red squares)

◮ Processes with small τ are easy to control and admit very high gains. In practice the
admissible gains are limited by sensor noise. A PI controller will often work well.

Summary

◮ Processes with essentially monotone step responses
◮ The FOTD model gives insight
◮ Realize difference between lag and delay dominated dynamics τ
◮ PI is sufficient for processes with delay dominated dynamics
◮ Advantage of derivative action increases with decreasing τ
◮ Derivative action doubles performance for τ = 0.
◮ Derivative action may give significant improvement for processes with

lag dominated dynamics but more complex models may be useful
◮ Processes with small τ admit high controller gains and performance

may be limited by noise injection, a PI controller may then be sufficient
◮ AMIGO and Skogestad SIMC+ are reasonable rules
◮ Modeling is essential

PID Control

1. Introduction
2. The Controller
3. Performance and Robustness
4. Empirical Tuning Rules
5. Tuning based on Optimization
6. Relay Auto-tuning
7. Limitations of PID Control
8. Summary

Theme: The most common controller.
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Relay Auto-tuning
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Relay feedback creats oscillation at ω180!
Automation of ZN frequency response method modified ZN tuning rules

Practical Details

◮ Bring process to equilibrium
◮ Measure noise level
◮ Compute hysteresis width
◮ Initiate relay
◮ Monitor each half period
◮ Change relay amplitude

automatically
◮ Check for steady state
◮ Compute controller

parameters
◮ Resume PID control

Short Experiment Time G(s) = exp(−√s)
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Extreme but not unusual case!

Commercial Autotuners

◮ One-button autotuning
◮ Three settings: fast, slow, delay

dominated
◮ Automatic generation of gain

schedules
◮ Adaptation of feedback gains
◮ Adaptation of feedforward gain
◮ Many versions

Single loop controllers
DCS systems

◮ Robust
◮ Excellent industrial experience
◮ Large numbers

ECA 600

Industrial Impact
Functions
◮ Automatic tuning AT
◮ Automatic generation of gain scheduling GC
◮ Adaptive feedback AFB and adaptive feedforward AFF

Sample of products
◮ NAF Controls SDM 20 - 1984 DCS AT, GS
◮ SattControl ECA 40 - 1986 SLC AT, GS
◮ Satt Control ECA 04 - 1988 SLC AT
◮ Alfa Laval Automation Alert 50 - 1988 DCS AT, GS
◮ Satt Control SattCon31 - 1988 PLC AT, GS
◮ Satt Control ECA 400 -1988 2LC AT, GS, AFB, AFF
◮ Fisher Control DPR 900 - 1988 SLC
◮ Satt Control SattLine - 1989 DCS AT, GS, AFB, AFF
◮ Emerson Delta V - 1999 DCS AT, GS, AFB, AF
◮ ABB 800xA - 2004 DCS AT, GS, AFB, AFF

Properties of Relay Auto-tuning
◮ Safe for stable systems
◮ Close to industrial practice

Easy to explain similar to Ziegler-Nichols tuning

◮ Little prior information. Relay amplitude
◮ One-button tuning
◮ Automatic generation of test signal

Injects much energy at ω 180 with no prior knowledge of ω 180
Easy to modify for signal injection at other frequencies

◮ Good industrial experience for more than 25 years. Many patents are
running out.

◮ Good for pre-tuning of adaptive controllers
◮ Still room for improvement

Exploit advances in computing
Exploit understanding of modeling and controller design

A Millon Dollar Question
Classify all linear systems which have stable limit cycles under relay feedback!

PID Control
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2. The Controller
3. Stability
4. Performance and Robustness
5. Empirical Tuning Rules
6. Tuning based on Optimization
7. Relay Auto-tuning
8. Limitations of PID Control
9. Summary

Theme: The most common controller.

Limitations of PID Control

PID control is simple and useful but there are limitations
◮ Multivariable and strongly coupled systems
◮ Complicated dynamics
◮ Large parameter variations

Robust design
Gainscheduling and adaptation

◮ Difficult compromises between load disturbance attenuation and
measurement noise injection
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Complex Controllers

Complex controllers can be built bottom up by combining
◮ PID Controllers
◮ Nonliner elements
◮ Logic
◮ Observers

Using control principles such as
◮ Cascade control
◮ Mid-ranging and Split-ranging
◮ Selector control
◮ Ratio control

to deal with more complicated control problems.
Such solutions become very complicated for systems with many inputs,
outputs and constraints on control variables and state variables. Model
predictive control is often a viable substitute.

Cascade Control - Many Sensors

Process

Inner loop
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  y s

Outer loop
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Midrange Control - Many Actuators
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Complicated Dynamics

◮ Any stable system can be controlled by an integrating controller if
performance requirements are modest

◮ PI control and systems with first order dynamics
◮ PID control and systems with second order dynamics
◮ States are the variables required to account for storage of mass,

energy and momentum

I
Motor

ω1 ω2

ϕ 1 ϕ 2

J 1 J 2

Transfer function (physical meaning of approximation)

P(s) =
0.045s + 0.45

s2(s2 + 0.1s + 1)
( 0.45

s2

PID Control

With an ideal PID controller and the approximate model the loop transfer
function is

L(s) =
0.45(kds2 + kps + ki)

s3

We will add high frequency roll-off later. Closed loop characteristic
polynomial

s3 + 0.45kds2 + 0.45kps + 0.45ki = s3 + 2ω cs2 + 2ω2
cs +ω3

c

(s +ω c)(s2 +ω cs +ω2
c), Butterworth

The approximation is valid if ω c small (say ω c < 0.1ω0. Increasing ω c
leads to instability. The bandwidth and the performance ki = ω3

c/0.45 are
limited.
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PID Control ...
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With low bandwidth controller the inertias move together

Observer and State Feedback
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SFB requires high quality low noise sensors

Comparison PID SFB Command Response
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SFB gives ten times faster response
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Set Point and Load Disturbance Response SFBI
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Explain behavior of inertias!
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Summary

◮ A simple and useful controller
◮ Much tradition and legacy
◮ Many things to consider: set point weighting, filtering, windup

protection, mode switching and tracking modes
◮ Many design methods relative time delay τ is important to classify
◮ Good models can be obtained by relay feedback
◮ Next generation auto-tuners are almost here
◮ There are processes where PID can be outperformed significantly

Multivariable systems and constraints
Oscillatory systems

◮ The Million dollar question: Find all linear systems that give a stable
oscillation under relay feedback!
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