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Design traffic light feedback control that is

• Decentralized - Only depend on information nearby

• Scalable - Not depend on the network topology

• Throughput optimal - If possible, the controller should
stabilize the network
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Previous Work

• Max-pressure controller [Varaiya 2013, Tassiulas &
Ephremides 1992]

• The controllers have explicit information about the turning
ratios

• Proportional controller [Savla et. al. 2013, 2014]
• Acyclic networks

• Queueing networks [Massoulié 2007, Walton 2014]
• Stochastic setting, computer networks with less physical

constraints.
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Future Work
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Model - Network

λi

λj
Ck

• Capacited multigraph G = (V, E ,C ).
• V - set of intersections
• E - set of lanes
• C - flow capacities

• External inflows λ.
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Model - Routing matrix

• R is exogenous
• Rij - fraction of flow from lane i to lane j
• Rij > 0⇒ j immediately downstream of i

•
∑
j∈E

Rij ≤ 1, where 1−
∑
j∈E

Rij is the fraction of the flow that

will leave the network.
• The equilibrium flows can be computed by a = (I − RT )−1λ.

Example

• Lane α: devoted to left
turns, Rαi = 1.

• Lane β: both right turns
and straight forward,
Rβl = 0.1,
Rβj = 0.3,Rβk = 0.6.
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Model - Routing matrix

Assumption

(i) All lanes can be reached by external inflow, i.e., for every
i ∈ E there exists h ∈ E such that λh > 0 and (R l)hi > 0 for
some l ≥ 0.

(ii) It is possible to reach an exit from all lanes, i.e., for every

i ∈ E there exists k ∈ E such that
∑
j∈E

Rkj < 1 and (R l)ik > 0

for some l ≥ 0.

λi

λj
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Model - Phases

For each junction v , introduce a set of
phases Ψv

• Set of binary vectors p ∈ {0, 1}Ev .

• If it possible to activate lane i and
j simultaneously, pi = pj = 1,
pk = 0 for all k ∈ Ev \ {i , j}.

• Assumed to contain the zero
phase, 0 ∈ Ψv .

i

j

The controller’s task is to determine the fraction each phase
should be activated.
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Model - Dynamics

• xi density on lane i

• λi external inflow

• Ci the lanes capacity

ẋi = λi +
∑
j∈E

Rjizj(x)− zi (x)

where zi (x) = Cihi (x) is the outflow from lane i and 1 ≥ hi (x) ≥ 0
determines the amount of green light lane i should receive:

hi (x) =
∑
p∈Ψv

θ
(v)
p (x)pi ,

where
∑
p∈Ψv

θ
(v)
p (x) = 1.
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Model - Maximizing green light policy

θ(v)(x (v)) is determined by

θ(v)(x (v)) ∈ argmax
θ∈Sv

∑
i∈Ev

xi log

∑
p∈Ψv

θppi

+ κv log θ0 ,

where Sv is the simplex of probability vectors over Ψv and κv > 0
is the weight on the zero phase.

10



Analysis Single Phase - Maximizing green light policy

• Every phase can prescribe green light to at most lane

• Set of phases

Ψv = {p ∈ {0, 1}Ev :
∑
e∈Ev

pe ≤ 1}

• The maximizing green light policy

h
(v)
i (x (v)) =

xi∑
j∈Ev xj + κv
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Analysis Single Phase - Stability

Theorem
Let G = (V, E ,C ) be a traffic network topology, R a routing
matrix, λ an arrival vector satisfying the previous stated
assumptions. Then the dynamical system, with maximizing green
light policies, satisfying∑

i∈Ev

ai
Ci

< 1, ∀v ∈ V

admits a globally asymptotically stable equilibrium x∗.

Proof.
Idea: Use the Lyapunov function

V (x) =
∑
i∈E

xi log

(
zi (x)

ai

)
+
∑
v∈V

κv log

(
h

(v)
0 (x)

h
(v)
0 (x∗)

)
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Multiphase Case - Analytical example

Local network, two incoming lanes

ẋ1 = 1− 2h1(x)

ẋ2 = 2− 3h2(x)

One common phase h0

h1

h2

 ∈ 〈
0

1
1

 ,
1

0
0

〉

Explicit solution

h1(x) = h2(x) =
x1 + x2

x1 + x2 + κ
, x > 0
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Multiphase Case - Phase portrait
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Multiphase Case - Network

1

12

[
1 0 0 0 0 0 1 0 0 0 0 0
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Multiphase Case - Network
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Global stability is conjectured
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Further Work

• Further theoretical investigation of the multiphase case

• Dynamic route choice behavior, i.e., Rij depends on the state
of the network

• Finite storage capacities

• Discrete time analysis

• Apply the controller to the Cell Transmission
model/Supply-and-Demand model
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