

Content overview

Brief history and motivations

The big picture

Class overview

2 The big picture

3 Class overview

Pauline Kergus - Karl Johan Åström

Control System Synthesis

1st September 2020 2/27

Brief history and motivations

The big picture

Class overview

Bennett, S. (1996). A brief history of automatic control. IEEE Control Systems Magazine
Bissell, C. (2009). A history of automatic control. In Springer handbook of automation
Åström, K. J., and Kumar, P. R. (2014). Control: A perspective. Automatica

It all starts with feedback: interaction between different systems

 \rightarrow Necessity to study the system as a whole

Feedback in nature

(response to stress, regulation of blood pressure) and economical systems (offer and demand)

Homeostasis principle

Pauline Kergus - Karl Johan Åström

Brief history and motivations

The big picture

Class overview

Bennett, S. (1996). A brief history of automatic control. IEEE Control Systems Magazine
Bissell, C. (2009). A history of automatic control. In Springer handbook of automation
Åström, K. J., and Kumar, P. R. (2014). Control: A perspective. Automatica

It all starts with feedback: interaction between different systems

 \rightarrow Necessity to study the system as a whole

- Feedback in nature
- Also used for more than 2000 years: feedback mechanism to control water clocks (Ktesibios, 285–222 BC)

Pauline Kergus - Karl Johan Åström

Brief history and motivations

- The big picture
- Class overview

- Nowadays, control is everywhere! (homes, cars, telecommunication, aeronautics, aerospace, process control, power grid, ...)
 - The development of control as the modern field we know reflects the growth of our technological society
 - In [1], four eras are considered:
 - Before 1940: "Tasting the Power of Feedback Control",
 - 1940–1960: "The Field Emerges",
 - 1960–2000: "The Golden Age",
 - After 2000: "Systems of the Future".

Brief history and motivations "Tasting the Power of Feedback Control"

Brief history and motivations

The big pictur

Class overview

Pauline Kergus - Karl Johan Åström

Ω

Steam Engine

Ω

Brief history and motivations "Tasting the Power of Feedback Control"

Flight control

- compromise between stability and maneuverability
- \rightarrow the Wright Flyer was unstable, the pilot had to maintain the plane stable
- motivation that led to the development of the autopilot, based on the feedback concept
- feedback can be used to stabilize an unstable system
- Modern fighter airplanes are also unstable in certain flight regimes, such as take-off and landing

Brief history and motivations

The big picture

Class overview

Before 1940: "Tasting the Power of Feedback Control"

- Major development of control coincided with the industrial revolution because of the advantages of feedback control:
- Applications: centrifugal governors, autopilots for ships and aircrafts, process control
- Controllers were based on mechanical, hydraulic, pneumatic and electric technologies
- → These components were exploring proportional, integral and derivative actions without understanding the similarities between the different fields
- Electronic analog computing was emerging and used to simulate control systems
- Feedback control can also create instabilities → Routh–Hurwitz stability criterion, Nyquist criteria

The big picture

Class overview

Brief history and motivations

Properties of feedback

- Performance: correcting action according to the difference between the desired behaviour and the actual one
- Robustness to uncertainty (disturbances or process variations)
- Stabilization and/or shaping a desired dynamics
- Modularity

Brief history and motivations

- The big picture
- Class overview

Properties of feedback

- Performance: correcting action according to the difference between the desired behaviour and the actual one
- Robustness to uncertainty (disturbances or process variations)
- Stabilization and/or shaping a desired dynamics
- Modularity

Challenges:

- Possibility of instability
- Obtain a stable controlled system even under perturbations
- Measurement noise
- Implementation complexity

Pauline Kergus - Karl Johan Åström

1940–1960: "The Field Emerges"

- Intensive military research during WWII (fire-control systems, autopilots for ships, airplanes, and torpedoes)
- Recognition of a common foundation for all control problems
- Development of servomechanism theory: block diagrams, transfer functions, frequency response, analog computing, stochastic processes and sampling, exploring mathematical knowledge on linear systems, complex variables, and Laplace transforms.
- Many tools were developed
 - modeling from data, based on the frequency response
 - graphical design and analysis techniques (Bode and Nyquist)
- Analog computing was used both for implementation and for simulation
- Well established field by 1960

Brief history and motivations

Brief history and motivations

- The big picture
- **Class overview**

1960-2000: "The Golden Age"

- Space race and use of digital computers
- Development of control theory ahead of the implementation and technology
 - State-space representations (Kalman, used for estimation, filtering and LQ design)
 - Lyapunov theory on stability of differential equations
 - approach based on functional analysis (small gain theorem, passivity theorem).
 - optimal control theory (Pontryargin)
 - dynamic programming (Bellman, foundation of adaptive control)
 - development of system identification
 - robust control theory

Brief history and motivations

- The big picture
- **Class overview**

After 2000: "Systems of the Future"

- Efficient and low-cost computational power
- New applications: large scale networks (smart power grids, traffic control), autonomous cars
- Systems of increasing complexity (transport of goods and information)
- Closer interaction between control, computing and communication
- More and more data available
- Hybrid systems
- Many applications in medicine and biology

Control is a rich field

- Wide range of applications
 - Power systems
 - Aero
 - Process industry
 - Instrumentation
 - Robotic and autonomous systems
 - Networks
- Numerous design techniques and tools
- Control is inherently multidisciplinary
 - Sensors and actuators linked through a communication network
 - Controllers are implemented using digital computers
 - \rightarrow need for real-time computing knowledge
 - Design and/or analysis of control systems requires knowledge about the controlled process → modelling, system identification, ...

Brief history and motivations

The big picture

Class overview

Brief history and motivations

Why should you study control?

- Control is an essential element in countless engineering systems and cross the traditional academic boundaries
- No need to be an expert to avoid poor performances
- Possibility to gain some degrees of freedom
- Nice theory and applications

The big picture

Class overview

2 The big picture

Model Based Design 1 - Open Loop

Long feedback Finished Product Requirements & Performance Targets System Hatom Based Design System Integration Design Ingeneration & Validation Module Integration Module & Verification Design Component Component Verification Design Final test comes late Bo Bernhardsson Karl Johan Åström Control System Design - A Perspective

Brief history and motivations

The big picture

Class overview

Pauline Kergus - Karl Johan Åström

Model Based Design 2 - Closed loop

Brief history and motivations

The big picture

Class overview

Pauline Kergus - Karl Johan Åström

The big picture

Class overview

Implementation - Computer Control

1st September 2020 17/27

Control System Synthesis

1st September 2020 18/27

The big picture

Brief history and

A basic control scheme

- Very different from the real implementation!
- Continuous vs Discrete time:

The big picture

- discretization issues, beware of computing time!
- continuous design techniques have a sampled counterpart
- continuous equations are usually simpler

The big picture

Class overview

Top-down architecture

Pauline Kergus - Karl Johan Åström

Brief history and motivations

The big picture

Class overview

Top-down architecture

Bottom-up architecture

- building complex systems from standard parts
- interconnecting low-level control systems to design controllers
- What happens when different loops are interconnected?

Figure: Cascade control (multi-sensors)

Pauline Kergus - Karl Johan Åström

Control System Synthesis

LUND UNIVERSITY

Brief history and motivations

The big picture

Class overview

Bottom-up architecture

- building complex systems from standard parts
- interconnecting low-level control systems to design controllers
- What happens when different loops are interconnected?

Figure: Mid-range control (multi-actuators)

Control System Synthesis

LUND UNIVERSITY

Brief history and motivations

The big picture

Class overview

The big picture Combination of feedback and logic

Brief history and motivations

The big picture

Class overview

Lund

UNIVERSITY

Different operating conditions

 \rightarrow manual interaction, equipment protection, saturating actuators

Cruise control

The big picture

Class overview

1 Brief history and motivations

2 The big picture

The big picture

Class overview

The big steps:

Class overview

- 1 Define the requirements and the performance objectives
- 2 Control design and analysis
- 3 Implementation \rightarrow not treated here

- Brief history and motivations
- The big picture
- **Class overview**

made by Brian Douglas (https://engineeringmedia.com/)

Pauline Kergus - Karl Johan Åström

The big picture

Class overview

Class overview

In this class:

- → information on the process? type of model if any? Do not take the model for granted!!
- → how to express the specifications? what are the performance limitations? how to formulate a control problem?
- \rightarrow which design technique ?

Design always involves many criteria, trade-offs and compromises

Brief history and motivations

The big picture

Class overview

Introduction

- 2 Fundamentals: problem formulation
 - 1 System representation and feedback basics
 - 2 Specifications and performance limitations
- 3 Design techniques
 - 1 PID control
 - 2 LQG
 - 3 Hinf
 - 4 Model Predictive Control (MPC)
 - 5 Adaptive Control
 - 6 Data-driven Control

Brief history and motivations

The big picture

Class overview

Introduction

- 2 Fundamentals: problem formulation
 - **1** System representation and feedback basics
 - 2 Specifications and performance limitations
- 3 Design techniques
 - PID control + exercise session 1
 - 2 LQG
 - 3 Hinf + exercise session 2
 - 4 Model Predictive Control (MPC)
 - 5 Adaptive Control + exercise session 3
 - 6 Data-driven Control

Brief history and motivations

The big picture

Class overview

Introduction

- 2 Fundamentals: problem formulation
 - **1** System representation and feedback basics
 - 2 Specifications and performance limitations
- 3 Design techniques
 - PID control + exercise session 1 + handin 1
 - 2 LQG
 - 3 Hinf + exercise session 2 + handin 2
 - 4 Model Predictive Control (MPC)
 - 5 Adaptive Control + exercise session 3
 - 6 Data-driven Control

Brief history and motivations

- The big picture
- **Class overview**

- Introduction
- 2 Fundamentals: problem formulation
 - 1 System representation and feedback basics
 - 2 Specifications and performance limitations
- 3 Design techniques
 - PID control + exercise session 1 + handin 1
 - 2 LQG
 - 3 Hinf + exercise session 2 + handin 2
 - 4 Model Predictive Control (MPC)
 - 5 Adaptive Control + exercise session 3
 - 6 Data-driven Control
- 4 Presentations and concluding remarks

Brief history and

Class overview

About the presentations

- Groups of 1-2 people, 15-20 minutes
- Topics to be defined by mid-October
- List of possible topics:
 - Other control techniques or tools
 - An interesting control application
 - Any suggestion is welcome