Positive and Monotone Systems

Christian Grußler

History of Control, 2012, Lund

May 29, 2012
Outline

1. Positive Systems
 - Definition
 - "Fathers"
 - Occurrence
 - Example
 - Publications

2. Monotone Systems
 - Definition
 - Early days
 - Publications
A continuous linear time-invariant system

\[
\begin{aligned}
\dot{x}(t) &= Ax(t) + Bu(t), \\
y(t) &=Cx(t) + Du(t),
\end{aligned}
\]

with \(x \in \mathbb{R}^n\), \(u \in \mathbb{R}^m\) and \(y \in \mathbb{R}^k\), is called (internally) positive if and only if its state and output are nonnegative for every nonnegative input and every nonnegative initial state.

Theorem: Positivity [Luenberger, D. G., 1979]

A (cont.) linear system \((A, B, C, D)\) is positive if and only if \(A\) is a Metzler-matrix and \(B, C, D \succeq 0\).
"Fathers" of positive systems: Perron & Frobenius

Key result: Perron-Frobenius Theorem

(1849 - 1917) (1880 - 1975)
“ [...]the positivity property just defined, is always nothing but the immediate consequence of the nature of the phenomenon we are dealing with. A huge number of examples are just before our eyes.” [Farina, L., 2002]

- Network flows: traffic, transport, etc.
- Social science: population models
- Biology/Medicine: nitrade models, proteins, etc.
- Economy: stochastic models, markov jump systems, etc.
- Discretization of PDEs: heat equation
Example: Compartmental Network

\[\dot{x}_i(t) = -k_{o,i}x_i(t) + \sum_{j \neq i}^n \left[k_{ij}x_j(t) - k_{ji}x_i(t) \right] + \sum_{j=1}^m b_{ij}u_j(t) \]

Christian Grußler
Positive and Monotone Systems
Publications: till 1999

Scopus: \(\sim 70 \) publications mentioning positive systems.

Important ones:

- Introduction to Dynamic Systems: Theory, Models & Applications. (Luenberger 1979, Wiley)
- Reachability, observability and realizability of continuous-time positive systems. (Ohta 1984, SIAM)
- Nonnegative Matrices in Dynamical Systems (Berman 1989, Wiley)
- Robust stability of positive differentiable linear systems (Son, Hinrichsen 1995, CDC)

However, the term 'positive system' was and is still not commonly used:

- Lyapunov Functions for Diagonally Dominant Systems. (Willems 1976, Automatica)
Publications: 2000 - today

Scopus: \(\sim 300\) publications mentioning positive systems.

Important ones:

- Positive Linear Systems (Farina 2000, Wiley)
- Stabilization of positive linear systems (De Leenheer 2001, Systems & Control Letters)
- Stability of continuous-time distributed consensus algorithms (Moreau 2008, CDC)

In Europe most of the research in Italy and Belgium, but also some in Lund:

- Distributed control of positive systems (Rantzer 2011, CDC)
- Some result on model reduction of positive systems (Aivar and myself 2012)

But much theory hidden in the application, i.a.

- Love dynamics: The case of linear couples (Rinaldi 1998, Applied Mathematics and Computations)
Still missing

Difficult to solve and still missing:

- Transfer of the SISO-theory to MIMO.
- Adequate realization algorithms.

So far some attempts, however under highly conservative restrictions - pretty messy theory!
Let \(\phi : X \subset V \to V \), where \(V \) is a real Banach space with an (partial) ordering \(x \geq y \) or a strongly ordering \(x \gg y \).

A dynamical system, with solution flow \(\phi \), is called **monotone** if \(\phi^t x \geq \phi^t y \) for \(t \geq 0 \) and \(x \geq y \) and **strongly monotone** if \(\phi^t x \gg \phi^t y \) for \(t > 0 \) and \(x \gg y \).

Proto-type: Cooperative system, which is the solution flow to a vector field \(F \) such that

\[
\frac{\partial F_i}{\partial x_j} \geq 0 \quad \text{for} \quad i \neq j.
\]

If \(x_i \) denotes the population of a species \(i \), then cooperative means, that an increase of \(x_i \) causes an increase in \(x_j \).
Early days: Hirsch, Smith & Smale

Key result: Convergence almost everywhere for strongly ordered systems (Hirsch 1981)

(Born 1930) (Born 1933)
Publications: till 1999

Scopus: \(~ 230\) publications mentioning monotone and cooperative systems.

Among many convergence results:

- Cooperative systems of differential equations with concave nonlinearities (Smith 1985)
- Stability and convergence in strongly monotone dynamical systems (Hirsch 1988)
Scopus: ~ 1600 publications mentioning monotone and cooperative systems.

Important ones:
- Monotone control systems (Angeli, Sontag 2003, IEEE TAC)
- Monotone Dynamical Systems - Chapter 4, Handbook of Differential Equations (Hirsch, Smith 2005)

Nowadays most attention on: Communication, Coordination and Biology.

- IFAC2005: ~ 30 contributions (5 on positive systems)
- IFAC2008: ~ 30 contributions (3 on positive systems)
- IFAC2011: ~ 40 contributions (4 on positive systems)
Acknowledgement: Some of the pictures in this presentation origin from the "The Oberwolfach Photo Collection - Photographs of Mathematicians from all over the world".