Key performance indicators for production - Examples from chemical industry

Krister Forsman
2015-04-15

Agenda

- Characteristics of chemical plants; business- and technology-wise
- Which information is readily available from the plants: some examples
- Key performance indicators (KPIs): Examples illustrating the complexity
 - Variable costs
 - "OEE"
Characteristics of chemical plants

(A view slightly biased by Perstorp experience)

Characteristics of typical Perstorp plants

• Synthesis (reaction) followed by a large number of separation steps
• Reaction is often batch-wise, and separation continuous
• Separation can be a number of sequential distillations, evaporation, crystallizations, filtrations, centrifuges, decanters, etc
• Many intermediate buffers
• High value side streams (byproducts), means many recycle loops
• Plants operate 24/7
• Controlled by computerized control systems
Many types of process units in one plant

- Reactors
 - Continuous, batch, semi-batch, tube
- Heat exchangers
- Distillation columns
- Crystallizers
- Evaporators
- Centrifuges
- Filters
- Decanters
- Dryers
- Boilers

To define sensible key performance indicators (KPIs) you need fairly deep process knowledge.

Valuable by-products gives complex topology

- A chemical reaction rarely gives one specific output.
- Some of the by-products may be very valuable.
- For this reason the separation part of the plant is often much more complex than the synthesis part (reactors).
 - Separation = distillations, crystallizations, centrifuges, decanters, evaporators...
Business aspects

- The market characteristics for different products differ widely
 - Bulk product vs Specialty product
 - Many small customers vs A few large customers
 - Local vs Global products
 - Spot market vs Contracts
 - Make to order vs Make to stock
 - “Postponement” in product specification possible or not possible
 - Raw material internally or externally supplied; Main customer internal or external

- This can make it very hard to answer questions like
 - What is the value of getting extra capacity?
 - How much profit do we lose if we have an unexpected shutdown?
Decision making / work flow in production

- Sales
 - Forecasts
- Global supply chain
 - Inventory levels, plant capacities etc
 - Monthly master plans
- Local supply chain
 - Orders
 - Maintenance needs, etc
 - Daily plans
- Maintenance
- Production management
- Operators
- Process engineers

Customers

Information available from plants
Process historian: Core of all production KPIs

- IP.21 = Process history database (standard software from supplier)
- Makes **plant measurements available to office applications**
- Every production site has its own IP21 server
 - All variables from the control systems are logged; including setpoints, controller modes, on-off-valves, etc.
 - Scan frequency varies from site to site, between 1 and 15 seconds.
- Currently ca 500 users of the client application
- ODBC connections to home made applications
- ~1 GB new data / day

- The control group is owner of the IP21-systems.

In-house developed applications

- We have developed a number of applications based on IP.21 data; see examples on the following slides.

- Main principles:
 - All applications are web based.
 - Users don't have to install a client application
 - Access rights controlled by ActiveDirectory

- Software components in the applications:
 - SQL queries and procedures
 - Reporting services from AspenTech
 - ASP and VB programs
 - HTML and CSS
 - Matlab
 - MS Sharepoint
Production portal

- An Intranet website presenting volumes produced for the 35 most important plants in the group, day by day.
- Altogether ~250 home pages automatically updated every morning.
- Production is estimated from process measurements in IP.21; many models are fairly complex.
- 300 users. In a user survey, 20% of the respondents say that the portal has had direct business impact.

Production Portal: Detailed view

[Diagram showing production in tons for December, with planned production, actual production, and maximum capacity indicated.]
Key performance indicators

1. Variable costs

KPI definitions: depend on usage

- When defining a KPI it is key to think about **how it should be used**, and by whom.

- Financial KPIs are the “bottom line”, of course.
 - What were the costs (raw material, energy, salaries etc)
 - What were the contribution margins (sales price – production cost)
 - etc

- However, those KPIs are almost useless for measuring plant performance.

- Now we will discuss why, and how we can define KPIs that are more relevant for plant optimization.
Different categories of KPIs

- High-level / Financial
 - Examples: Volume produced, Production costs, Inventory turnover
- High-level / Operational
 - Examples: Safety related, Environmental, OTIF
- Technical / Process specific
 - Examples: Quality, Key lab values, Energy usage per unit, Unit availability, Heat transfer coefficient, Distillation reflux rate, Plant utilization rate
- Technical / Generic
 - Examples: Alarm rates, Control loop performance, Valve diagnostics

Challenges

- Find KPIs that separate effects from planning, plant operation and market.
- Find a connection between high and low level KPIs.
 - Then we could "drill down" to find root causes.

Important KPI: Variable costs

- In process industry, variable costs are often much larger than fixed costs
- Examples of variable costs
 - Raw material
 - Utilities; Typically
 - steam, electricity, cooling water, waste water treatment, nitrogen, air,...
 - Transport
 - Packaging

- Often time, costs for raw material and utilities are much larger than other variable costs.
 - From now on we exclude transport and packaging from variable costs.
 - DVC = direct variable costs
Direct variable costs

- Raw material
- Utilities
- Transport
- Packaging

DVC

Direct variable costs

- Chemical A
- Chemical B
- Raw material

- Steam
- Electricity
- Utilities

DVC

- Transport
- Packaging
DVC depends on raw material prices

- Raw material prices vary rapidly, with large variations
- If you are working with procurement or supply chain, planning inventories or choosing suppliers, this is important information.
- But if you work with plant optimization, raw material price an external factor which we can't affect.
- To handle that, we can use “Relative” cost, where prices are fixed over a long period of time.
 - E.g. budget prices

<table>
<thead>
<tr>
<th>Volume consumed [ton]</th>
<th>Raw material cost [SEK]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price [SEK/ton]</td>
<td></td>
</tr>
</tbody>
</table>

“Specific cost” = cost per ton produced

- Example:
 - In January we consumed 1200 tons of methanol to make 2500 tons of product A (obviously there are other raw materials as well)
 - The budget price for MeOH is 4 kSEK/ton
 - The specific relative cost for methanol for the month was then
 \[
 \frac{1200 \times 4}{2500} = 1.92 \text{ kSEK/ton}
 \]
Typical cost summary

Month: January
Volume produced: 2000 tons

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical A</td>
<td>1500</td>
<td>0.75</td>
<td>4.2</td>
<td>3.15</td>
</tr>
<tr>
<td>Chemical B</td>
<td>400</td>
<td>0.20</td>
<td>5.5</td>
<td>1.10</td>
</tr>
<tr>
<td>Chemical C</td>
<td>500</td>
<td>0.10</td>
<td>6.0</td>
<td>0.60</td>
</tr>
<tr>
<td>Steam</td>
<td>2000</td>
<td>1.00</td>
<td>0.2</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Total: 4.85

Is this level of information good enough?

- Depends on who is going to use it.
 - What conclusions can you draw if DVC is high? How should you improve it?

- For most plants, variable costs are dependent on production rate.
 - Normally the production cost, per ton, is lower when running the plant at high speed than at low speed.
 - If DVC is high, in the worst case, we get a "blame game": Production management blames planning: "We were forced to run at a low rate." Planning blames production management: "Your plant is too inefficient."

- The following few slides explain why DVC per ton may depend on production rate, and indicate how this feature varies between different types of plants.
Energy costs: steam and electricity

- In a chemical plant steam costs are often much higher than electrical costs.
- Steam is used e.g. in distillation, evaporation and some reactions.
- Qualitatively, steam usage depends on production rate as shown below.
 - For some equipment, steam usage doesn’t depend on production rate
 - There is a “base-load” that is independent on production rate

![Graph showing the relationship between total steam usage and production rate]

Specific steam consumption vs production rate

- Consequence of the facts on the previous slide:
 - At high rates the steam base load is “shared” between more tons of product

![Graph showing the relationship between steam consumption per ton and volume produced]
Opposite effect theoretically possible

- Depending on how heat exchangers are used, compared to their design capacity, we may get the opposite effect.
 - Details too complicated to describe here.

Yield may depend on run rate

- For many plants, the raw material yield depends on production rate.
- This dependence, if it exists, is more complicated.
 - It may be either positive or negative.

- To understand this better we look at how losses of raw material may arise.
Yield loss characteristics: application dependent

- Reaction process: losses = undesired side-reactions or incomplete conversion
- Separation process, e.g. distillation: losses = imperfect separation
- Both types of yield losses are hard to model.
 - They depend on a large number of parameters in a complicated way.
- Loss rate may depend on production rate
 - But if the reaction is batch wise reaction losses should not depend on rate.

How can yield depend on production rate?

- For all reaction schemes there is a tree of possible reactions.
- Which ones dominate depends on temperatures and concentrations.
 - If we produce a undesired by-product in an irreversible reaction, then that raw material is lost forever = yield loss
 - If the reaction from raw material to end product is incomplete, the product may contain raw material = yield loss
On chemical reactions

- Typically, several reactions are going on in parallel. Some of them undesired.
- All reactions depend on temperature and concentrations.

cont’d Yield vs Prodn rate

- In a continuous reactor we may have the situation that as we increase throughput, conversion will decrease.
 - "Some of the raw material molecules do not have the time to react to become product."

- Those process characteristics explain how yield may decrease as production rate increases.
- The opposite effect is more common, but more complex.
Minimizing variable cost: not always a good idea

- It is easy to come up with scenarios where minimizing the variable costs does not give maximum total profit.

- Example: If raw material yield decreases as production rate increases then there will be a rate which gives maximum total profit.
 - Producing less than that gives less profit because volume is low
 - Producing more than that gives less profit because margin is low

Example: Trade-off between yield and volume
Byproduct optimization vs yield

- It may be that we can control the formation on by-products by manipulating a variable that also affects yield or other cost parameters.
- By running the process in different ways we can get different proportions of by-products.
- Example: 100 tons of raw material we can produce either of the two below
 - Contribution margin product A = 4 kSEK/ton, CM product B = 20 kSEK/ton

<table>
<thead>
<tr>
<th>Scenario 1</th>
<th>Scenario 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>92 tons of product A</td>
<td>86 tons of product A</td>
</tr>
<tr>
<td>6 tons of product B</td>
<td>11 tons of product B</td>
</tr>
<tr>
<td>Yield = 98%</td>
<td>Yield = 97%</td>
</tr>
</tbody>
</table>

Total profit = 92*4 + 6*20 = 488 kSEK
Total profit = 86*4 + 11*20 = 564 kSEK

Again:
Minimizing variable costs may lead to suboptimal operation.

Additional complication: start-up costs

- Starting up a plant is often very expensive
 - Loss of raw material + Loss of energy
- It may make more sense to consider DVC/ton as a function of number of shutdowns rather than production rate.
- If market demand is not very high, this leads to and optimization problem:
 - The production cost per ton is higher at low rates
- Example: Assume plant capacity is 100 ton/day and we are asked to produce 2000 tons in January. What is best:
 - Producing 65 tons/day during 31 days?
 - Producing 100 tons/day during 20 days, and have 11 days of shutdown?
- Continuous plants normally have a turn down ratio (as mentioned previously).
 - "Minimum speed"
Trending DVC over time: not trivial

- A consequence of these considerations is that it is not easy to find which parameter to trend over time
 - How do we avoid ending up in discussions like this:

```
Relative DVC/ton
Jan Feb Mar Apr May Jun

"But January was very cold. Higher steam consumption."

"But in March we had a maintenance shutdown."

"But in June we were running at low rate because of low demand."
```

Possible solution: deviation from model

- One way to approach this problem: use a model that predicts DVC, and compare with the prediction.
 - The model should not take all known factors into account, only those that are not supposed to be addressed by the user of the KPI
 - E.g. if the user is supposed to improve reliability, then DVC increase due to unplanned shutdowns should not be included in the model.
Example of production related KPI

- Model based steam usage evaluation
- Intended user: operational staff (operators and process engineers)
- Scope: detect excessive steam usage in different units

- The target steam usage for each unit is given by a model.
- The model takes into account all variables that operational staff cannot affect, e.g. production rate and outdoor temperature.
- For every unit, current steam consumption is compared with the consumption predicted by the model.
 - Steam meters show current consumption and target in real time
 - Too high usage results in meter turning yellow or red

Real-time steam consumption; benchmarking against target

Supports operators and engineers in daily work to minimize energy usage.
Theoretically challenging to define and calculate reasonable targets; regressor collinearity etc black-box / grey-box modeling. MSc project 2013
Summary on DVC

- Variable costs are affected by yield and energy usage
- They often depend on production rate
- Normally, energy usage per ton of product decreases with production rate
- Start-ups are often very expensive

- There are many theoretical explanations to why the dependency may be positive or negative.
 - In the end you have to study real operational data and verify if the statistical correlations are significant.

Key performance indicators

2. OEE
OEE = overall equipment efficiency

- A classical KPI that should indicate how efficiently a plant is used, and to some extent the causes of unexploited potential.
- Traditional definition: OEE is a number between 0% and 100%
 - Obtained by subtracting shutdown losses, quality losses and planned unused capacity due to market situation.
 - Unfortunately there are different interpretations of this KPI.

Usage of OEE

- OEE is of course a very coarse measure, but it can help us to see where to focus improvement efforts:
 - Improved reliability when running?
 - Shorter maintenance shutdowns?
 - Improved quality?
OEE-related KPIs used at Perstorp

- In the production portal described earlier we have
- "Max capacity" is estimated as best ever seven day running average
- "Planned production" manually entered by supply chain
 - Plan can be changed, even retroactively, to cater for external disturbances, e.g. power outages and delays in raw material supply. [Why?]

- Utilization: volume produced as percentage of theoretical max capacity
- Loss versus Plan (LvP): Negative deviation from plan, accumulated
 - Only negative deviations are counted. See next slide.

Crux: What is an “unplanned” shutdown?

- Two extreme cases:
 - **Regular maintenance shutdown**: planned months or years ahead. Typically lasts for two weeks or more
 - **Immediate, out-of-the-blue**, shutdown: with only minutes or seconds head warning. E.g. power outage, faulty trips, human error

- But many shutdowns are somewhere in between:
 - "The pump sounds strange and needs to be repaired within a week". Check the list of pending maintenance work requiring shutdown, and try to plan the shutdown timing and duration, so as to optimize this.
 - Example: "Fixing the pump only takes 6 hours, but if we have a 12 hour shutdown and fix some other stuff as well, we can postpone the next planned shutdown and get better availability next month".
Consequence of complex plant topologies

- It is almost impossible to tell only from DCS data what is the cause of a shutdown or reduced production rate.
- If many adjoining units are reduced, it is not necessarily the first one in time that is the root cause.

Unfortunately, the cause for a slowdown or shutdown is rarely visible in the process data:
- Leakage
- Rotating equipment problems, e.g. bearings
- Human factor
- Lack of capacity in site wide utilities, such as steam, cooling water, waste water treatment
- External causes: Disturbances in distribution, supplies

Standards?

- There are production KPI standards down to very specific detail for manufacturing industry. But many of those are hard or impossible to carry over to continuous processing. Examples:
 - A continuous plant has a turn-down rate: it has a lowest possible production rate, typically around 60-70% of maximum
 - Variable cost (SEK/ton) for product depends on production rate
 - Start up time and start up costs may be substantial (MSEK, days)
 - A processing unit is typically not "on" or "off". It is fed with a continuous valued flow.
 - "Off-spec" is not binary. A product not meeting spec may be acceptable by some customers, or possible to sell at a lower price.
Summary

- Production KPIs must be defined so that it is clear how they should be used, and by whom.
 - Should they be used to optimize long term planning, short term planning, plant settings or for fault detection?
 - Corresponding users: global production planning, local production planning, production management, process engineers

- Frequently it takes deep process understanding to define relevant KPIs.

- The definitions may vary from plant to plant.