Neighborhood Heat Control Comfort Control and Peak Load Reduction

Felix Agner, Johan Lindberg

November 30, 2020

Presentation Outline

Problem: Control indoor temperature and peak electricity consumption in domestic buildings

- Problem formulation
- Results
- Discussion and simulink playtime

Neighborhood

Here's a neighborhood of 4 houses with

- Indoor temperatures x_i
- Individual electrical loads u_i

$$C_i \dot{x}_i = a_i (T_{out} - x_i) + b_i u_i^h \tag{1}$$

Neighborhood

Here's a neighborhood of 4 houses with

- Indoor temperatures x_i
- Individual electrical loads u_i

$$C_i \dot{x}_i = a_i (T_{out} - x_i) + b_i u_i^h \tag{1}$$

Goal: Construct controller to minimize peak load u_{tot} while keeping x_i in comfort zone $\pm 0.5^{\circ} C$.

Total Building Load

$$u_i^{tot} = u_i^{other} + u_i^h \tag{2}$$

Outdoor Temperature

Control Approaches

- Non-coordinated PI(D)'s
- Temperature feed-forward and PI(D)'s
- MPC

PI(D) Results

Fluctuations both in temperature and load.

Feed-forward and PI(D) Results

Fluctuations in temperature supressed. Little-to no difference in load.

MPC Results

Prediction horizon: 12 hours

Noise level: Low Model errors: None

MPC Results

Prediction horizon: 12 hours

Noise level: Low Model errors: None

But what if we have more noise, and don't know the system model that well?

MPC Results

Prediction horizon: 12 hours

Noise level: High Model errors: Yes

Temperatures

Comparison

Temperatures

Conclusions

- PI(D)
 - Simple design
 - Some fluctuations in temperature
 - No consideration of total load
- FF and PI(D)
 - Demands outdoor temperature readings
 - Steadier indoor temperature
 - Still no total load consideration
- MPC
 - Demands a lot of communication and data
 - Fluctuating (but constrained) indoor temperature
 - Increased consideration of load
 - Sensitive to model and prediction errors

Questions?

 ${\sf Simulink-playtime!!!}$