Linear Systems, 2019 - Lecture 2

Transition Matrix Properties
Time-varying change of coordinates
Periodic Systems

Floguet Decomposition

® 6 6 o6 o

Time-varying Transfer Functions

Rugh, Chapter 5 [and Chapter 21]

Main news:

@ Properties of LTV systems
@ LTP systems
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Continuous Time-varying (LTV) Systems

For bounded A(t), the equation

has a unique solution of the form
xz(t) = ®(t,to)xo

The transition matrix ®(t, to) can be written as the infinite sum

t
‘I)(t,to) = I‘l— . A(al)dal
0

t o1
I A(O’l) A(Ug)dOQdUl

to to
t o1 g2
+ A(Ul) / A(UQ) A(Jg)ddgd(jgdal
to to to
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Transition Matrix O (¢, ¢()

The unique solution of the equation

d
ZX(H) = ADX(Q)
X(to) = I

is X (t) = ®(¢,t0).
Proof. Let z(t) = X (t)xo. Then

SO
x(t) = ®(t,t0)xo

Hence ®(t, to)zo = X (t)xo for every xq, so ®(t,t9) = X (t)
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Nice Example: Scalar Time-variation

Consider
z = Aa(t)z(t)
The transition matrix is

O(t,10)

t t o1
I+ A a(al)d01+A2 a(al)/ a(Ug)dUgdUl—i--"

to to to

- Zk‘Ak [/to )da]k

= exp (A/t: a(a)da)

Second equality is nontrivial.

(Recall Two Tank Example with time-varying flow ¢(t))

4/41



More general case: Commutating A(t)

A(t) tA(O')dO': tA(U)daA(t)

Jto to

then
B(t, t) = exp{ tA(a)da}

to

Special case: A(t)A(r) = A(1)A(t) forall t, T
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If A(t) = a1(t)A1 + az(t) A2 where A; and A commute then

B(tty) = exp { / "1 (DA + ag(t)Agdt}

to

= exp {/tj al(t)thl} exp {/t: ag(t)thg}
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#i(t) = (t)+cost o(7)

zi(t) = +/ “7cosodo - xo(T)
= et_Txl(T)-+-2 (51nt-— cost — €'~ (sinT —-COST)) - xo(T)
et=™ 1 (sint — cost — e~ (sinT — cost
o(t,7) = [ . 2 ( 1 ( )

1
Sanity check: ®(t,t) = I and %¢(t77)) _ [0 cc())st]
t=1
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Input-driven Continuous System

The equation
z(t) = At)z(t) + B(t)u(t)
has the unique solution
x(t) = ®(t,to)xo + t@(t,a)B(o)u(J)da

to

Proof: Differentiate!
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Properties of ®(¢, o)

For any t, 7, o, the transition matrix satisfies

O(t,7) = D(t,0)P(0,7) (semigroup property)
%@(t,a) _ AL 0)
Loit0) = —(t,0)A(0)

do

Proof of first property: Let R(t) = ®(t,0)®(o, 7). Then

d
—R(t) = A®RQ)

R(o) = ®(o,7)

so R(t) must be identical to ®(¢, 7)
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Properties of ®(¢, o)

Proof of third property:
®(o + h,0) =1+ hA(c)+o(h)  (why?)
Hence, using first property, we have
O(t,0) = ®(t,0 + h)(I + hA(o) + o(h))

from which we get

%((I)(t, o+ h) = Bt 0)) = —B(t, 0+ h)A(c) + o(1)
from which the result follows as h — 0
%(I)(m o) = —®(t,0)A(0)

10/41



The transition matrix ®(¢, o) is invertible for any ¢, ty and

®(t,t)" = (to,1)

Proof. By the composition rule

B(t,t0)B(to, t) = B(to, t)D(t, tg) = B(to, to) = I
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Short summary: Properties of ¢ (¢, o)

For any ¢, 7, o, the transition matrix satisfies

o(t,t) = I

o(t,7) = D(t,0)P(o,7)
(@t o)™ = (0,1

d
£<I>(t,a) = A(t)®(t,0)
%@(t,a} = —®(t,0)A(0)
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Change of Variables

Variable change z(t) = P(t)z(t) (with P(t) invertible) gives

z(t) = At)xz(t), =(to) = =g =
i) = [POTTADPE) ~ P)T O] 2(0),  =(to) = P(t) o

For the fundamental matrix this means that
®p_14p_p-1p(tito) = P ()@ a(t, to)P(to)
Proof:

APz — Az — i —Pr+P?
2(t) = Ppayp_p-1p(tito)z(to)
2(t) = P t)z(t) = P L(t)®a(t, 7)P(t)z(to)
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Adjoint system

From L& 4(t,0) = —®4(t,0)A(0) follows that @ (¢, o) solves

%Z(o) =—Al(0)Z(0), Z(t)=1

This fact can be written as

d_ur(t, to) = DL(to,t)
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Discrete time - Definition of ¢ (k, k)

Define X (k) recursively as
X(k+1) = Ak)X(k), k>ko
X(ko) = I

Then ®(k, ko) = X (k).

Remark: What about ®(k, ko) when k < ko?

The example x(k + 1) = 0 - (k) shows that (k) might not be
uniquely determined by x (ko) for k < ko!

Difference between discrete and continuous time
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Properties of ®(k, k)

Ok+17) = AK)P(kj), k=j
O(k,i) = Bk,j)B(,0), k>j>i

If the n x n matrix A(k) is invertible for each k, then ®(k, j) is
invertible for each & > j and ®(j, k) can be defined as

(j.k) = @(k,j)"
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Change of Variables

Variable change z(k) = P(k)z(k) (with P(k) invertible) we get

z(k+1) = Ak)xz(k), z(ko) =0 =
dk+1) = [P(k+1)" A(R)P(K)| 2(k)

Hence we have
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Theorem by Abel-Jacobi-Liouville

Let A(t) be continuous. Then

det B(t,10) = exp ( /ttr[A(a)]da)

to
Interpretation: Volume contraction

Proof: Let ¢;; be the cofactor of entry ¢;;

d ) .
Jrdet®(t,t) = > <3¢U det(I)(t,to)> bi;(t, to)

i,J

= Z Cij (t, t(])g‘bij (tv tO)

2y
= tr(C(t,t0)"d(t, 1))
= tr (Dt to)C(t to) T A(t))
= tr((det®(t, to)I)A(t))
= trA(t) - det®(t, o)
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Example - From Exam 2009

Is it possible to asymptotically stabilize the oscillative system

0

:c+1

u

#t) = [01 (IJ

y = [1 o]x

by time-varying output feedback
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The closed loop system becomes & = A.x with

0 1
A = [—1 iy o]

By the Abel-Liouville theorem we have
det ®(¢,0) = exp(ttrd;) =1

The system can hence not be asymptotically stable, since an
asymptotically stable system must have ®(¢,0) — 0 as t — oo
[Why?].
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Example - LTV systems and Eigenvalues

Consider the time-varying system
i =e MBets (1)

Note that e~“4* Be\ has the same eigenvalues as B

The coordinate change z(t) = e“*x(t) transforms the system to

¢ =(A+ B)z )

21/41



Example - LTV Systems and Eigenvalues

Assume

Then with z(t) = eA*x(t) one has ||z|| = ||z||, so asymptotic stability
of (1) and (2) are equivalent (rotating coordinate transformation).

Proof: More generally if A(t) is skew-symmetric for all t, i.e.
AT + A =0then Q(t) = ®4(t,0) is orthogonal, i.e. satisfies
QT Q = I, since

d

Q= (A +4Q=0  QO=I

Therefore 27z = 27 QT Qx = 2" x.
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Example - LTV Systems and Eigenvalues

With the stable matrix
-1 M
it is easy to see that A + B is unstable for M > 2.

Hence system (1) above is an unstable time-varying system with
stable eigenvalues (equal to —1 for all t).

23 /41



Example -LTV Systems and Eigenvalues

With the unstable matrix

-1 0
BZ[O 1/2]

it is easy to see that A + B is stable.

Hence system (1) above is a stable LTV system having one unstable
eigenvalue for all t.

Exercise: Can you find a 2 x 2 asymptotically stable LTV system with
both eigenvalues in the RHPL for all t?
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Linear Time Periodic (LTP) Systems

A linear system

with
At +T) = A(t)

is said to be T-periodic.
The smallest such T is called the period of the system.

A state space system is called T-periodic if all matrices (A, B, C, D)
are T-periodic.

The following is the main result for periodic systems
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Floquet Decomposition

“Long-term trend + periodic fluctuations”

Let A(t) be bounded and T-periodic. Then for
#(t) = A@)x(t), x(to) = o
the transition matrix can be written
o(t,7) = P(t)e" = p(r) !

where R € C™*" is constant and P(t) € C"*" is differentiable,
invertible, and T'-periodic.

The variable transformation x(t) = P(t)z(t) gives 2 = Rz
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Since ®(T', 0) is nonsingular, there exists a solution F' € C™*" (in fact
infinitly many) to /" = ®(T,0). Choosing any such F, define
R= %F we then have

T = &(T,0)
Define then P(t) by

We get
o(t,7) = B(t,0)8(r,0)"" = P(t)e" " P(7)7!
Pt+T) = ®(t+T,0)e FHD
= O{t+T,T)P (T 0)e fiT o1t
= P(t+T, T)
= &(¢,0)e”
= P()
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Discrete Time Floquet Decomposition

Let A(k) be K-periodic. Then for
x(k+1)=Ak)x(k), =z(ko)=xo
the transition matrix can be written
(k) = P(k)R* D P(j)~!

where R € C"*™ and P(k) is K-periodic.

With z(k) = P(k)z(k), this gives

z(k+1) = Rz(k)
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2-periodic Example

_1\k
O
R? = ®(2,0) = __01 ﬂ
2 0
ko= 0 1]

Note that R is not real-valued !
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Extra: Real Floquet Factors for LTP Systems

(not in Rugh)

It is always possible to obtain a real Floquet factorisation for a real
T-periodic system, by treating the system as having 2T-periodic
coefficients:

From the fact that ® (27T, 0) = ®(T,0)? it can be proved (use
Jordan-form) that there is a real matrix GG such that

1Y = @(21,0).

Then P(t) := ®(t,0)e~'“ is real and can as before be seen to be
2T'-periodic (but not necessarily T-periodic).

See Montagnier, P, et.al Real Floquet Factors of Linear Time-Periodic
Systems (Google it)
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LTI with sinusodal input - Resonances

Consider the equation

Laplace transform:

Xo(s) = C(sI — A)"Y(Bu(s) + zo)
s 1
N (1+52)2+1+52[1 S]xo

t . .
xa(t) = Qsmt—k [smt cost} xo

For what systems does periodic input give periodic solution?
31/41



Periodic Solutions for LTI Systems

For A € R"*" and
z(t) = Ax(t) + f(t)

one can prove that the following statements are equivalent:

(i) No eigenvalue of A has zero real part.
(i) A unique T-periodic solution exists for every T-periodic f.
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Periodic Solutions for LTP Systems

Theorem 5.15

Let A(¢) be continuous and T'-periodic and
&(t) = A(t)x(t) + f(2)

The following statements are then equivalent:

(i) No nontrivial T-periodic solution exists for f = 0.
(i) A unique T-periodic solution exists for every T-periodic f.
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Time-varying Transfer Functions

(not in Rugh)

Transfer function analysis is quite involved for time-varying linear
systems

y(t) = [t )
For LTI systems, h(t,7) = h(t — 7,0) and

Vi) — )T, B — / h(r, 0)e 7" dr

What can be said for general LTV systems?

And for LTP systems, where h(t + T, 7+ 1) = h(t,7) ?
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Transfer Functions for LTV Systems

Define as usual
Ugwy:/eﬂma@mﬂ u@y:/awvgwmwpw
v = [ yin y) = [y (ede/2m
Define also

H(j¢, 1) = / e IEh(t, T)dt

H(t,jw) = /eijh(t,T)dT

H(j¢, jw) // ej“’T_jéth(t,T)det

We then have the following relations (if convergence ok)
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Transfer Functions for LTV Systems

h(4,1) BGior
= Chermutadr| | Y= Hgg tiutode
= (R LG Ve | R TG s

Yy = [l {),]A)?J‘,U,U Yol G2 qua,‘w ! d;ﬁ

For LTI systems we have
H(j§, jw) = 2m6(€ — w)H (jw)

and
Y (jw) = H(jw)U(jw)
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Transfer Functions for LTP Systems

If h(t + T, 7+ T) = h(t, ) then (with wy = 27/T))

Y (jw) =Y Hy(jw — jkwo)U (jw — jkwo)

k
where
Hi(jw) = F(hi(t)) = / eIy (1) dt
with
1 (T ]
hi(t) = —/ h(r,r — t)e IRwordy
T Jo

The interpretation is that H;. describes the signal transfer from input
frequency w to output frequency w + kwg.
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Next Week

@ Controllability and Observability
@ Controller/Observer Forms
@ Balanced Realizations
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Bonus: Abel-Jacobi-Liouville alt. proof

Want to prove that

d
—det®(t,t0) = trA(t)det®(t, to)

Taylor-expansion gives

D(t+dtty) = Ot to) + A@t)D(t, to)dt + o(dt)
= I+ A(@t)dt)D(t,to) + o(dt)

Since the determinant is the product of the eigenvalues, and these
satisfy \;(I + Adt) =1+ \;(A)dt we get

det®(t +dt,tg) = [](1+ Ni(A)dt) - det®(t,to) + o(dt)
(1+ > Xi(A)dt + o(dt)) - det®(t, to) + o(dt)

From which the result follows by letting dt — 0.
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Bonus: The Oscillating Inverted Pendulum

The unstable equilibrium becomes stable if the point of suspension
oscillates fast in the vertical direction:

Pendulum length [

Oscillation amplitude a << [

Period of oscillation 27

Acceleration supposed constant equal to £c (so ¢ = 8a/72)

Assume
i=wW+d)z

where the sign changes after time 7, where w? = g/l and d? = c/I. If
the oscillation of the suspension is fast enough, ¢ > g, then
d? = 8a/(I7?) > w2
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Bonus: The Oscillating Inverted Pendulum

If you have time over:

[a.] Show that ®(27,0) = A4,

A — coshkr 1/ksinhkr Ao — cosQr  1/QsinQr
"7 lksinhkr coshkr |’ 27 |—QsinQr  cosQr

where k2 = d? + w? and Q2 = @2 — W2

[b.] Show that det(®(¢,0)) = 1, ¢ = 27,47, 67, ... and that the
criterion for stability is |tr(®(27,0))| < 2

[c.] Suppose that a << I. Show that the system is stable for
sufficiently large ¢ >> ¢. The stability condition is approximately

c/g>(3/2)l/a
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