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Linear Systems, 2019 - Lecture 2

Transition Matrix Properties

Time-varying change of coordinates

Periodic Systems

Floquet Decomposition

Time-varying Transfer Functions

Rugh, Chapter 5 [and Chapter 21]

Main news:

Properties of LTV systems

LTP systems
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Continuous Time-varying (LTV) Systems

For bounded A(t), the equation

ẋ(t) = A(t)x(t), x(t0) = x0

has a unique solution of the form

x(t) = Φ(t, t0)x0

The transition matrix Φ(t, t0) can be written as the infinite sum

Φ(t, t0) = I +
∫ t

t0
A(σ1)dσ1

+
∫ t

t0
A(σ1)

∫ σ1

t0
A(σ2)dσ2dσ1

+
∫ t

t0
A(σ1)

∫ σ1

t0
A(σ2)

∫ σ2

t0
A(σ3)dσ3dσ2dσ1

. . .
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Transition Matrix Φ(t, t0)

The unique solution of the equation

d

dt
X(t) = A(t)X(t)

X(t0) = I

is X(t) = Φ(t, t0).

Proof. Let x(t) = X(t)x0. Then

ẋ(t) = d

dt
X(t)x0 = A(t)X(t)x0 = A(t)x(t)

so

x(t) = Φ(t, t0)x0

Hence Φ(t, t0)x0 = X(t)x0 for every x0, so Φ(t, t0) = X(t)
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Nice Example: Scalar Time-variation

Consider

ẋ = Aa(t)x(t)

The transition matrix is

Φ(t, t0) = I +A

∫ t

t0
a(σ1)dσ1 +A2

∫ t

t0
a(σ1)

∫ σ1

t0
a(σ2)dσ2dσ1 + · · ·

=
∞∑
k=0

1
k!A

k
[∫ t

t0
a(σ)dσ

]k
= exp

(
A

∫ t

t0
a(σ)dσ

)
Second equality is nontrivial.

(Recall Two Tank Example with time-varying flow q(t))
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More general case: Commutating A(t)

If

A(t)
∫ t

t0
A(σ)dσ =

∫ t

t0
A(σ)dσA(t)

then

Φ(t, t0) = exp
{∫ t

t0
A(σ)dσ

}

Special case: A(t)A(τ) = A(τ)A(t) for all t, τ
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Example

If A(t) = a1(t)A1 + a2(t)A2 where A1 and A2 commute then

Φ(t, t0) = exp
{∫ t

t0
a1(t)A1 + a2(t)A2dt

}
= exp

{∫ t

t0
a1(t)dtA1

}
exp

{∫ t

t0
a2(t)dtA2

}
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Example

ẋ(t) =
[
1 cost
0 0

]
x(t)

x2(t) ≡ x2(τ)
ẋ1(t) = x1(t) + cost · x2(τ)

x1(t) = et−τx1(τ) +
∫ t

τ
et−σcosσdσ · x2(τ)

= et−τx1(τ) + 1
2
(
sint− cost− et−τ (sinτ − cosτ)

)
· x2(τ)

Φ(t, τ) =
[
et−τ 1

2
(
sint− cost− et−τ (sinτ − cosτ)

)
0 1

]

Sanity check: Φ(t, t) = I and d
dtΦ(t, τ)

∣∣∣
t=τ

=
[
1 cost
0 0

]
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Input-driven Continuous System

The equation

ẋ(t) = A(t)x(t) +B(t)u(t)
x(t0) = x0

has the unique solution

x(t) = Φ(t, t0)x0 +
∫ t

t0
Φ(t, σ)B(σ)u(σ)dσ

Proof: Differentiate!
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Properties of Φ(t, σ)

For any t, τ, σ, the transition matrix satisfies

Φ(t, τ) = Φ(t, σ)Φ(σ, τ) (semigroup property)
d

dt
Φ(t, σ) = A(t)Φ(t, σ)

d

dσ
Φ(t, σ) = −Φ(t, σ)A(σ)

Proof of first property: Let R(t) = Φ(t, σ)Φ(σ, τ). Then

d

dt
R(t) = A(t)R(t)

R(σ) = Φ(σ, τ)

so R(t) must be identical to Φ(t, τ)
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Properties of Φ(t, σ)

Proof of third property:

Φ(σ + h, σ) = I + hA(σ) + o(h) (why?)

Hence, using first property, we have

Φ(t, σ) = Φ(t, σ + h)(I + hA(σ) + o(h))

from which we get

1
h

(Φ(t, σ + h)− Φ(t, σ)) = −Φ(t, σ + h)A(σ) + o(1)

from which the result follows as h→ 0

d

dσ
Φ(t, σ) = −Φ(t, σ)A(σ)
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Inversion

The transition matrix Φ(t, t0) is invertible for any t, t0 and

Φ(t, t0)−1 = Φ(t0, t)

Proof. By the composition rule

Φ(t, t0)Φ(t0, t) = Φ(t0, t)Φ(t, t0) = Φ(t0, t0) = I
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Short summary: Properties of Φ(t, σ)

For any t, τ, σ, the transition matrix satisfies

Φ(t, t) = I

Φ(t, τ) = Φ(t, σ)Φ(σ, τ)
(Φ(t, σ))−1 = Φ(σ, t)
d

dt
Φ(t, σ) = A(t)Φ(t, σ)

d

dσ
Φ(t, σ) = −Φ(t, σ)A(σ)
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Change of Variables

Variable change x(t) = P (t)z(t) (with P (t) invertible) gives

ẋ(t) = A(t)x(t), x(t0) = x0 ⇐⇒
ż(t) =

[
P (t)−1A(t)P (t)− P (t)−1Ṗ (t)

]
z(t), z(t0) = P (t)−1x0

For the fundamental matrix this means that

ΦP−1AP−P−1Ṗ (t, t0) = P−1(t)ΦA(t, t0)P (t0)

Proof:

APz = Ax = ẋ = Ṗ z + P ż

z(t) = ΦP−1AP−P−1Ṗ (t, t0)z(t0)
z(t) = P−1(t)x(t) = P−1(t)ΦA(t, τ)P (t0)z(t0)
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Adjoint system

From d
dσΦA(t, σ) = −ΦA(t, σ)A(σ) follows that ΦT

A(t, σ) solves

d

dσ
Z(σ) = −AT (σ)Z(σ), Z(t) = I

This fact can be written as

Φ−AT (t, t0) = ΦT
A(t0, t)
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Discrete time - Definition of Φ(k, k0)

Define X(k) recursively as

X(k + 1) = A(k)X(k), k ≥ k0

X(k0) = I

Then Φ(k, k0) = X(k).

Remark: What about Φ(k, k0) when k < k0?

The example x(k + 1) = 0 · x(k) shows that x(k) might not be
uniquely determined by x(k0) for k < k0!

Difference between discrete and continuous time
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Properties of Φ(k, k0)

Φ(k + 1, j) = A(k)Φ(k, j), k ≥ j

Φ(k, j − 1) = Φ(k, j)A(j − 1), k ≥ j

Φ(k, i) = Φ(k, j)Φ(j, i), k ≥ j ≥ i

If the n× n matrix A(k) is invertible for each k, then Φ(k, j) is
invertible for each k ≥ j and Φ(j, k) can be defined as

Φ(j, k) = Φ(k, j)−1
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Change of Variables

Variable change x(k) = P (k)z(k) (with P (k) invertible) we get

x(k + 1) = A(k)x(k), x(k0) = x0 ⇐⇒
z(k + 1) =

[
P (k + 1)−1A(k)P (k)

]
z(k)

Hence we have

Φz(k, j) = P (k)−1Φx(k, j)P (j)
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Theorem by Abel-Jacobi-Liouville

Let A(t) be continuous. Then

det Φ(t, t0) = exp
(∫ t

t0
tr[A(σ)]dσ

)
Interpretation: Volume contraction

Proof: Let cij be the cofactor of entry φij

d

dt
detΦ(t, t0) =

∑
i,j

(
∂

∂φij
detΦ(t, t0)

)
φ̇ij(t, t0)

=
∑
i,j

cij(t, t0)φ̇ij(t, t0)

= tr
(
C(t, t0)T Φ̇(t, t0)

)
= tr

(
Φ(t, t0)C(t, t0)TA(t)

)
= tr ((detΦ(t, t0)I)A(t))
= trA(t) · detΦ(t, t0)
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Example - From Exam 2009

Is it possible to asymptotically stabilize the oscillative system

ẋ(t) =
[

0 1
−1 0

]
x+

[
0
1

]
u

y =
[
1 0

]
x

by time-varying output feedback

u(t) = −l(t)y(t)?
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Solution

The closed loop system becomes ẋ = Acx with

Ac =
[

0 1
−1− l(t) 0

]

By the Abel-Liouville theorem we have

det Φ(t, 0) = exp(t trAc) ≡ 1

The system can hence not be asymptotically stable, since an
asymptotically stable system must have Φ(t, 0)→ 0 as t→∞
[Why?].
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Example - LTV systems and Eigenvalues

Consider the time-varying system

ẋ = e−AtBeAtx (1)

Note that e−AtBeAt has the same eigenvalues as B

The coordinate change z(t) = eAtx(t) transforms the system to

ż = (A+B)z (2)
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Example - LTV Systems and Eigenvalues

Assume

A =
[
0 −1
1 0

]
Then with z(t) = eAtx(t) one has ‖z‖ = ‖x‖, so asymptotic stability
of (1) and (2) are equivalent (rotating coordinate transformation).

Proof: More generally if A(t) is skew-symmetric for all t, i.e.
AT +A = 0 then Q(t) = ΦA(t, 0) is orthogonal, i.e. satisfies
QTQ = I , since

d

dt
QTQ = QT (AT +A)Q = 0, Q(0) = I

Therefore zT z = xTQTQx = xTx.
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Example - LTV Systems and Eigenvalues

With the stable matrix

B =
[
−1 M
0 −1

]
it is easy to see that A+B is unstable for M > 2.

Hence system (1) above is an unstable time-varying system with
stable eigenvalues (equal to −1 for all t).
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Example -LTV Systems and Eigenvalues

With the unstable matrix

B =
[
−1 0
0 1/2

]

it is easy to see that A+B is stable.

Hence system (1) above is a stable LTV system having one unstable
eigenvalue for all t.

Exercise: Can you find a 2× 2 asymptotically stable LTV system with
both eigenvalues in the RHPL for all t?
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Linear Time Periodic (LTP) Systems

A linear system
ẋ(t) = A(t)x(t)

with
A(t+ T ) = A(t)

is said to be T-periodic.

The smallest such T is called the period of the system.

A state space system is called T-periodic if all matrices (A,B,C,D)
are T-periodic.

The following is the main result for periodic systems
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Floquet Decomposition

“Long-term trend + periodic fluctuations”

Let A(t) be bounded and T -periodic. Then for

ẋ(t) = A(t)x(t), x(t0) = x0

the transition matrix can be written

Φ(t, τ) = P (t)eR(t−τ)P (τ)−1

where R ∈ Cn×n is constant and P (t) ∈ Cn×n is differentiable,
invertible, and T -periodic.

The variable transformation x(t) = P (t)z(t) gives ż = Rz
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Proof

Since Φ(T, 0) is nonsingular, there exists a solution F ∈ Cn×n (in fact
infinitly many) to eF = Φ(T, 0). Choosing any such F, define
R = 1

T F , we then have

eRT = Φ(T, 0)

Define then P (t) by

P (t) = Φ(t, 0)e−Rt

We get

Φ(t, τ) = Φ(t, 0)Φ(τ, 0)−1 = P (t)eR(t−τ)P (τ)−1

P (t+ T ) = Φ(t+ T, 0)e−R(t+T )

= Φ(t+ T, T )Φ(T, 0)e−RT e−Rt

= Φ(t+ T, T )e−Rt

= Φ(t, 0)e−Rt

= P (t)
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Discrete Time Floquet Decomposition

Let A(k) be K-periodic. Then for

x(k + 1) = A(k)x(k), x(k0) = x0

the transition matrix can be written

Φ(k, j) = P (k)R(k−j)P (j)−1

where R ∈ Cn×n and P (k) is K-periodic.

With x(k) = P (k)z(k), this gives

z(k + 1) = Rz(k)
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2-periodic Example

A(k) =
[
(−1)k 0

0 1

]

R2 = Φ(2, 0) =
[
−1 0
0 1

]

R =
[
i 0
0 1

]

Note that R is not real-valued !
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Extra: Real Floquet Factors for LTP Systems

(not in Rugh)

It is always possible to obtain a real Floquet factorisation for a real
T-periodic system, by treating the system as having 2T-periodic
coefficients:

From the fact that Φ(2T, 0) = Φ(T, 0)2 it can be proved (use
Jordan-form) that there is a real matrix G such that

e2TG = Φ(2T, 0).

Then P (t) := Φ(t, 0)e−tG is real and can as before be seen to be
2T -periodic (but not necessarily T-periodic).

See Montagnier, P, et.al Real Floquet Factors of Linear Time-Periodic
Systems (Google it)
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LTI with sinusodal input - Resonances

Consider the equation

ẋ =
[
0 −1
1 0

]
x+

[
0

sint

]
x(0) = x0

Laplace transform:

x2(s) = C(sI −A)−1(Bu(s) + x0)

= s

(1 + s2)2 + 1
1 + s2

[
1 s

]
x0

x2(t) = t

2sint+
[
sint cost

]
x0

For what systems does periodic input give periodic solution?
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Periodic Solutions for LTI Systems

For A ∈ Rn×n and
ẋ(t) = Ax(t) + f(t)

one can prove that the following statements are equivalent:

(i) No eigenvalue of A has zero real part.

(ii) A unique T -periodic solution exists for every T -periodic f .
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Periodic Solutions for LTP Systems

Theorem 5.15

Let A(t) be continuous and T -periodic and

ẋ(t) = A(t)x(t) + f(t)

The following statements are then equivalent:

(i) No nontrivial T -periodic solution exists for f ≡ 0.

(ii) A unique T -periodic solution exists for every T -periodic f .
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Time-varying Transfer Functions

(not in Rugh)

Transfer function analysis is quite involved for time-varying linear
systems

y(t) =
∫
h(t, τ)u(τ)d τ

For LTI systems, h(t, τ) = h(t− τ, 0) and

Y (jω) = H(jω)U(jω), H(jω) =
∫
h(r, 0)e−jωrdr

What can be said for general LTV systems?

And for LTP systems, where h(t+ T, τ + T ) = h(t, τ) ?
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Transfer Functions for LTV Systems

Define as usual

U(jω) =
∫
e−jωτu(τ)dτ ; u(t) =

∫
ejωτU(jω)dω/2π

Y (jξ) =
∫
e−jξty(t)dt; y(t) =

∫
ejξtY (jξ)dξ/2π

Define also

Ĥ(jξ, τ) =
∫
e−jξth(t, τ)dt

H̃(t, jω) =
∫
ejωτh(t, τ)dτ

H(jξ, jω) =
∫∫

ejωτ−jξth(t, τ)dτdt

We then have the following relations (if convergence ok)
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Transfer Functions for LTV Systems

For LTI systems we have

H(jξ, jω) = 2πδ(ξ − ω)H(jω)

and
Y (jω) = H(jω)U(jω)
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Transfer Functions for LTP Systems

If h(t+ T, τ + T ) = h(t, τ) then (with ω0 = 2π/T )

Y (jω) =
∑
k

Hk(jω − jkω0)U(jω − jkω0)

where
Hk(jω) = F(hk(t)) =

∫
e−jωthk(t)dt

with

hk(t) = 1
T

∫ T

0
h(r, r − t)e−jkω0rdr

The interpretation is that Hk describes the signal transfer from input
frequency ω to output frequency ω + kω0.
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Next Week

Controllability and Observability

Controller/Observer Forms

Balanced Realizations
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Bonus: Abel-Jacobi-Liouville alt. proof

Want to prove that

d

dt
detΦ(t, t0) = trA(t)detΦ(t, t0)

Taylor-expansion gives

Φ(t+ dt, t0) = Φ(t, t0) +A(t)Φ(t, t0)dt+ o(dt)
= (I +A(t)dt)Φ(t, t0) + o(dt)

Since the determinant is the product of the eigenvalues, and these
satisfy λi(I +Adt) = 1 + λi(A)dt we get

detΦ(t+ dt, t0) =
∏

(1 + λi(A)dt) · detΦ(t, t0) + o(dt)

= (1 +
∑

λi(A)dt+ o(dt)) · detΦ(t, t0) + o(dt)

From which the result follows by letting dt→ 0.
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Bonus: The Oscillating Inverted Pendulum

The unstable equilibrium becomes stable if the point of suspension
oscillates fast in the vertical direction:

Pendulum length l

Oscillation amplitude a << l

Period of oscillation 2τ

Acceleration supposed constant equal to ±c (so c = 8a/τ2)

Assume
ẍ = (ω2 ± d2)x

where the sign changes after time τ , where ω2 = g/l and d2 = c/l. If
the oscillation of the suspension is fast enough, c > g, then
d2 = 8a/(lτ2) > ω2.
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Bonus: The Oscillating Inverted Pendulum

If you have time over:

[a.] Show that Φ(2τ, 0) = A2A1

A1 =
[

cosh kτ 1/k sinh kτ
k sinh kτ cosh kτ

]
, A2 =

[
cosΩτ 1/ΩsinΩτ
−ΩsinΩτ cosΩτ

]

where k2 = d2 + ω2 and Ω2 = d2 − ω2.

[b.] Show that det(Φ(t, 0)) = 1, t = 2τ, 4τ, 6τ, . . . and that the
criterion for stability is |tr(Φ(2τ, 0))| < 2

[c.] Suppose that a << l. Show that the system is stable for
sufficiently large c >> g. The stability condition is approximately

c/g > (3/2) l/a
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