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Introduction

A powerful classic design method

Electronic Amplifiers (Bode, Nyquist, Nichols, Horowitz)

Command signal following

Robustness to gain variations, phase margin ϕm

Notions of minimum and non-minimum phase

Bode Network Analysis and Feedback Amplifier Design 1945

Servomechanism theory

Nichols chart

James Nichols Phillips Theory of Servomechanisms 1947

Horowitz (see QFT Lecture)

Robust design of SISO systems for specified process variations

2DOF, cost of feedback, QFT

Horowitz Quantitative Feedback Design Theory - QFT 1993

H∞ - Loopshaping (see H∞ Lecture)

Design of robust controllers with high robustness

Mc Farlane Glover Robust Controller Design Using Normalized

Coprime Factor Plant Descriptions 1989
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Harry Nyquist 1889-1976

From farm life in Nilsby Värmland to Bell Labs

Dreaming to be a teacher

Emigrated 1907

High school teacher 1912

MS EE U North Dakota 1914

PhD Physics Yale 1917

Bell Labs 1917

Key contributions

Johnson-Nyquist noise

The Nyquist frequency 1932

Nyquist’s stability theorem
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Hendrik Bode 1905-1982

Born Madison Wisconsin

Child protégé, father prof at UIUC,

finished high school at 14

Too young to enter UIUC

Ohio State BA 1924, MA 1926 (Math)

Bell Labs 1929

Network theory

Missile systems

Information theory

PhD Physics Columbia 1936

Gordon McKay Prof of Systems Engineering at Harvard 1967

(Bryson and Brockett held this chair later)
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Bode on Process Control and Electronic Amplifiers

The two fields are radically different in character and emphasis. ... The

fields also differ radically in their mathematical flavor. The typical

regulator system can frequently be described, in essentials, by

differential equations by no more than perhaps the second, third or

fourth order. On the other hand, the system is usually highly nonlinear,

so that even at this level of complexity the difficulties of analysis may

be very great. ... As a matter of idle, curiosity, I once counted to find

out what the order of the set of equations in an amplifier I had just

designed would have been, if I had worked with the differential

equations directly. It turned out to be 55

Bode Feedback - The History of and Idea 1960
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Nathaniel Nichols 1914 - 1997

B.S. in chemistry in 1936 from Central

Michigan University,

M.S. in physics from the University of

Michigan in 1937

Taylor Instruments 1937-1946

MIT Radiation Laboratory Servo Group

leader 1942-46

Taylor Instrument Company Director of

research 1946-50

Aerospace Corporation, San Bernadino, Director of the sensing

and information division

http://ethw.org/Archives:Conversations_with_the_Elders_-_Nathaniel_Nichols

Start part 1 at Taylor: 26 min, at MIT:36 min
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Isaac Horowitz 1920 - 2005
B.Sc. Physics and Mathematics

University of Manitoba 1944.

B.Sc. Electrical Engineering MIT 1948

Israel Defence Forces 1950-51

M.E.E. and D.E.E. Brooklyn Poly

1951-56 (PhD supervisor Truxal who

was supervised by Guillemin)

Prof Brooklyn Poly 1956-58

Hughes Research Lab 1958-1966

EE City University of New York 1966-67

University of Colorado 1967-1973

Weizmann Institute 1969-1985

EE UC Davis 1985-91

Air Force Institute of Technology 1983-92
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Horowitz on Feedback

Horowitz IEEE CSM 4 (1984) 22-23

It is amazing how many are unaware that the primary reason for

feedback in control is uncertainty. ...

And why bother with listing all the states if only one could actually be

measured and used for feedback? If indeed there were several

available, their importance in feedback was their ability to drastically

reduce the effect of sensor noise, which was very transpared in the

input-output frequency response formulation and terribly obscure in

the state-variable form. For these reasons, I stayed with the

input-output description.
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Important Ideas and Theory

Concepts

Architecture with two degrees of freedom

Effect and cost of feedback

Feedforward and system inversion

The Gangs of Four and Seven

Nyquist, Hall, Bode and Nichols plots

Notions of minimum and non-minimum phase

Theory

Bode’s relations

Bode’s phase area formula

Fundamental limitations

Crossover frequency inequality

Tools

Bode and Nichols charts, lead, lag and notch filters
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The Nyquist Plot

Strongly intuitive

Stability and Robustness

Stability margins ϕm, gm,

sm = 1/Ms

Frequencies ωms, ωgc, ωpc

Disturbance attenuation

Circles around −1, ωsc

Re L(iω)

Im L(iω)

−1

ϕm

sm

−1/gm

Process variations

Easy to represent in the Nyquist plot

Parameters sweep and level curves of |T (iω)|
Measurement noise not easily visible

Command signal response

Level curves of complementary sensitivity function

Bode plot similar but easier to use for design because its wider

frequency range
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Impact of the Nyquist Theorem at ASEA

Free translation from seminar by Erik Persson ABB in Lund 1970.

We had designed controllers by making simplified models, applying

intuition and analyzing stability by solving the characteristic equation.

(At that time, around 1950, solving the characteristic equation with a

mechanical calculator was itself an ordeal.) If the system was unstable

we were at a loss, we did not know how to modify the controller to

make the system stable. The Nyquist theorem was a revolution for us.

By drawing the Nyquist curve we got a very effective way to design the

system because we know the frequency range which was critical and

we got a good feel for how the controller should be modified to make

the system stable. We could either add a compensator or we could

use an extra sensor.

Why did it take 18 years? Nyquist’s paper was published 1932!
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Example: ASEA Depth Control of Submarine

Toolchain: measure frequency response design by loopshaping

Fearless experimentation

Generation of sine waves and measurement

Speed dependence
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Example: ASEA Multivariable Design
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Loop Shaping Design

Determine transfer function from experiments or physics

Translate specifications to requirements on the loop transfer

function L = PC

Important parameters

Gain crossover frequency ωgc and slope ngc at crossover

Low frequency slope of loop transfer function n
High frequency roll off

Watch out for fundamental limitations

The controller is given by C = Ldesired/P

Design can also be done recursively

Lag compensation

Lead compensation

Notch filters
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Requirements

Stablity and robustness

Gain margin gm, phase margin ϕm, maximum sensitivity Ms

Stability for large process variations:
|∆P |
|P | <

|1 + P C|
|P C| ,

Load disturbance attenuation
Ycl(s)

Yol(s)
=

1

1 + P C
Can be visualized in Hall and Nichols charts

Measurement Noise

− U(s)

N(s)
=

C

1 + P C

Command signal following (system with error feedback)

T =
P C

1 + P C
can be visualized in Hall and Nichols charts

Fix shape with feedforward F

How are these quantities represented in loop shaping when we

typically explore Bode, Nyquist or Nichols plots?
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The Bode Plot

Stability and Robustness

Gain and phase margins gm, ϕm, delay margins

Frequencies ωgc, ωpc

Disturbance attenuation

Sensitivity function S =
1

1 + P C
P/(1 + P C) ≈ 1/C for low frequencies

Process variations

Can be represented by parameter sweep

Measurement noise

Visible if process transfer function is also plotted

Useful to complement with gain curves of GoF

Command signal response

Level curves of T in Nichols plot

Wide frequency range
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Physical Interpretations of the Bode Plot

Logarithmic scales gives an overview of the behavior over wide

frequency and amplitude ranges

Piece-wise linear approximations admit good physical

interpretations, observe units and scales
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Low frequencies GxF (s) ≈ 1/k, the spring line, system behaves

like a spring for low frequency excitation

High frequencies GxF (s) ≈ 1/(ms2), the mass line,, system

behaves like a mass for high frequency excitation
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Bode Plot of Loop Transfer Function

A Bode plot of the loop transfer function P (s)C(s) gives a broad

characterization of the feedback system
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Notice relations between the frequencie ωgc ≈ ωsc ≈ ωbw

Requirements above ωgc

Bo Bernhardsson and Karl Johan Åström Loop Shaping



Some Interesting Frequencies

n

ωsc

ωgc

ωpc

ωms

ωbw
Re Gl(iω)

Im Gl(iω)

n

ωsc

ωgc

ωpc

ωms

ωbw

Re Gl(iω)

Im Gl(iω)

The frequencies ωgc and ωsc are close

Their relative order depends on the phase margin (borderline

case ϕm = 60◦)
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Hall and Nichols Chart
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Hall is a Nyquist plot with level curves of gain and phase for

the complementary sensitivity function T . Nichols=log Hall.

Both make is possible to judge T from a plot of PC
Conformality of gain and phase curves depend on scales

The Nichols chart covers a wide frequency range

The Robustness Valley Re L(iω) = −1/2 dashed
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Finding a Suitable Loop Transfer Function

Process uncertainty

Add process uncertainty to the process transfer function

Perform the design for the worst case (more in QFT)

Disturbance attenuation

Investigate requirements pick ωgc and slope that satisfies the

requirements

Robustness

Shape the loop transfer function around ωgc to give sufficient

phase margin

Add high frequency roll-off

Measurement noise

Not visible in L but can be estimated if we also plot P
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An Example

Translate requirements on tracking error and robustness to demands

on the Bode plot for the radial servo of a CD player.

From Nakajima et al Compact Disc Technology, Ohmsha 1992, page 134

Major disturbance caused by eccentricity about 70µm, tracking

requirements 0.1µm, requires gain of 700, the RPM varies because of

constant velocity read out (1.2-1.4 m/s) around 10 Hz.
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Bode on Loopshaping

Bode Network Analysis and Feedback Amplifier Design p 454

The essential feature is that the gain around the feedback loop be reduced

from the large value which it has in the useful frequency band to zero dB or

less at some higher frequency without producing an accompanying phase

shift larger than some prescribed amount. ...

If it were not for the phase restriction it would be desirable on engineering

grounds to reduce the gain very rapidly. The more rapidly the feedback

vanishes for example, the narrower we need make the region in which active

design attention is required to prevent singing. ...

Moreover it is evidently desirable to secure a loop cut-off as soon as possible

to avoid the difficulties and uncertainties of design which parasitic elements

in the circuit introduce at high frequencies.

But the analysis in Chapter XIV (Bode’s relations) shows that the phase shift

is broadly proportional to the rate at which the gain changes. ... A phase

margin of 30◦ correspond to a slope of -5/3.
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Bode’s Relations between Gain and Phase

While no unique relation between attenuation and phase can be stated

for a general circuit, a unique relation does exist between any given

loss characteristic and the minimum phase shift which must be

associated with it.

arg G(iω0) =
2ω0

π

∫ ∞

0

log |G(iω)| − log |G(iω0)|
ω2 − ω2

0

dω

=
1

π

∫ ∞

0

d log |G(iω)|
d log ω

log
∣

∣

∣

ω + ω0

ω − ω0

∣

∣

∣dω ≈ π

2

d log |G(iω)|
d log ω

log |G(iω)|
log |G(iω0)| = −2ω2

0

π

∫ ∞

0

ω−1 arg G(iω) − ω−1
0 arg G(iω0)

ω2 − ω2
0

dω

= −2ω2
0

π

∫ ∞

0

d
(

ω−1 arg G(iω)
)

dω
log

∣

∣

∣

ω + ω0

ω − ω0

∣

∣

∣dω

Proven by contour integration
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The Weighting Function

f
( ω

ω0

)

=
2

π2
log

|ω + ω0|
|ω − ω0|
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Do Nonlinearities Help?

Can you beat Bode’s relations by nonlinear compensators

Find a compensator that gives phase advance with less gain than

given by Bode’s relations

The Clegg integrator has the describing function

N(iω) = 4
πω − i 1

w . The gain is 1.62/ω and the phaselag is only

38◦. Compare with integrator (J. C. Clegg A nonlinear Integrator

for Servomechanisms. Trans. AIEE, part II, 77(1958)41-42)
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Loop Shaping for Gain Variations

The repeater problem

Large gain variations in vacuum tube

amplifiers give distorsion

The loop transfer function

L(s) =
( s

ωgc

)n

gives a phase margin that is invariant to gain

variations.

ωmin

ωmax

The slope n = −1.5 gives the phase margin ϕm = 45◦.

Horowitz extended Bode’s ideas to deal with arbitrary plant variations

not just gain variations in the QFT method.
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Trade-offs
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Blue curve slope n = −5/3 phase margin ϕm = 30◦

Red curve slope n = −4/3 phase margin ϕm = 60◦

Making the curve steeper reduces the frequency range where

compensation is required but the phase margin is smaller
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A Fractional PID controller - A Current Fad

Consider the process

P (s) =
1

s(s + 1)

Find a controller that gives L(s) = s−1.5, hence

C(s) =
L(s)

P (s)
=

s(s + 1)

s
√

s
=

√
s +

1√
s

A controller with fractional transfer function. To implement it we

approximate by a rational transfer function

Ĉ(s) = k
(s + 1/16)(s + 1/4)(s + 1)(s + 4)(s + 16)

(s + 1/32)(s + 1/8)(s + 1/2)(s + 2)(s + 8)(s + 32)

High controller order gives robustness
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A Fractional Transfer Function
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The phase margin changes only by 5◦ when the process gain varies in

the range 0.03-30! Horowitz QFT is a generalization.
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Time Responses

P (s) =
k

s(s + 1)
, L(s) =

k

s
√

s
C =

√
s +

1

s
√

s
, k = 1, 5, 25,

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

t

y

Notice signal shape independent in spite of 25 to 1 gain variations
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Fractional System Gain Curves GOF
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Requirements

Large signal behavior

Level and rate limitations in actuators

Small signal behavior

Sensor noise

Resolution of AD and DA converters

Friction

Dynamics

Minimum phase dynamics do not give limitations

The essential limitation on loopshaping for systems with minimum

phase dynamics are due to actuation power, measurement noise and

model uncertainty.
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Controllers for Minimum Phase Systems

The controller transfer function is given by

C(s) =
Ldesired(s)

P (s)
, |C(iωgc)| =

1

|P (iωgc)|

Since |P (iω)| typically decays for large frequencies, large ωgc

requires high controller gain. The gain of C(s) may also increase after

ωgc if phase advance is required. The achievable gain crossover

frequency is limited by

Actuation power and limitations

Sensor noise

Process variations and uncertainty

One way to capture this quantitatively is to determine the largest high

frequency gain of the controller as a function of the gain crossover

frequency ωgc. High gain is a cost of feedback (phase advance).
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Gain of a Simple Lead Networks

Gn(s) =

(

s + a

s/ n
√

k + a

)n

, G∞(s) = k
s

s+a

Phase lead: ϕn = n arctan
n
√

k − 1

2 2n
√

k
, ϕ∞ =

1

2
log k,

G∞(s) = e
2ϕs

s+a

Maximum gain for a given phase lead ϕ:

kn =
(

1 + 2 tan2 ϕ
n + 2 tan ϕ

n

√

1 + tan2 ϕ
n

)n
, k∞ = e2ϕ

Phase lead n=2 n=4 n=6 n=8 n=∞
90◦ 34 25 24 24 23

180◦ - 1150 730 630 540

225◦ - 14000 4800 3300 2600

Same phase lead with significantly less gain if order is high!

High order controllers can be useful
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Lead Networks of Order 2, 3 and ∞
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Increasing the order reduces the gain significantly

without reducing the width of the peak too much
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Bode’s Phase Area Formula

Let G(s) be a transfer function with no poles and zeros in the right half

plane. Assume that lims→∞ G(s) = G∞. Then

log
G∞

G(0)
=

2

π

∫ ∞

0
arg G(iω)

dω

ω
=

2

π

∫ ∞

−∞

arg G(iω)d log ω

The gain K required to obtain a given phase lead ϕ is an exponential

function of the area under the phase curve in the Bode plot

k = e4cϕ0/π = e2γϕ0

γ =
2c

π
  

( )

ϕ o

        
  

arg G(iω)

ccc
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Proof

Integrate the function

log G(s)/G(∞)

s

around the contour, arg G(iω)/ω even fcn

0 =

∫ 0

−∞

(

log
|G(ω)|
|G(∞)|+i arg

G(ω)

G(∞)

)dω

ω
+

γ

iR

Im s

Re s

Γ

ir

∫ −∞

0

(

log
|G(ω)|
|G(∞)| + i arg

G(ω)

G(∞)

)

dω

ω
+ iπ log

|G(0)|
|G(∞)|

Hence

log
|G(0)|
|G(∞)| =

2

π

∫ ∞

0
arg G(iω) d log ω
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Estimating High Frequency Controller Gain 1

Required phase lead at the crossover frequency

ϕl = max(0, −π + ϕm − arg P (iωgc))

Bode’s phase area formula gives a gain increase of Kϕ = e2γϕl

Cross-over condition: |P (iωgc)C(iωgc)| = 1

log |C|

ωgc

log
√

Kϕ

log
√

Kϕ

log ω

Kc = max
ω≥ωgc

|C(iω)| =

√

Kϕ

|P (iωgc)| =
max(1, eγ(−π+ϕm−arg P (iωgc)))

|P (iωgc)| =
eγϕl

|P (iωgc)|
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Estimating High Frequency Controller Gain 2

C

1 + PC
= CS ≈ C

The largest high frequency gain of the controller is approximately given

by (γ ≈ 1)

Kc = max
ω≥ωgc

|C(iω)| =
eγϕl

|P (iωgc)|
=

max(1, eγ(−π+ϕm−arg P (iωgc)))

|P (iωgc)|

Notice that Kc only depends on the process

Compensation for process gain 1/|P (iωgc)|
Compensation for phase lag: eγϕl = eγ(−π+ϕm−arg P (iωgc))

The largest allowable gain is determined by sensor noise and

resolution and saturation levels of the actuator. Results also hold for

NMP systems but there are other limitations for such systems
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Example - Two and Eight Lags P = (s + 1)−n

Kc =
1

|P (iωgc)|
eγ(−π+ϕm−arg P (iωgc)) =

(

1+ω2
gc

)n/2
eγ(n arctan ωgc−π+ϕm)

γ = 1, ϕm =
π

4
, n = 2, n = 8

ωgc 10 20 50 100 200

Kc 181.5 796 5.3 × 103 2.2 × 104 8.7 × 104

ϕl 33.6 39.3 42.7 43.8 44.4

− arg P (iωgc) 168 174 178 179 179

ωgc 0.5 1.0 1.2 1.4 1.5

Kc 9.4 812 3.7 × 103 1.5 × 104 2.7 × 104

ϕl 78 225 266 300 315

− arg P (iωgc) 212 360 401 435 450
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Summary of Non-minimum Phase Systems

Non-minimum phase systems are easy to control. High performance

can be achieved by using high controller gains. The main limitations

are given by actuation power, sensor noise and model uncertainty.

PC

1 + PC
= T C =

T

P (1 − T )
=

L

P

The high frequency gain of the controller can be estimated by (γ ≈ 1)

Kc = max
ω≥ωgc

|C(iω)| =
eγϕl

|P (iωgc)|
=

eγ(−π+ϕm−arg P (iωgc))

|P (iωgc)|

Notice that Kc only depends on the process; two factors:

Compensation for process gain 1/|P (iωgc)|
Gain required for phase lead: eγ(−π+ϕm−arg P (iωgc))
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Requirements

Large signal behavior

Level and rate limitations in actuators

Small signal behavior

Sensor noise

Resolution of AD and DA converters

Friction

Dynamics

Non-minimum phase dynamics limit the achievable bandwidth

Non-minimum phase dynamics give severe limitations

Right half plane zeros

Right half plane poles (instabilities)

Time delays
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Non-minimum Phase Systems

Dynamics pose severe limitations on achievable performance for

systems with poles and zeros in the right half plane

Right half plane poles

Right half plane zeros

Time delays

Bode introduced the concept non-minimum phase to capture this. A

system is minimum phase system if all its poles and zeros are in the

left half plane.

Theme: Capture limitations due to NMP dynamics quantitatively
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Bode’s Relations between Gain and Phase

There is a unique relation between gain and phase for a transfer

function with no poles and zeros in the right half plane.

arg G(iω0) =
2ω0

π

∫ ∞

0

log |G(iω)| − log |G(iω0)|
ω2 − ω2

0

dω

=
1

π

∫ ∞

0

d log |G(iω)|
d log ω

log
∣

∣

∣

ω + ω0

ω − ω0

∣

∣

∣dω ≈ π

2

d log |G(iω)|
d log ω

log |G(iω)|
log |G(iω0)| = −2ω2

0

π

∫ ∞

0

ω−1 arg G(iω) − ω−1
0 arg G(iω0)

ω2 − ω2
0

dω

= −2ω2
0

π

∫ ∞

0

d
(

ω−1 arg G(iω)
)

dω
log

∣

∣

∣

ω + ω0

ω − ω0

∣

∣

∣dω

Transfer functions with poles and zeros in the right half plane have

larger phase lags for the same gain. Factor process transfer function

as

G(s) = Gmp(s)Gnmp(s), |Gnmp(iω)| = 1, ∠Gnmp(iω) < 0
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Normalized NMP Factors 1

Factor process transfer function as P (s) = Pmp(s)Pnmp(s),

|Pnmp(iω)| = 1 and Pnmp(iω) negative phase.

Right half plane zero z = 1
ωgc not too large

Pnmp(s) =
1 − s

1 + s

Time delay L = 2
ωgc not too large

Pnmp(s) = e−2s

Right half plane pole p = 1
ωgc must be large

Pnmp(s) =
s + 1

s − 1
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Normalized NMP Factors 2

Factor process transfer function as P (s) = Pmp(s)Pnmp(s),

|Pnmp(iω)| = 1 and Pnmp(iω) negative phase.

RHP pole zero pair z > p
OK if you pick ωgc properly

Pnmp(s) =
(5 − s)(s + 1/5)

(5 + s)(s − 1/5)

RHP pole-zero pair z < p
Impossible with stable C

Pnmp(s) =
(1/5 − s)(s + 5)

(1/5 + s)(s − 5)

RHP pole and time delay

OK if you pick ωgc properly

Pnmp(s) =
1 + s

1 − s
e−0.2s
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Examples of Pnmp

Factor process transfer function as P (s) = Pmp(s)Pnmp(s) such that
each non-minimum phase factor is all-pass and has negative phase

P (s) =
1 − s

(s + 2)(s + 3)
=

1

(s + 1)(s + 2)(s + 3)
×1 − s

1 + s
, Pnmp(s) =

1 − s

1 + s

P (s) =
s + 3

(s − 1))(s + 2)
=

s + 3

(s + 1)(s + 2)
× s + 1

s − 1
, Pnmp(s) =

s + 1

s − 1

P (s) =
1

s + 1
× e−s, Pnmp(s) = e−s

P (s) =
s − 1

(s − 2)(s + 3)
= − s + 1

(s + 2)(s + 3)
×1 − s

1 + s

s + 2

s − 2
, Pnmp =

1 − s

1 + s

s + 2

s − 2
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Bode Plots Should Look Like This
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The Phase-Crossover Inequality

Assume that the controller C has no poles and zeros in the RHP,

factor process transfer function as P (s) = Pmp(s)Pnmp(s) such that

|Pnmp(iω)| = 1 and Pnmp has negative phase. Requiring a phase

margin ϕm we get

arg L(iωgc) = arg Pnmp(iωgc) + arg Pmp(iωgc) + arg C(iωgc)

≥ −π + ϕm

Approximate arg (Pmp(iωgc)C(iωgc)) ≈ ngcπ/2 gives

arg Pnmp(iωgc) ≥ −ϕlagnmp

ϕlagnmp = π − ϕm + ngc
π

2

This inequality is called, the phase crossover inequality. Equality holds

if PmpC is Bode’s ideal loop transfer function, the expression is an

approximation for other designs if ngc is the slope of the gain curve at

the crossover frequency.
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Reasonable Values of ϕnmplag

Admissible phase lag of non-minimum phase factor Pnmp as a

function of the phase margin ϕm and the slope ngc (roll-off) at the gain

crossover frequency

30 40 50 60 70 80 90
0

20

40

60

80

100

ngc = −1.5

ngc = −1

ngc = −0.5

ϕm

ϕ
la

g
n

m
p

ϕm = π
6 , ngc = −1

2 give ϕlagnmp = 7π
12 = 1.83 (105◦)

ϕm = π
4 , ngc = −1

2 give ϕlagnmp = π
2 (90◦)

ϕm = π
3 , ngc = −1 give ϕlagnmp = π

6 = 0.52 (30◦)

ϕm = π
4 , ngc = −1.5 give ϕlagnmp = 0
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System with RHP Zero

Pnmp(s) =
z − s

z + s

Cross over frequency inequality

arg Pnmp(iωgc) = −2 arctan
ωgc

z
≥ −π + ϕm − ngc

π

2
= −ϕlagnmp

ωgc

z
≤ tan(

π

2
− ϕm

2
+ ngc

π

4
) = tan

ϕlagnmp

2

Compare with inequality for ωsc in Requirements Lecture

ωsc

z
<

Ms − 1

Ms
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c
/
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ϕlagnmp
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Water Turbine

Transfer function from valve opening to power, (T = time for water to

flow through penstock)

GP A =
P0

u0

1 − 2u0sT

1 + u0sT

A first principles physics model is available in kjå Reglerteori 1968 sid 75-76
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Drum Level Control

F F

L Drum

TurbineOil

Air

Feed

water

Steam valve

Raiser Down comer

The shrink and swell effect: steam valve opening to drum level
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System with Time Delay

Pnmp(s) = e−sT ≈ 1 − sT/2

1 + sT/2

Cross over frequency inequality

ωgcT ≤ π − ϕm + ngc
π

2
= ϕlagnmp

The simple rule of (ϕlagnmp = π/4) gives ωgcT ≤ π

4
= 0.8. Pade

approximation gives the zero at z = 1
2T using the inequality for RHP

zero gives similar result. Comp inequality in Requirements lecture

ωscT < 2
Ms − 1

Ms
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System with RHP Pole

Pnmp(s) =
s + p

s − p

Cross over frequency inequality

−2 arctan
p

ωgc
≥ −π + ϕm − ngc

π

2
= −ϕlagnmp

ωgc

p
≥ 1

tan ϕlagnmp/2

Compare with inequality for ωtc in Requirements lecture

ωtc

p
≥ Mt

Mt − 1
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System with complex RHP Zero

Pnmp =
(x + i y − s)(x − i y − s)

(x + i y + s)(x − i y + s)

ϕlagnmp = 2 arctan
y + ω

x
− 2 arctan

y − ω

x

= 2 arctan
2ωx

x2 + y2 − ω2
= 2 arctan

2ω|z|ζ
|z|2 − ω2
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Damping ratio ζ = 0.2 (dashed), 0.4, 0.6. 0.8 and 1.0, red dashed

curve single RHP zero. Small ζ easier to control.
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System with RHP Pole and Zero Pair

Pnmp(s) =
(z − s)(s + p)

(z + s)(s − p)
, Ms >

z + p

z − p

Cross over frequency inequality for z > p

−2 arctan
ωgc

z
−2 arctan

p

ωgc

≥ −ϕlagamp,
ωgc

z
+

p

ωgc

≤
(

1−p

z

)

tan
ϕlagamp

2

The smallest value of the left hand side is 2
√

p/z, which is achieved for

ωgc =
√

pz, hence ϕlagnmp = 2 arctan (2
√

pz/(z − p))

Plot of ϕlagnmp for
z

p
=2, 3, 5, 10, 20, 50 and Ms =3, 2, 1.5, 1.2, 1.1, 1.05

10-2 10-1 100 101 102
0

90

180

ωgc/
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n

m
p
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An Example

From Doyle, Francis Tannenbaum: Feedback Control Theory 1992.

P (s) =
s − 1

s2 + 0.5s − 0.5
, Pnmp =

(1 − s)(s + 0.5)

(1 + s)(s − 0.5)

Keel and Bhattacharyya Robust, Fragile or Optimal AC-42(1997)

1098-1105: In this paper we show by examples that optimum and robust

controllers, designed by the H2, H∞, L1 and µ formulations, can produce

extremely fragile controllers, in the sense that vanishingly small perturbations

of the coefficients of the designed controller destabilize the closed loop

system. The examples show that this fragility usually manifests itself as

extremely poor gain and phase margins of the closed loop system.

Pole at s = 0.5, zero at s = 1, ϕlagnmp = 2.46 (141◦),

Ms > (z + p)/(z − p) = 3,

ϕm ≈ 2 arcsin(1/(2Ms)) = 0.33 (19◦)

Hopeless to control robustly

You don’t need any more calculations
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Example - The X-29

Advanced experimental aircraft. Many design efforts with many

methods and high cost.

Requirements ϕm = 45◦ could not

be met. Here is why! Process has

RHP pole p = 6 and RHP zero z =
26. Non-minimum phase factor of

transfer function

Pnmp(s) =
(s + 26)(6 − s)

(s − 26)(6 + s)

The smallest phaselag ϕlagnmp = 2.46(141◦) of Pnmp is too large.

The zero pole ratio is z/p = 4.33 gives Ms > z+p
z−p = 1.6

ϕm ≈ 2 arcsin( 1
2Ms) = 0.64(36◦). Not possible to get a phase

margin of 45◦!
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Bicycle with Rear Wheel Steering

Richard Klein at UIUC has built several UnRidable Bicycles (URBs).

There are versions in Lund and UCSB.

Transfer function

P (s) =
amℓV0

bJ

−s +
V0

a

s2 − mgℓ

J

Pole at p =

√

mgℓ

J
≈ 3 rad/s

RHP zero at z =
V0

a

Pole independent of velocity but zero proportional to velocity. There is

a velocity such that z = p and the system is uncontrollable. The

system is difficult to control robustly if z/p is in the range of 0.25 to 4.
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RHP Pole and Time Delay

NMP part of process transfer function

Pnmp(s) =
s + p

s − p
e−sL, Ms > epL pL < 2

arg Pnmp(iωgc) = −2 arctan
p

ωgc
− ωgcL > −ϕlagnmp

ϕlagnmp = π − ϕm + ngc
π

2
Plot of ϕlagnmp for pL = 0.01, 0.02, 0.05, 0.1, 0.2, 0.7
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Stabilizing an Inverted Pendulum with Delay

Right half plane pole at

p =
√

g/ℓ

With a neural lag of 0.07 s and the

robustness condition pL < 0.3 we

find ℓ > 0.5.

A vision based system with sampling rate of 50 Hz (a time delay of

0.02 s) and pL < 0.3 shows that the pendulum can be robustly

stabilized if ℓ > 0.04 m.
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Dynamics Limitations for NMP Systems - Part 1

For controllers with no poles in the RHP we have

A RHP zero z gives an upper bound on the bandwidth:

ωgc

a
< tan

ϕlagnmp

2
,

ωsc

a
<

Ms − 1

Ms

ϕlagnmp = π − ϕm + ngc
π

2

A time delay L gives a upper bound on the bandwidth:

ωgcL < ϕlagnmp, ωscL < 2
Ms − 1

Ms

A RHP pole p gives a lower bound on the bandwidth:

ωgc

p
>

1

tan
ϕlagnmp

2

,
ωtc

p
>

Mt

Mt − 1
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Dynamics Limitations for NMP Systems - Part 2

For controllers with no poles in the RHP we have

RHP poles and zeros must be sufficiently separated with z > p

Ms >
z + p

z − p
, ϕlagnmp >

π

3
(60◦)

A process with a RHP poles zero pair with p > z cannot be

controlled robustly with a controller having no poles in the RHP

The product of a RHP pole and a time delay cannot be too large

Ms > epL, ϕlagnmp <
π

3
(60◦)

What about a controller with RHP poles?
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Dynamics Limitations - Ball Park Numbers

A RHP zero z: gives an upper bound to bandwidth:
ωgc

z
< 0.5

A double RHP zero:
ωgc

z
< 0.25

A time delay L gives an upper bound to bandwidth: ωgcL < 1

A RHP pole p gives a lower bound to bandwidth:
ωgc

p
> 2

A double RHP pole:
ωgc

p
> 4

A RHP pole zero pair requires:
z

p
> 4

These rules, which are easy to remember, give sensitivities Ms and

Mt around 2 and phase lags ϕlagnmp of the nonminimum phase factor

around 90◦.
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Back to Bode

10
-1

10
0

10
1

10
0

10
-1

10
0

10
1

-180

-135

-90

Performance

Robustness

Robustness and Performance
⇐ ωgc ⇒

Robustnss and noise attenuation

log ω
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∠
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Pick ωgc to achieve desired performance, subject to constraints

due to measurement noise and non-minimum phase dynamics

Add effects of modeling uncertainty (QFT)

Increase low frequency gain if necessary for tracking and add

high frequency roll-off for noise and robustness

Tweak behavior around crossover to obtain robustness (H∞

loopshaping)
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The Assessment Plot - Picking ωgc

The assessment plot is an attempt to give a gross overview of the

properties of a controller and to guide the selection of a suitable gain

crossover frequency. It has a gain curve Kc(ωgc) and two phase

curves arg P (iω) and arg Pnmp(iω)

Attenuation of disturbance captured by ωgc

Injection of measurement noise captured by the high frequency

gain of the controller Kc(ωgc)

Kc(ω) = max
ω≥ω

|C(iω)| =
max

(

1, eγ(−π+ϕm−arg P (iω))
)

|P (iω)|
Robustness limitations due to time delays and RHP poles and

zeros captured by conditions on the admissible phaselag of the

nonminimum phase factor 0.5 < ϕlagnmp < 1.5

ϕlagnmp(ω) = − arg Pnmp(iω) = π − ϕm + ngc
π

2

Controller complexity is captured by arg P (iωgc)
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Assessment Plot for e−√
s
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Assessesment Plot - Delay and Spread Lags
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Assessment Plot for P (s) = e−0.01s/(s2 − 100)

P (s) =
1

(s + 10)2

s + 10

s − 10
e−0.01s, Pnmp(s) =

s + 10

s − 10
e−0.01s
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Summary

A classic design method with focus on the Bode plot

The concepts of minimum and non-minimum phase

Fundamental limitations

Phase lag ϕlagnmp of non-minimum phase factor Pnmp cannot be

too large (20◦ − 60◦)

Maximum modulus theorem for S and T
The assumption that the controller has no RHP

The gain crossover frequency inequality

Rules of thumb based on approximate expressions

Assessment plots

Extensions

What replaced the Bode plot for multivariable systems?

The idea of zero directions

More complicated systems - oscillatory dynamics

Process variations QFT
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