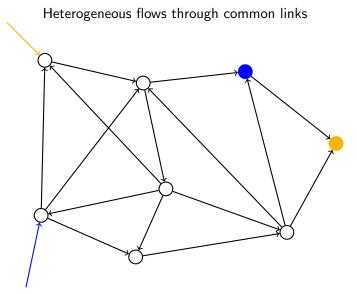
On Resilience of Multicommodity Flow Networks

<u>Gustav Nilsson</u>, Department of Automatic Control, Lund University Giacomo Como, Department of Automatic Control, Lund University Enrico Lovisari, INRIA Grenoble

> 53rd IEEE Conference on Decision and Control December 17, 2014

Multicommodity Flow Problem



In this talk: Introduce dynamics to study stability and resilience.

Multicommodity Flows

Photos: UK Highways Agency (CC BY 2.0) https://flic.kr/p/7Vp3La , Norlando Pobre (CC BY 2.0) https://flic.kr/p/dRCJAZ , Taylor (CC BY-NC-ND 2.0) https://flic.kr/p/6FpSea

Outline

Local network

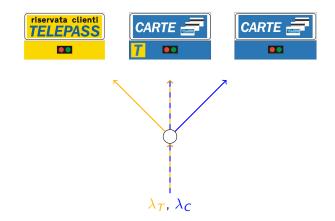
Global Network

Conclusions and Future Work

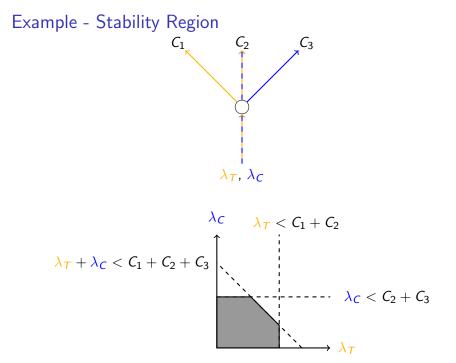
Example - Toll Station

Images: http://www.inabruzzo.com, http://www.autostrade.it

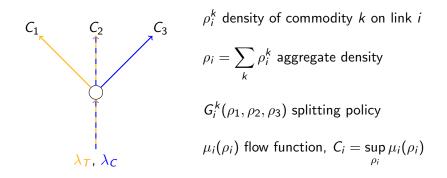
Example - Toll Station



Static inflow of customers with telepass, λ_{T} , and credit card, λ_{C} .



Local Network - Dynamics

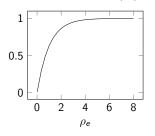


$$\dot{
ho}_i^k = \lambda_k G_i^k(
ho_1(t),
ho_2(t),
ho_3(t)) - rac{
ho_i^k(t)}{
ho_i(t)} \mu_i(
ho_i(t))$$

Local Network - Assumptions

Flow functions

Strictly increasing and bounded from above.



Flow function, $\mu_e(\rho_e)$

Splitting policies

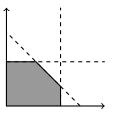
a)
$$\frac{\partial}{\partial \rho_j} G_i^k(\rho) \ge 0$$
, $\forall i, j \text{ s.t. } i \neq j$.
b) if $\rho_i \to +\infty$ on a subset of links, then $G_i^k(\rho) \to 0$.

Local Network - Stability

Theorem

For a local network, satisfying the assumptions on the previous slide, it holds that:

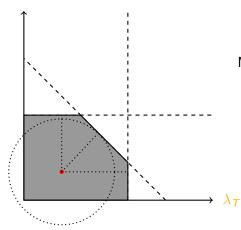
- a) if the inflows are inside the stability region, it exists unique limit densities, ρ_e^{k*} , such that $\lim_{t \to +\infty} \rho_e^k(t) = \rho_e^{k*}$ for every link.
- b) if the inflows are outside the stability region, $\rho_e(t) \rightarrow \infty$ on at least one link.



Proof idea: The system is monotone in the aggregate

Resilience

The largest increase of inflow/decrease of capacity the network can handle λ_{C}



Margin of resilience =

$$\min\{C_1 + C_2 + C_3 - \lambda_C - \lambda_T, \\ C_1 + C_2 - \lambda_T, \\ C_2 + C_3 - \lambda_C\}$$

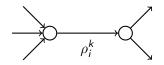
Outline

Local network

Global Network

Conclusions and Future Work

Global Network - Dynamics

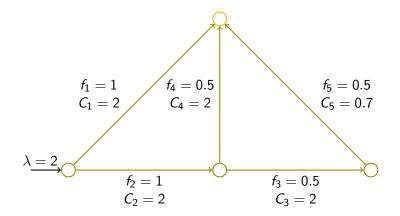


$$\begin{split} \dot{\rho}_i^k &= \sum_j f_{ji}^k - \sum_j f_{ij}^k \\ f_{ij}^k &= \begin{cases} \frac{\rho_i^k}{\rho_i} \mu_i(\rho_i) G_j^k(\rho) & \text{if } (i,j) \in \mathcal{E} \\ 0 & \text{o.w} \end{cases} \end{split}$$

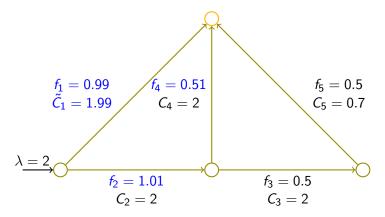
Proposition

For acyclic networks, where the splitting policies and flow functions are satisfying the previously stated assumptions, if there exists a finite equilibrium, it is globally asymptotically stable.

Resilience - Single Commodity

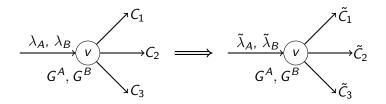


Resilience - Single Commodity



Margin of resilience = Minimum node residual capacity = 0.2 [Como et.al. (2013), *Robust Distributed Routing in Dynamical Networks - Part I & II*]

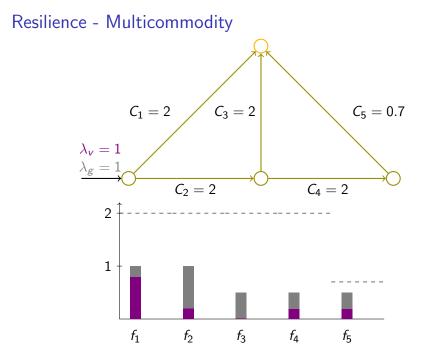
Resilience - Diffusivity

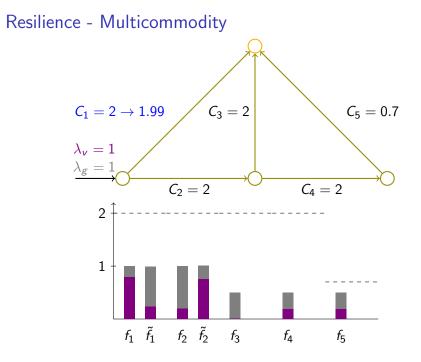


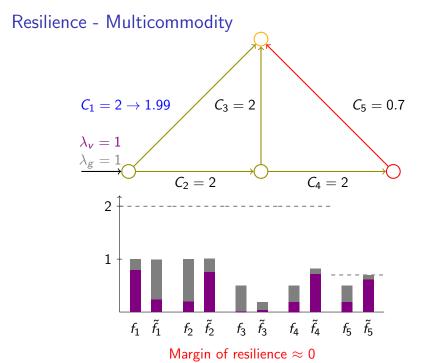
Proposition

For every subset of links \mathcal{I} it holds that

$$\sum_{i\in\mathcal{I}}\left(\tilde{f}_i^*(\tilde{\lambda})-f_i^*\right)\leq \sum_{k\in\mathcal{K}}\left[\tilde{\lambda}_k-\lambda_k\right]_++\sum_e(C_e-\tilde{C}_e).$$







Outline

Local network

Global Network

Conclusions and Future Work

Conclusions and Future Work

Conclusions

- Extension of single commodity to multicommodity
- Heterogeneity in the routing can make the network more fragile

Future Work

- Resilience under less heterogeneous routing policies
- Robust (distributed) controllers, scheduling

Gustav Nilsson Department of Automatic Control, Lund University gustav.nilsson@control.lth.se

