Control System Design - LQG Part 2

Bo Bernhardsson, K. J. Astrom

Department of Automatic Control LTH,
Lund University

Bo Bernhardsson, K. J. Astrém Control System Design - LQG Part 2



Lecture - LQG Design

@ What do the “technical conditions” mean?
@ Introducing integral action, etc
@ Loop Transfer Recovery (LTR)

@ Examples

For theory and more information, see PhD course on LQG

Reading tip: Ch 5 in Maciejowski, Multivariable Feedback Design
see home page for more links
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Reminder - Notation

x = Ax + Blw + Bzu
= Cix+ Dsu
y = ng + Dglw + D22u
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Reminder - Technical Conditions

1) [A, Bg] stabilizable
2) [Cq, A] detectable
3) “No zeros on imaginary axis” u — z

rank [le_ il ea

=n+m Vw
C: Dlz]

and D1 has full column rank (no free control)
4) “No zeros on imaginary axis” w — y

rank []wI =

=n+ Yw
Co D3 ] =

and D1 has full row rank (no noise-free measurements)

Discrete time: change imag. axis jw to unit circle e/%.
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An Example

Control of double integrator G(s) = 1/32 with frequency dependent
weights (Question: Why would one choose such weights?)

w1
« 314 ,
% > cl 21
S S
1 e wo
s24+1

TAT: The formulation violates the “technical conditions”, why?

The example is available as lqg2.m on home page
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D5 not full rank

>Solution: New punished signal, zg = pu

Non-stabilizable, non-detectable modes

>Solution: Perturb 1/s and 1/(s? + 1) weights

Jjwl — A —B;

Co Dy
No input noise will lead to Kalman filter with L,,; = 0, which gives
marginally unstable Kalman filter.

The matrix [ ] looses rank in w = 0.

>Solution: Add input noise wg to process.
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New System

e
o
P w1
‘ i 1 l 1 21
u g P > s+e
1 w2
s242¢15+1
Yy

p=0.1 0=0.01 ¢ =€ = 10"*gives

(s + 0.1248s + 0.00778)(s? + 0.0002s + 1)

C(s) = 12.85
(5) (s + 0.0001)(s2 + 0.315s + 1.768)(s? + 5.135s + 11.96)
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The Code

rho=0.1;ep1=0.0001;ep2=0.0001;sigma=0.01;

A=[0 1 00 0; 00000 ; 00 -epl 10;00 -1-epl ®; 1000 -ep2];
Bl=[0 0 0 ; ® O sigma ; O 00 ; 0 10 ; 10 0];

B2=[0 ; 1; 0 ; 0 ; 0];

Cl=[0 0 0 O 00000 1];

C2=[1001

D11=[0 0 O;
D12=[0; rho];
D21=[1 0 0];
D22=0;

0
1;
01;
0001;

Q=C1’*C1;

R=D12’*D12;

N=C1’*D12;

[k,s,e] = 1lqr(A,B2,Q,R,N);
G=eye(length(A));
H=zeros(1,length(A));

syse = ss(A,[B2 G],C2,[D22 H])

R11 = B1*Bl’;
R22 = D21*D21’;
R12 = B1*D21’;

[kest,1,p]=kalman(syse,R11,R22,R12)

reg = zpk(lqgreg(kest,k));
frv=logspace(-3,3,1000);

frl = squeeze(freqresp(reg, frv));
loglog(frv,abs(frl),’r’, ’Linewidth’,2)
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5th order controller with reasonable gain.

Integral action and notch at 1 rad/s.

1 Controller Gain

Nyquist Plot
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Technical conditions - Dy not full rank

If D91 does not have full rank (i.e. Ro = Dnggl not pos def), some
measurements are error free.

Can use y directly for calculation of some combination of states

Kalman filter gains will become very large, trying to make use of these
error free directions. Resulting Kalman filter will be of lower order.

Luenberger observer - reduced observer of order n-rank(C)

See linear systems course
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Example - Reduced order observer

U9 U1 e
ll Jaz o2 X1 = X2 +Ug
u_ Y 1 o 1 Xeg = u-+ve
s X2 s X1

y x1+e

v1, Ug, and e white noise, incr variance az, 1, and o2

Kalman gain for « = 1and o = 1072, 104, 1076, 108

10.95 101 1001 10001
L= [ 10 ] & [100]’ L= [1000]’ L= [10000]
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Observer £ = (sI — A+ LC) }(Bu + Ly)

u —> xlhat y—>x1-hat
10° 10°
107 ﬁ‘ 10
10" R 10°
107 10° 10° 10 10 10 10 10
u —> x2-hat y—>x2hat

In the limit, ¥ = x1 is noise-free and can be derivated, giving
X9 = u-+ve
Ynew = Y =X2+U1

Kalman filter for the new system s£3 = © + L e (Vnew — £2)
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Example - Reduced order observer

U9 U1 e
ll Jaz o2 X1 = X2 +7U1
u_ Y 1 IR Xo = u-+ve
s X2 s (X1

y = x1+te

v1, Ug, and e white noise, incr variance az, 1, and o2

Optimal filter as 0 — 0 is first order:

@ =y

Xo =

X9 A %u if ¢ large

Xo ~ sy if a small
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Technical conditions D15 not full rank

If Qs = D{2D12 is not pos. def then some combinations of control signals
are free. States can be moved freely and infinitly fast in some directions.

For the system above, the LQG controller obtained with
Qs =1072,..., 1078 tends to a lead-filter (&« = 1, o = 0)

Ql=diag([1 1])
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Technical Conditions - More Intuition

The following system

= x+e

fails condition 4:

sI—A —By) _ (s O ~
[ C, D21] 3 [1 1] looses rank for s = 0

what happens with the observer in stationarity?
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Technical Conditions - More Intuition

Optimal observer is

lt
£=—jydt

t Jo

1

t

dx )

—f | — — %

7t (v — %)
so Kalman filter gain is time varying with
1

and the observer system becomes marginally stable:

A—L(#)Cs > 0

Control System Design - LQG Part 2
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Lecture - LQG Design

@ What do the “technical conditions” mean?
@ Introducing integral action, etc
@ Loop Transfer Recovery (LTR)

@ Examples
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Disturbance Modeling

Integral action and generalized integral control can be generated by
disturbance modeling.

@ Recall integral action and generalized integral action
@ Choose controller that gives integral action
© Models disturbances and incorporate the models in the controller

@ Disturbances can be load disturbances, measurement noise,
reference values.
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Generalized Integral Control

@ Constant but unknown ¢ ¥ u
@ Ramps with unknown levels and
rates
@ Sinusoidal with known frequency Gr(s) |
but unknown amplitude
@ Periodic with known period but k
C(s) = ————
unknown shape 1—Gs(s)
1 1
Gr(s) = —— C s)=1+ —
f( ) 1+sT const( ) ST
2¢ wos s + 2Cwos + w?
Gr(s) = B) 2 Coine(s) = B 2
s% + 2Cwos + wj 8% + wp
1
— ,—sL —
Gf(s) =e Cperiodic(s) 1 e—sL
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A General 2DOF System

. Feedforward urf
—®  Signal

Generator State | "/ 9 Y
Foedback % | Process
Kalman [
Filter |-

The signals x,, and y,, = Cx,, give the desired responses of states and
output, the signal u s drives the system in the desired way
Many ways to generate command signals

@ Tables, dynamic models

@ Constraints can be accounted for

@ Feedforward design requires inversion of process dynamics, see
BottomUp lecture
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Model Following

Desired behavior

dx
—™ = Ax,, + By, L= (C
dt
Desired feedforward signal u = u sy can be generated in many ways. See

lecture on Bottom Up.
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Integral Action by Disturbance Observer

Process and unknown but constant load disturbance v

dx dv

— = Ax+ B(u +v), = Cx, — =0.

dt (wto) ¥ dt
Augment process state x by disturbance state v gives the following model
for the the process and its disturbances

alo)=(0 o) )+ (6] o= (9 ]

Is the state v stabilizable? Does it matter? Observer

d (2) _ (A BY (£) 4 (B) us (L (- C8)
at o) “lo o] |o o) “T L, ) VT
Controller

u=usr+ Ki(xp, —%)—10

where u s is the feedforward signal and x,, is the desired state from the
feedforward signal generator.
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The Complete Controller

Introducing & = x,,, — &£ and eliminate £

s
= = (A= BK; — L)% + Ly(ym —3) = Ao + Lu(3m — )
do

E = L,C% — Lv(ym _y)

u=usr+ KX —70

Replace § by w = L,CA_ 1% — 6. Then the controller becomes

ds
2 AE+ Loy, —

oy &+ L,(y )

dw 1

= = (Lo + L,CA; 'L)0m — ) = ki(ym — )

u=ups+ (K, — L,CA;HZ + w.
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Controller Transfer Function

dx

77 = Ak + Le(ym —)

dw 5]

dr (Lv + LyCA; L) (ym — y) = Ki(ym — ¥)

u=usr+ (K. — L,CA;Y)E + w.

Transfer function is
LU ]_ -1
Cls) = Gupse = 2 + (Kx _ gch)(sl — A+ BK,+L,C)'L,
Integral gain
ki = Ly(1+ CA;'L,) = Ly(1+ C(A— BK, — L.C)"'L.)

Since the integrator is separate it is easy to deal with manual control and
anti-windup.
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Block Diagram

Feedforward | Ym ‘

—  Signal % FB Urp u o y
" | Generator ) Observer—» =@—> rocess

Controller

@ Notice that feedforward generator only delivers y,, and u sy

@ Practical consequences which is useful if you would like to change
state representations (Layering)
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Other Disturbances

Sinusoidal disturbances with frequency wq can be captured by the model

@ N 0 (%) v
dt |—wqg O
We can deal with any disturbance that can be generated by

(Z—L: = Auw, v=C,w

The matrix A, often has eigenvalues on the imaginary axis. Why?
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Controller Dynamics vs Disturbance Dynamics

dw
7 = Auw, v=C,w
If w is added to the input noise to the process, the resulting LQG controller

will typically have poles at the eigenvalues of A,

If w is added as measurement noise, the resulting LQG controller will
typically have transmission zeros at the eigenvalues of A,
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Avoiding Windup in State Based Controller

urf
r Model and
—® Feedforward Y
Generator State i v 5 y
Feedback JOCEES
Y
Actuator
e Model
Observer

@ Dont fool the observer!
@ Model predictive control (optimization with constraints)
@ Easy to obtain tracking mode

dz

i A%+ Bu+L(y—C#&), u=sat(v), v=uss+ K(xp—2%)
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Reference Values

Process model and controller

d
—x=Ax+Bu, y = Cx, u=—-Kx+ K,r.

dt
Closed loop system
d
d—’Lf = (A—BK)x+BK,;, y=Cx

Steady state output
xo = (A — BK) 'BK,r
Inverse exist because A — BK is stable. Choosing
K, =(C(A—BK)™'B)™"

gives the output y = r. This choice gives a calibrated system. The correct
steady state is maintained by carefully matching the feedforward gain K,
to the system parameters.
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Explicit Integral Action

Process model

d—::Ax+Bu, y = Cux.

Controller (forced integral action)

u=—K(x—x,)—kiz E=Cx—r

Augment process state by the integrator state z
d (x A 0 X B 0 u
a )=o) ([ S () »=(e)

@ Many design methods, pole-placemet, LQG, etc
@ Condition for reachability and observability?

@ When will it work
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Reference Signals and Integrator in LQG

Extend system with integrators (on the tracked outputs)

Xi=r—y

minf T Qix 4+ uT Qou + xF Q3x;

gives [Kx Ki].

Extended system is controllable, but x; is noise-free so nonstandard
Kalman filter (D91 not full rank). Reduced order observer.

Kalman filter L obtained from original system; don’t estimate x;
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Reference Signals and Integrator in LQG

Use controller
u = —Kxx’\ >N Kixi

or if feedforward signal u s is available
u=—K,&— Kx;+usr

Increased model order

Observer order not increased
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Reference Signals in LQG

If r and y available separatly (2-DOF) one can do as follows (assuming
dimensions of r and y are equal)

LQG Servo Controller

& _ A—BK,—LC+LDK, -BK;+LDK; £) -L L r
% - 0 0 X
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Reference Signals in LQG

If only tracking error e = r — y is available (1-DOF)

lu,. .

e r_y_.. kest x—‘_—
LQG Servo Controller
k3 A—-BKy—LC+ LDK. —BK; + LDK, % —L
BN a6 6 A
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Reference Signals in LQG

If we know a stochastic model of the reference signal we can use this in the
optimization.

Reference signal generated by linear system driven by white noise.
X, = Ayx-+ Bw
r = Cyx,+ D,w
Augment the system with this model and use the general LQG framework

described on previous lecture. Treat w as one of the disturbances and r as
a known signal.
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Reference Signals in LQG

If we have knowledge of future reference signals, r, this can be used to
improve tracking performance further.

Introduce a Model and Feedforward Generator as above

u = K(xp—2)+usr
where u ¢ is an open loop control signal that ideally produces the desired
time variation x,, in process states.

Here u sy and x,, can be non-causal functions of the reference signal r if
this is known in advance
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Lecture - LQG Design

@ What do the “technical conditions” mean?
@ Introducing integral action, etc
@ Loop Transfer Recovery (LTR)

@ Examples
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Spectral factorisation - revisited

Assume R19 =0

x = Ax+uy, E(wwl ) = Ri6,
y = Cox+e  E(eel ,)=Ry6;

0= AP+ PAT + R, — PCYR;1C3P, L = PCYTR3!
"Equivalent” representation of y

X = Ax+ Le
= ngA+€

where € is the “innovation” process. Can show E(etetT_T) = Ry6;

We can now write the spectrum of y in two different ways
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Spectral factorisation - revisited

®, = &, +Cy(sI — A)'®,(—sI — AT)"ICT
®, = [I,+Co(sI —A)'L]&[..]*

Hence

Ry + Cy(sI — A)"'Ry(—sI — AT)"IcT
= [I, + Ca(sI — A)" L] R3[I, + Co(sI — A)~1L]"
Kalman filter identity.
Compare previous lecture for the dual result (RDF)

If R12 = 0 then Kalman loop gain Ca(sI — A)~!L has same nice
robustness as K (sI — A)™1Bg has when @12 = 0
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Influence of an observer

—> Process

T— Kalman Filter

Loop gain at 1) is G1 = K(sI — A)"1Bg but at 2)
Gy = K(.S‘I — A+ BoK + LCZ)_ILCQ(SI = A)_lBg (if Dog = 0)
Examples show one may loose all robustness

What happens if L — oo (fast Kalman filter)?
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LQG/LTR 1

Loop Transfer Recovery
Want to make G9 as robust as G
References:
@ Doyle and Stein, AC79, p. 607-611
@ Doyle and Stein, AC81, p. 4-16
First LTR-method: Use fast (in a special way) observer
Sacrifice “noise optimality”
Almost like using an inverse for reconstruction

Not applicable if RHPL Zeros
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LQG/LTR 1

First LTR-method: Add fictious input noise :
R{:=R;+ quBg
For square, minimum phase systems this gives L — oo and

lim Grgg(s)G(s) = K(sI — A)™'By
q—00

Easy to try this idea, doesn’t always lead to good designs.
Usually improves the robustness margins.
Dont let g go all the way to co.

Same problem as with all designs with fast observers
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LQG/LTR 2

Second LTR-method: Punish more in output direction

Q1 := Q1 +qC]Cs,
(ie use “cheap control”)

Makes loop gain approach
lim G(S)GLQ(;(S) = CQ(SI - A)_lL
q—00

ie the Kalman filter loop gain

Same problem as with all “cheap control” designs
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LTR1 polynomial interpretation, SISO

System
_ B(s)
— 1 =
Cz(sl A) BQ A(s)
Disturbance influence
P By (s)
I—A)'B, =2
SRR

and R1=BUB$, Ry=1
Kalman filter identity
1 + C(sI—A)'Ry(—sI—AT)"ICT
= [1+C(sI—A) L] [1+C(—sI — A)'L]"
A(s)A(=s) + Bu(s)Bu(—s) = [A(s)+ L(s)] [A(—s) + L(—s)]
Ao(s)Ao(—s)
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LTR1 polynomial interpration, SISO

LTR-modification: RTOd = R +¢>BBT gives

C(sI — A)1R7od(—s1 — AT)~1CT
N B,(s)B,(—s) + B(s)q?B(—s)
A(s)A(—s)

A(s)A(—s) + By(s)B,(—s)+ B(s)¢>B(—s)
= [A() +L%s)] [A(=s) + L™(=s)
= APY(s)A7 (—s)

Bo Bernhardsson, K. J. Astrom Control System Design - LQG Part 2



LTR1 polynomial interpration, SISO

Now for very large q
Ap*Y(s) Ay (=s) ~ (=s")" + B(s)q” B(~s)
gives (according to root-locus discussion) if B(s) stable
A% (s) ~ B(s)Ar(s),  Ar(s)Ax(=s) = b5*((=s)* +¢°)

where k = degA(s) — degB(s).
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LTR1 polynomial interpration, SISO

If we write the LQG controlleras U = — 1‘28 Y we want to show that
looptransfer in LQG
“ S B(s) S(s)
C(sI — A)"'BK(sI — A+ BK + LC)"'L =: )
(s ) (s -+ + LC) A() B(s)

approaches the loop transfer in LQ
K(s)
A(s)

K(sI—A)"'B=:
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LTR1 polynomial interpration, SISO

Closed loop polynomial is
Ac(s)A7"%(s) = A()R(s) + B(s)S(s)
and after some thought (for fixed s as g — ©0)
R(s) ~ B(s)Ar(s), S() ~ 5 [Ac(s) — A = ;0K (s)
so the loop transfer is now

B(s) S(s) _ B(s) g K(s)  K(s)

A(s) R(s) ~ A(s) boAx(s) B(s)  A(s)

~1

and we have the nice LQR-robustness over most frequencies

Bo Bernhardsson, K. J. Astrom Control System Design - LQG Part 2



Lecture - LQG Design

@ What do the “technical conditions” mean?
@ Introducing integral action, etc
@ Loop Transfer Recovery (LTR)

@ Examples
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LTR Example Doyle-Stein, AC-79

s+ 2

S (s+1)(s+3)
A =1[-4 -3 ; 10];
B = [1;0];
Bv = [-61;35];
C =1[1 2];
D =0;
Ql = 80*[1 sqrt(35)]’*[1 sqrt(35)];
Q2 = 1;
R1 = Bv*Bv’+q*B*B’;
R2 = 1;
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Doyle-Stein, AC-79 Results

Nyquist plot

5 Controller Gain q=0(blue),1000(red),10000(greer 3

10°

10tk

Better robustness obtained, with low extra cost (red)

Code available at home page: Iqg3.m
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Aircraft Design Example

Vertical-plane aircraft dynamics, from Maciejowski Ch 5.8

Inputs

@ Spoiler angle (tenths of degree)
@ Forward acceleration (m/s2)

@ Elevator angle (tenths of degree)
States

Altitude (m)

Forward speed (m/s)
Pitch angle (degrees)
Pitch rate (deg/s)

¢ © © ¢ ¢

Vertical speed (m/s)
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Aircraft Design Example

A=[0 0 1.1320 0 -1.0000;
® -0.0538 -0.1712 0 0.0705;
0 0 0 1.0000 0;
0 0.0485 0 -0.8556 -1.0130;
0 -0.2909 0 1.0532 -0.6859];
B=[ 0 0 0;
-0.1200 1.0000 0;
0 0 0;
4.4190 ® -1.6650;
1.5750 0 -0.0732];
Cc=[1 0 0 0;
0 1 0 0 0;
0 0 1 0 071;
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Aircraft LTR Design

Wanted:

@ bandwidth of 10 rad/s: o (7'(i10)) = —3dB
@ integral action and reference tracking

@ well-damped responses

Will use LTR2, gives loop gain approaching Ca(sI — A)~'L
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Aircraft LTR Design

Design performed in the following steps

@ Start to design Kalman filter, Guess: R1 = Bng, Ry =1
@ Introduce integrators w = H%v

© v colored noise: Ry = Bo(I + 9xxT)32 with clever x

@ Increase bandwidth, R; := 100R

Q Trim S(iw) at 5.5 rad/s

@ LTR2, cheap control, p = 10~%

Code available at home page: mac58.m
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Gain of Co(sI — A)™'L,R; = ByBY, Ry =1

Singular values of C(sI-A)*(-1)L, R1=BB TR2=1

80

Singular Values (dB)

a0 i i i i
107 10 10 10° 10* 10°
Frequency (rad/sec)

Need to introduce integral action

Extend system with integrators at input
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Extended system

Introduce an integrator model for the input noise

1

w = s+ 10_4 131)
Aw=-0.0001*eye(3) ; Bw=eye(3) ;Cw=eye(3) ;Dw=zeros(3);
Aa=[ A B1*Cw;
zeros(3,5) Aw];
Ba=[ B; zeros(3)];
Ca=[C zeros(3)];
Da=zeros(3);
Bla=[B1*Dw; Bw 1;
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Principal Gains of C,(s] — A,)"'L,

Kalman filter loop gain for extended system

Extended with integrators

80

Singular Values (dB)

40 i i i i
10 10 10 10 10 10
Frequency (rad/sec)

Would like to increse the lower singular value for w = 1073
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Shaping Gains of C,(s] — A,) 'L,

Spectral factorisation identity if Ro = I

[I+Cu(sI —A)IL[..]" = G(s)R1GT (—s) + I
Select a frequency wg and compute the SVD
. 1/2 2 "
G(jwo)Ry” =ULV* =) g,
i=1

Now changing
1/2

R}/2 =Ry (I + aw;v;)

gives

m
Gjwo)RY*(I + awp}) = Y v} + (1 + e)oyuv)
i#]

One specific singular value of I + Cy(sI — Aa)_lLa has been moved
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ut fvg : 1+ Yxx* where x is the smallest singular vector direction
for C (]0 0017 — A,)~1By, (think)

s=0.001%1;
Gf=Ca*inv(s*eye(size(Aa))-Aa)*Bla;
[u3,s3,v3]=svd(Gf);

v3real=real (v3(:,3)); % real approximation
Rlsqrt=eye(3)+9*v3real*v3real’; % alfa=9, cause we want to change the gain
R1=Rlsqrt*Rlsqrt’; % of sigma_smallest with a factor 10

Changed R1 to increase lowest singular value

10 10 10
Frequency (radisec)

Need to increase bandwidth to 10rad/s
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Further trimming R,

Find factor by trial and error, gives R := 100R4

R1=100*R1 to increase bandwidh to 10rad/s

Singular Values (dB)

10 10 10
Frequency (rad/sec)

Lets have a look on the output sensitivity and complementary sensitivity
S =[I,+Cu(s] — Ay) 'Ly tand T =1, - S
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Sensitivity and complementary sensitivity with L4
10 T

10 10 10

3-dB bandwidth for S around 2.5-5.5rad/s
3-dB bandwidth for T' around 6.5-12 rad/s

Lets put all singular values of S = —3dB at 5.25rad/s
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Improved S

Do a singular value decomposition of

C.(j5.25I — A)™'B; =UXV*
where B1 B} = R with the new R
Change R; to get equal gain at 5.25 rad/s

Gf5=Ca*inv(5.225*i*eye(size(Aa))-Aa)*Bla*Rlsqrt;

[u5,s5,v5]=svd(G£5) ;

% Principal gains of the return difference with the current de

Ff=svd(eye(3)+Ca*inv(5.225*%i*eye(size(Aa))-Aa)*L4);

% We want these to be sqrt(2)*[1 1 1]’.

% Principal gains of Gf is given by

Gfsv=sqrt(Ff.22-1);

% and Ff=sqrt(2)*[1 1 1]’ is equivalent to Gf=[1 1 1]’, so

alfa=[1 1 1]’./Gfsv-ones(3,1);

Rlsqrt=10*R1sqrt*(eye(3)+alfa(l)*real (v5(:,1))*real (v5(:,1))
(eye(3)+alfa(2)*real (v5(:,2))*real(v5(:,2))’)*...
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Sensitivity and complementary sensitivity with L5

10

S(5.25) ~ -3dB in all three directions, o (7'(10)) ~ —3dB.

Let's use this Kalman filter gain L5 !
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Loop Gain L(s) = Cy(sI — A)~Ls

sigma(ss(Aa,L5,Ca,Da),wv);

Open-loop princ. gains with filter gain L5

80

Singular Values (dB)
N
5

—20}

a0 i i i i
10° 10 10 10° 10 10
Frequency (rad/sec)
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LTR recovery step p = 102, 10~*

Use Q1 = C1Cq, @2 = pI (and Q12 = 0)
Try p = 1072, 10~*
GGLqc (blue) vs K(sI — A)~1B (green)

rho =0.0001

AR
XN\

\\\\ \\\ \

10 o 10 o
Frequency (rad/sec) Frequency (radisec)

Need more LTR
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LTR recovery step p = p

Try p =1075, 1078

rho = 1e-06 rho = 1e-08
R \ ;
N\
\
\\ \
AN \
<\
\N
E E
) \ )
X
eeeeeeee y (radisec) Frequency (radisec)

p= 107% seems ok (Maciejowski prefers p= 1078
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Result with p = 10~

Final S and T, rho=1e-06 Closed-loop y1(blue), y2(red), y3(green)
10 T 2 T T T T T

Quite good decoupling
o(T) ~2
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Result with p = 10~

Steps in

@ altitude 1 meter (left)
o forward speed 1 m/s (middle)

@ pitch angle 1 degree (right)

Closed-loop u1(blue), u2(red), u3(green)
Closed-loop ul(blue), u2(red), u3(green)

Closed-loop ul(blue), u2(red), u3(green)

oSN y

-150]

-200|

Quite large control signals (20 deg elevator angle)
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Controller Gain, with p = 1075

Controller Gain

Singular Values (d8)

10 10 0
Frequency (rad/sec)

Quite high controller gains

K=[-598.04 -108.80 764.46 11.40 25.68 1 0O ©0;
-66.75 994.00 82.07 1.286 3.04 0 1 0;
-798.67 -2.364 -666.35 -24.90 56.43 0 0 1]
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Gang of Four, (I + CP)"'C and P(I + CP)™!

(+CP(-1)C P(I+CP)\(-1)

Singular Values (dB)

10 10

‘ o o 10 10
Frequency (radisec) Frequency (rad/sec)

To really evaluate if this is a satisfactory design requires more domain

knowledge

Hopefully a good initial design
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LQG is a useful design method that extends well to MIMO

Can handle joint minimization of several criteria, e.g. the GangOfFour, and
use model knowledge of disturbances

It can be hard to find weighting matrices achieving what you want

Extending the system, e.g. with integrators or other dynamic weights might
be needed

Loop Transfer Recovery can be helpful to improve robustness, but dont
overdo it
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