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1. INTRODUCTION
Harmonic influence has been recently introduced as

a measure of the relative influence of two nodes in a
network that naturally emerges in models of opinion
dynamics and social influence [1]. Given two nodes s0
and s1 in a connected network, that are assigned val-
ues xs0 = 0 and xs1 = 1, respectively, the harmonic
influence vector x measures the relative influence of
s1 with respect to s0 on the different nodes in the
network. It is characterized by the property that the
harmonic influence value xv in any node v 6= s0, s1
coincides with the weighted average of the values of
its neighbors. In other words, the harmonic influence
vector is the solution of the Laplace equation on the
network with boundary conditions on s0 and s1.

Harmonic influence can be given interpretations
both in terms of random walks and electrical net-
works. More precisely, the value xv coincides with
the probability that a random walk on the network
started in node v hits node s1 before node s0; on the
other hand, xv coincides with the voltage of node v
in an electrical network where links’ weights corre-
spond to conductances and the voltages in s0 and s1
are fixed to the values 0 and 1, respectively. In fact,
the connection to electrical networks has been ex-
ploited in the context of optimal placement of agents
in a network with the purpose of swaying the average
harmonic influence value. [6]

In [1], sufficient conditions for the harmonic influ-
ence vector to be almost constant throughout a large-
scale network (a phenomenon referred to as homoge-

neous influence) were investigated. It was shown that
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harmonic influence is homogeneous in highly fluid net-
works, characterized by the property that the prod-
uct between the mixing time of the associated stochas-
tic matrix and the relative degree of the nodes s0 and
s1 be vanishing in the large size limit.
In this work, we first study conditions under which

harmonic influence polarizes in a large-scale network.
Here, polarization refers to the existence of a cut in
the network such that most of the nodes on the one
side of it have harmonic influence value close to 0,
and most of the nodes on the other side have value
close to 1. In particular, we prove that, when the
total size of the links between the two sides of a cut
is negligible with respect to the degrees of s0 and s1,
then the harmonic influence vector polarizes across
this cut.
Then, we consider random interconnections between

two highly fluid networks, one containing node s0 and
the other one containing node s1 and prove the exis-
tence of a phase-transition. When the expected value
of the total weight of the links interconnecting the
two networks is negligible with respect to weight of
s0 and s1, then harmonic influence polarizes across
this cut. Conversely, when the weights of the inter-
connecting links are sufficiently concentrated around
their expected value and their total expected value
is much larger than the degree of s0 and s1, then
harmonic influence is homogeneous.
Proofs, that are omitted here due to space limita-

tions, rely on techniques from electrical networks and
random walks theory [3, 2, 5].

2. HARMONIC INFLUENCE
Let a network be modeled as a connected undi-

rected weighted graph G = (V, E ,Q), where V =
{1, . . . , n} is the set of nodes, E is the set of links,
and Q ∈ R

n×n
+ is a symmetricmatrix with zero diag-

onal and such that Quv > 0 if and only if {u, v} ∈ E .
Let1

q := Q1 , ρ := 1′q , χ :=
n

ρ
min
v

qv ,

1Throughout, 1 stands for the all-one vector and ′

for transpose.



be the degree vector, the total degree, and the ratio
between minimum and average degree. Let also

P = diag (q)−1Q , π := ρ−1q ;

notice that P is an irreducible stochastic matrix, π
is its stationary probability distribution and P is re-
versible, i.e., πuPuv = πvPvu. We refer to a discrete-
time Markov chain with transition probability matrix
P = 1

2
(I + P ) as the (lazy) random walk on G.

Fix two nodes s0 6= s1 ∈ V, to be called stubborn

nodes. We are interested in the unique vector x ∈ R
n

solving the following linear system of equations

∑

v
Quv(xv − xu) = 0 , u ∈ V \ {s0, s1} ,

xsi = i , i ∈ {0, 1} .
(1)

We will refer to x as the harmonic influence vector:
its v-th entry, xv, measures the relative influence on
node v exerted by node s1 with respect to that ex-
erted by node s0. Observe that (1) is equivalent to

xu =
∑

v
Puvxv , u ∈ V \ {s0, s1} ,

xsi = i , i ∈ {0, 1} .
(2)

that is, the value of every node other than s0 and s1
is the weighted average of its neighbor nodes’ values.

Existence and uniqueness of the harmonic influence
vector are standard facts (see, e.g., [5, Proposition
9.1]). The weighted mean of vector x’s entries

x := π′x =
1

ρ

∑

v

qvxv

will be called the average harmonic influence value.
Note that the case when there are multiple nodes
whose value is fixed to either 0 or 1 can be treated by
just considering the network where all the nodes with
value 0 are collapsed in a single node s0, and all the
nodes with value 1 are collapsed in a single node s1.
As proven in [1], x can be thought of as the vector of
expected stationary opinions of a stochastic opinion
dynamics with gossip or voter opinion updates.

In the following, we investigate properties of the
harmonic influence vector x, with particular focus on
large-scale networks. These are modeled as sequences
of networks of increasing size n, and we will con-
centrate on asymptotic behaviors as n grows large.
When doing so, limits have to be intended always
as n → +∞, unless specified otherwise. We will
also use the Landau notation, writing a = o(b) for
lim a/b = 0, a = O(b) meaning that a ≤ Kb for some
positive constant K independent of n, and a ≍ b
for a = O(b) and b = O(a). Finally, we will say
that some property holds ‘with high probability’ if
the probability that the property holds converges to
1 as n grows large. When considering large-scale net-
works, we always assume that

lim inf χ > 0 , (3)

i.e., that the ratio between the minimum and aver-
age degree remains bounded away from 0 as n grows
large, a property which is satisfied by most of the
large-scale networks considered in the literature. Note
that this is very different from requiring the ratio be-
tween the maximum and average degree to remain
bounded, a property which is not satisfied by many
large-scale networks.

3. HOMOGENEOUS INFLUENCE VS
POLARIZATION

In [1], sufficient conditions for the harmonic influ-
ence to be homogeneous were derived. Precisely, ho-
mogeneous influence is meant to be the property that

1

n
|{v : |xv − x| ≥ ε}| → 0 , ∀ε > 0 , (4)

i.e., that xv = x+o(1) for all but a vanishing fraction
of nodes. Such conditions can be formulated in terms
of the mixing time of the matrix P , defined as

τmix := inf

{

t ≥ 0 : max
u,v

∑

w

∣

∣

∣
(P

t
)uw − (P

t
)vw

∣

∣

∣
≤

1

2e

}

.

The mixing time measures the time required to the
random walk on G to get close to stationarity. As is
well known [2, 5], τmix can be estimated in terms of
the network conductance, i.e., its smallest bottleneck
ratio. In particular, such estimates imply that P is
fast mixing, i.e., τmix grows at most (poly)logarithmically
in n, when the conductance is either bounded away
from 0 or decreases at most polylogarithmically in n.
This is known to be the case in many random large-
scale networks of interest such as Erdos-Renyi graphs
in the connected regime, configuration models, pref-
erential attachment graphs, and small worlds. [4]
Theorem 4 in [1], implies that

1

n
|{v : |xv − x| ≥ ε}| ≤

1

χε
θ(τmix (πs0 + πs1)) , (5)

where θ(y) := y log e2/y, for all y > 0. Inequality (5)
combined with our standing assumption (3), implies
that in highly fluid networks, characterized by the
property that

τmix (πs0 + πs1) = τmix ρ
−1(qs0 + qs1) → 0 , (6)

influence is homogeneous. Several examples of highly
fluid networks are reported in [1, Sect.6] including all
the aforementioned cases of fast mixing large-scale
random networks when s0 and s1 are obtained by
merging multiple nodes with total degree O(n1−ε).
We now shift focus towards studying polarization

in large-scale networks. Consider a relative cut in
the network G separating s0 from s1. For i = 0, 1,
let Vi be the part of the node set V containing node
si, ∂i := {u ∈ Vi : {u, v} ∈ E for some v ∈ Vi−i} be
the internal boundary of Vi, and Gi be the network
obtained from G by collapsing V1−i into a single node
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Figure 1: In (a) a cut in G separating s0 from
s1, where the internal boundaries ∂0 and ∂1 are
shaded in gray. In (b), the subnetwork G0.

to be denoted by wi−1, so that the node set of Gi is
Vi ∪ {wi−1} (see Figure 1). In the special case when
Vi = {si} and V1−i = V \ {si}, one gets that Gi is a
simple network with node set {si, w1−i} and one link
of weight qsi , while G1−i coincides with the original
network G. More in general, we shall assume that,
Gi is connected for i = 0, 1 and let ni := |Vi|, π

i, and
τ i
mix be the corresponding size, invariant probability
distribution and mixing time, respectively. Let also

α := ρ−1
∑

u∈V0

∑

v∈V1

Quv

be the relative weight of the cut.
We shall say that the i-th subnetwork polarizes if

1

ni

|{v ∈ Vi : |xv − i| > ε}| → 0 , (7)

i.e., if the harmonic influence value of all but a vanish-
ing fraction of nodes on si’s side of the cut converges
to i. One may conjecture that the i-th subnetwork
be highly fluid and α/qsi → 0 would be sufficient
conditions for the i-th subnetwork to polarize on si.
While such a conjecture can be disproved as such,
we are going to formulate a refined version of it that
can be proven to hold true. Let us define the escape

probability from a node v ∈ Vi ∪ w1−i as

ζiv := sup
k≥0

P
i
v(T

+
v > kτ i

mix )− 2e−k

1 + kτ i
mix

πv

. (8)

In the above, the symbol Pi
v refers to the probabil-

ity for a random walk on Gi started from node v, and
T+
v stands for the return time of such random walk to

node v. It is not hard to verify that 0 ≤ ζiv ≤ 1 (the
second inequality is immediate, for the first one it is
sufficient to consider k → ∞). The reason for the ter-
minology comes from the fact that P

i
v(T

+
v > kτ i

mix )
is the probability that the random walk spends more
than kτ i

mix time steps before returning to its starting
node v: this term, which is clearly non increasing in
k, is then combined with the increasing term −2e−k,
normalized by the factor (1 + kτ i

mix πv), and opti-
mized over choices of k ≥ 0. While the specific form
of the right-hand side of (8) results from the technical
details of the proofs that are omitted here, it is pos-
sible to understand when it occurs that ζiv is strictly
larger than 0. This is the case when one can find
some positive k such that P

i
v(T

+
v > kτ i

mix ) > 2−k.
For large-scale networks, one has that

lim inf ζiv > 0 (9)

if τ i
mix π

i
v → 0 and lim inf Pi

v(T
+
v > kτ i

mix ) > 0 for
some k which grows large with the network size n.
From now on, we shall refer to (9) as the property
of positive escape probability from node si in a large-
scale network. It can be proven that the random
large-scale networks mentioned before (i.e, connected
Erdos-Renyi, configuration models, preferential at-
tachment, and small worlds) have finite escape proba-
bility from nodes obtained by merging random nodes
with total degree O(n1−ε).
We are now ready to formulate the first main result

of this contribution.

Theorem 1. Consider a large scale network G and

a cut separating s0 from s1. Assume that for i ∈
{0, 1}, the subnetwork Gi is highly fluid, i.e, τ

i
mix πsi =

τ i
mix qsi/ρ → 0, and have positive escape probabil-

ity from node si, i.e., lim inf ζisi > 0. If α/πsi =
αρ/qsi → 0, then Gi polarizes, as for (7).

The intuition behind this result is the following:
the condition α/πsi → 0 implies that the total weight
of links across the cut is negligible with respect to
the degree of node si, so that the influence of node si
dominates the one of all the nodes on the other side of
the cut (including s1−i). The condition τ i

mix πsi → 0
implies that influence is homogeneous in Vi, similarly
to Theorem 4 in [1]. Finally, the assumption of posi-
tive escape probability guarantees that dominance of
the influence of si on s1−i is not limited to the imme-
diate neighborhood of si, but can spread through the
network and affect most of Vi. As mentioned, the re-
sult does not hold true without this last assumption.
Theorem 1 should be contrasted with Theorem 4

in [1]. While the latter states that influence is homo-
geneous in highly fluid networks characterized by the
absence of small bottlenecks, when applied to both
i = 0 and i = 1, the former states that when the
cut between two internally highly fluid subnetworks



has a weight negligible with respect to the stubborn
nodes, then the two subnetworks polarize each on the
value of the corresponding stubborn node.

In fact, one can obtain more direct converse results
to Theorem 1. A natural conjecture is

Conjecture 1. Consider a large scale network G
and a cut separating s0 from s1. For i ∈ {0, 1}, let

the subnetwork Gi be such that τ i
mix πwi−1

→ 0 and

the escape probability from node wi−1 is finite, i.e.,

lim inf ζiwi−1
> 0. Then, harmonic influence is ho-

mogeneous provided that and πsi/α → 0, for i = 0, 1.

We have been able to prove the following two weaker
versions of Conjecture 1. The first one involves a re-
laxation of the notion of homogeneous influence. Let

z∗0 := max
v0

xv0 , z∗1 := min
v1

xv1

where, while intended to run over V0 and V1, the
maximation/minimization indices can actually be re-
stricted to ∂0 and ∂1, respectively. We use the term
weakly homogeneous influence with the meaning that

1

n
|{v : z∗1 − ε ≤ xv ≤ z∗0 + ε}| → 1 , ∀ε > 0 . (10)

Weakly homogeneous influence implies that z∗1 ≤ z∗0+
o(1). When |∂1| = 1 or |∂0| = 1, the maximum prin-
ciple implies that z∗0 ≤ z∗1 , so that (10) implies (4),
i.e., weakly homogeneous influence is the same as ho-
mogeneous influence. In general, this may not be the
case, and what is missing from (10) in order to get
(4) is an inequality of the form z∗0 ≤ z∗1 + o(1).

Then, the following result follows from Theorem 1.

Proposition 1. Consider a large scale network G
and a cut separating s0 from s1. For i ∈ {0, 1}, let the
escape probability from node wi−1 be positive in the

subnetwork Gi, i.e., lim inf ζiwi−1
> 0. If τ i

mix πwi−1
→

0 and πsi/α → 0, for i = 0, 1, then harmonic influ-

ence is weakly homogenous.

On the other hand, one can strengthen the assump-
tions of Conjecture 1 instead of weakening its conclu-
sion. For i = 0, 1, let χi := max

u∈Vi

(αqu)
−1

∑

v∈V1−i
Quv

measure the maximum ratio between the relative weight
of the connections of a node to the other side of the
cut, and the relative weight of the cut. We have

Proposition 2. If ατ i
mix → 0, πsi/α → 0, and

lim supχi < +∞ , (11)

for i = 0, 1, then influence is homogeneous.

It should be noted that the statement above allows
one to prove the original notion of homogeneous in-
fluence (4) as opposed to the potentially weaker one
(10). Moreover, it does not require any assumption
of positive escape probability. On the other hand,
it requires the additional assumption (11) that basi-
cally amounts to that the boundaries ∂0 and ∂1 be a
non-vanishing fraction of the respective node sets.

4. PHASE TRANSITIONS FROM PO-
LARIZATION TO HOMOGENEITY

Based on the results in the previous session, it is
possible to analyze large-scale networks where, at the
change of a parameter, the network transitions from a
condition of complete polarization to one of homoge-
neous influence. This can be done as follows. For i =
0, 1, let Gi = (Vi, Ei, Q

i) be two rapidly mixing net-
works of comparable size, and let si ∈ Vi be two stub-
born nodes (possibly obtained by merging together
multiple nodes) such that qs0 + qs1 = O(n1−ε) and
both have positive escape probability lim inf ζisi > 0.
Then, consider a network G obtained by interconnect-
ing G0 and G1 as follows: between any pair {v0, v1}
with v0 ∈ V0 \ {s0} and v1 ∈ V1 \ {s1} there is a
weight-β link independently with probability γ.
Then, Theorem 1 implies that

(a) if, n2βγ/qsi → 0, then, with high probability,
most of the i-th subnetwork polarizes on the
value of its stubborn node.

On the other hand, Proposition 1 implies that

(b1) if n2βγ/(qs0+qs1) → +∞, and βγ = O(1/n1+ε)
for some ε > 0, then, with high probability, in-
fluence is weakly homogeneous.

This can be strengthened using Proposition 2 to

(b2) if n2βγ/(qs0 + qs1) → +∞, lim inf γ > 0, and
β = O(1/n1+ε), then, with high probability,
influence is homogeneous.

Hence, if we consider the parameter βγ/qs, then
1/n2 is a threshold function for polarization vs (weakly)
homogeneous influence property.

5. CONCLUSION
In this work, we have studied harmonic influence

in large-scale networks. We have characterized suffi-
cient conditions for the network to be polarized and
investigated the existence of a phase transition be-
tween homogeneous influence and polarization.
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