

The Dujiangyan Irrigation System (250 B.C.)

The Power Grid Needs Control

Control challenges: More producers. Variable capacity. Limited storage. Flexible components.

Communication Networks Need Control

Water — Still a Control Challenge!

A scarce resource with different qualities for different needs:

- Drinking
- Washing
- Toilets
- Irrigation
- Industrial cooling
- ▶ ...

Many producers, many consumers in a complex network.

Traffic Networks Need Control

Control challenges: Throughput. Safety. Environmental footprint.

Towards a Scalable Control Theory

- ▶ Riccati equations use $O(n^3)$ flops, $O(n^2)$ memory
- Model Predictive Control requires even more
- Today: Exploiting monotone/positive systems

Outline

Positive systems

A linear system is called *positive* if the state and output remain nonnegative as long as the initial state and the inputs are nonnegative:

$$\frac{dx}{dt} = Ax + Bu \qquad \qquad y = Cx$$

Equivalently, A, B and C have nonnegative coefficients except possibly for the diagonal of A.

Examples:

- Probabilistic models.
- Economic systems.
- Chemical reactions.
- Ecological systems.

Example 1: A Transportation Network

How do we select ℓ_{ij} to minimize some gain from w to x?

Example 2: A Vehicle Formation

Stability of Positive systems

Suppose the matrix ${\boldsymbol A}$ has nonnegative off-diagonal elements. Then the following conditions are equivalent:

- (*i*) The system $\frac{dx}{dt} = Ax$ is exponentially stable.
- (ii) There is a *diagonal* matrix $P \succ 0$ such that $A^T P + PA \prec 0$
- (*iii*) There exists a vector $\xi > 0$ such that $A\xi < 0$. (The vector inequalities are elementwise.)
- (*iv*) There exits a vector z > 0 such that $A^T z < 0$.

Linear Positive Systems

- Transportation networks
 Vehicle formations
- Nonlinear Monotone Systems
 - Voltage stability
 - HIV/cancer treatment
- Frequency domain: Positively Dominated Systems
- Open problems and Conclusions

Positive Systems and Nonnegative Matrices

Classics:

Mathematics: Perron (1907) and Frobenius (1912) Economics: Leontief (1936)

Books:

Nonnegative matrices: Berman and Plemmons (1979) Large Scale Systems: Siljak (1978) Positive Linear Systems: Farina and Rinaldi (2000)

Recent work on control of positive systems — Examples:

Biology inspired theory: Angeli and Sontag (2003) Synthesis by linear programming: Rami and Tadeo (2007) Switched systems: Liu (2009), Fornasini and Valcher (2010) Distributed control: Tanaka and Langbort (2010) Robust control: Briat (2013)

Transportation Network in Practice

- Irrigation systems
- Power systems
- Traffic flow dynamics
- Communication/computation networks
- Production planning and logistics

Example 2: A Vehicle Formation

 $\begin{aligned} \dot{x}_1 &= -x_1 + \ell_{13}(x_3 - x_1) + w_1 \\ \dot{x}_2 &= \ell_{21}(x_1 - x_2) + \ell_{23}(x_3 - x_2) + w_2 \\ \dot{x}_3 &= \ell_{32}(x_2 - x_3) + \ell_{34}(x_4 - x_3) + w_3 \\ \dot{x}_4 &= -4x_4 + \ell_{43}(x_3 - x_4) + w_4 \end{aligned}$

How do we select ℓ_{ii} to minimize some gain from w to x?

Lyapunov Functions of Positive systems

Solving the three alternative inequalities gives three different Lyapunov functions:

A Distributed Search for Stabilizing Gains

Suppose	$\begin{bmatrix} a_{11}-\ell_1\\a_{21}+\ell_1 \end{bmatrix}$	$a_{12} \\ a_{22} - \ell_2$	$0 \\ a_{23}$	$\begin{bmatrix} a_{14} \\ 0 \end{bmatrix}$	> 0 for $\ell_1, \ell_2 \in [0, 1]$.
	$\begin{bmatrix} 0\\ a_{41} \end{bmatrix}$	$a_{32}+\ell_2 \ 0$	$a_{33} \ a_{43}$	$\left[egin{array}{c} a_{32} \ a_{44} \end{array} ight]$	

For stabilizing values of ℓ_1, ℓ_2 , find $0 \le \mu_k \le \xi_k$ such that

a_{11}	a_{12}	0	a_{14}	[ξ ₁]	[-1	0]		[0]
a_{21}	a_{22}	a_{23}	0	$ \xi_2 $	1	-1	$\left[\mu_{1} \right]$	0
0	a_{32}	a_{33}	a_{32}	$ \xi_3 ^+$	0	1	$ \mu_2 ^{<}$	0
a_{41}	0	a_{43}	a_{44}	$[\xi_4]$	0	0		$\lfloor 0 \rfloor$

and set $\ell_1 = \mu_1/\xi_1$ and $\ell_2 = \mu_2/\xi_2$. Every row gives a local test. Distributed synthesis by linear programming (gradient search).

Performance of Positive systems

Suppose that $\mathbf{G}(s) = C(sI - A)^{-1}B + D$ where $A \in \mathbb{R}^{n \times n}$ is Metzler, while $B \in \mathbb{R}^{n \times 1}_+$, $C \in \mathbb{R}^{1 \times n}_+$ and $D \in \mathbb{R}_+$. Define $\|\mathbf{G}\|_{\infty} = \sup_{\omega} |G(i\omega)|$. Then the following are equivalent:

(*i*) The matrix A is Hurwitz and $\|\mathbf{G}\|_{\infty} < \gamma$.

(*ii*) The matrix
$$\begin{bmatrix} A & B \\ C & D - \gamma \end{bmatrix}$$
 is Hurwitz

Example 2: Vehicle Formations

A Scalable Stability Test

Stability of $\dot{x} = Ax$ follows from existence of $\xi_k > 0$ such that

a_{11}	a_{12}	0	a_{14}	[ξ1]		[<mark>0</mark>]
a_{21}	a_{12}	a_{23}	0	ξ_2	/	0
0	a_{32}	a_{33}	a_{32}	$ \xi_3 $		0
$\lfloor a_{41}$	1 0	a_{43}	a_{44}	ξ4]		$\begin{bmatrix} 0 \end{bmatrix}$
		<u> </u>				

The first node verifies the inequality of the first row.

The second node verifies the inequality of the second row.

Verification is scalable!

. . .

Optimal Control of Transportation Networks

How do we select $\ell_{ij} \in [0,1]$ to minimize some gain from w to Cx?

Example 1: Transportation Networks

Outline

Linear Positive Systems

- Transportation networksVehicle formations
- Nonlinear Monotone Systems
 - Voltage stability
 - HIV/cancer treatment
- Frequency domain: Positively Dominated Systems
- Open problems and Conclusions

Nonlinear Monotone Systems

The system

$$\dot{x}(t) = f(x(t), u(t)), \qquad x(0) = a$$

is a monotone system if its linearization is a positive system.

Voltage Stability

generator currents load currents $\underbrace{ \begin{pmatrix} t \\ t \end{pmatrix} }_{(t)} = \underbrace{ \begin{bmatrix} Y^{GG} & Y^{GL} \\ Y^{LG} & Y^{LL} \end{bmatrix} }_{\text{network}} \begin{bmatrix} u^G(t) \\ u^L(t) \end{bmatrix} \text{ load voltages}$

 $k = 1, \ldots, n$

$$rac{di_k^L}{dt}(t) = rac{p_k^*}{u_k^L(t)} - i_k^L(t)$$

Voltage stabilization is an important large-scale control problem. Monotonicity be exploited for control synthesis!

Combination Therapy is a Control Problem

Evolutionary dynamics:

$$\dot{x} = \left(A - \sum_{i} u_i D^i\right) x$$

Each state x_k is the concentration of a mutant. (There can be hundreds!) Each input u_i is a drug dosage.

A describes the mutation dynamics without drugs, while $D^1, \ldots, D^m \ge 0$ are diagonal matrices modeling drug effects.

Determine $u_1, \ldots, u_m \ge 0$ with $u_1 + \cdots + u_m \le 1$ such that x decays as fast as possible!

[Hernandez-Vargas, Colaneri and Blanchini, JRNC 2011] [Jonsson, Rantzer,Murray, ACC 2014]

Outline

- Linear Positive Systems
 - Transportation networks
 - Vehicle formations
- Nonlinear Monotone Systems
 - Voltage stability
 - HIV/cancer treatment
- Frequency domain: Positively Dominated Systems
- Open problems and Conclusions

Max-separable Lyapunov Functions

Let $\dot{x} = f(x)$ be a globally asymptotically stable monotone system with invariant compact set $X \subset \mathbb{R}^n_+$. Then there exist strictly increasing functions $V_k : \mathbb{R}_+ \to \mathbb{R}_+$ for k = 1, ..., n with $\frac{d}{dt}V(x(t)) = -V(x(t))$ in X where V(x) is equal to

$$V(x) = \max\{V_1(x_1),\ldots,V_n(x_n)\}.$$

Convex-Monotone Systems

The system

$$\dot{x}(t) = f(x(t), u(t)), \qquad x(0) = c$$

is a monotone system if its linearization is a positive system. It is a convex monotone system if every row of f is also convex.

Theorem.

For a convex monotone system $\dot{x} = f(x, u)$, each component of the trajectory $\phi_t(a, u)$ is a convex function of (a, u).

Example

Platoon of Vehicles with Inertia

 $\begin{aligned} (s^2 + 0.1s)x_1 &= -\mathbf{C}_1(s)x_1 + w_1 \\ (s^2 + 0.1s)x_2 &= \mathbf{C}_2(s)[\lambda_{21}(x_1 - x_2) + \lambda_{23}(x_3 - x_2)] + w_2 \\ (s^2 + s)x_3 &= \mathbf{C}_3(s)[\lambda_{32}(x_2 - x_3) + \lambda_{34}(x_4 - x_3)] + w_3 \\ (s^2 + s)x_4 &= -\mathbf{C}_4(s)x_4 + w_4 \end{aligned}$

Negative feedback destroys positivity in second order models. Is there a scalable approach to controller design?

