
Lecture 13 — Nonlinear Control Synthesis Cont’d

Today’s Goal: To understand the meaning of the concepts

◮ Gain scheduling

◮ Internal model control

◮ Model predictive control

◮ Nonlinear observers

◮ Lie brackets

Material:

◮ Lecture notes
◮ Internal model, more info in e.g.,

◮ Section 8.4 in [Glad&Ljung]
◮ Ch 12.1 in [Khalil]

Gain Scheduling
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Example of scheduling variables

◮ Production rate

◮ Machine speed

◮ Mach number and dynamic pressure

Compare structure with adaptive control!
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Gain Scheduling

◮ state dependent controller parameters.
◮ K = K(q)

◮ design controllers for a number of operating points.
◮ use the closest controller.

Problems:

◮ How should you switch between different controllers?
◮ Bumpless transfer

◮ Switching between stabilizing controllers can cause instability.

Outline

◦ Gain scheduling

• Internal model control

◦ Model predictive control

◦ Nonlinear observers

◦ Lie brackets
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Internal Model Control
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Feedback from model error y − ŷ.

Design: Choose Ĝ ≈ G and Q stable with Q ≈ G−1.

Two equivalent diagrams
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Example

G(s) =
1

1 + sT1

Choose

Q =
1 + sT1

1 + τs

Gives the PI controller

C =
1 + sT1

sτ
=

T1

τ

(
1 +

1

T1s

)

Internal Model Control Can Give Problems

◮ Unstable G

◮ Q 6≈ G−1 due to RHP zeros

◮ Cancellation of process poles may show up in some signals

Internal Model Control with Static Nonlinearity

−

−
r u

v

y
Q G

Ĝ

Include the nonlinearity in the model in the controller.

Choose Q ≈ G−1.

Example (cont’d)

−

−
r u

v

y
Q G

Ĝ

Assume r = 0 and Ĝ = G:

u = −Q(y − Ĝv) = −1 + sT1

1 + τs
y +

1

1 + τs
v

Same as before if |u| ≤ umax: Integrating controller.

If |u| > umax then

u = −1 + sT1

1 + τs
y ± umax

1 + τs

No integration. (A way to implement anti-windup.)

Outline

◦ Gain scheduling

◦ Internal model control

• Model predictive control

◦ Nonlinear observers

◦ Lie brackets

Model Predictive Control – MPC

1. Derive the future controls u(t+ j), j = 0, 1, . . . , N − 1 that
give an optimal predicted response.

2. Apply the first control u(t).

3. Start over from 1 at next sample.
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What is Optimal?

Minimize a cost function, V , of inputs and predicted outputs.

V = V (Ut, Yt), Ut =



u(t+N − 1)

...
u(t)


 , Yt =



ŷ(t+M |t)

...
ŷ(t+ 1|t)




V often quadratic

V (Ut, Yt) = Y T
t QyYt + UT

t QuUt (1)

=⇒ linear controller
u(t) = −Lx̂(t|t)

Model Predictive Control

+ Flexible method
* Many types of models for prediction:

◮ state space, input–output, step response, FIR filters

* MIMO
* Time delays

+ Can include constraints on input signal and states

+ Can include future reference and disturbance information

– On-line optimization needed

– Stability (and performance) analysis can be complicated

Typical application:
Chemical processes with slow sampling (minutes)

A predictor for Linear Systems

Discrete-time model

x(t+ 1) = Ax(t) +Bu(t) +Bvv1(t)

y(t) = Cx(t) + v2(t)
t = 0, 1, . . .

Predictor (v unknown)

x̂(t+ k + 1|t) = Ax̂(t+ k|t) +Bu(t+ k)

ŷ(t+ k|t) = Cx̂(t+ k|t)

The M-step predictor for Linear Systems

x̂(t|t) is predicted by a standard Kalman filter, using outputs up to
time t, and inputs up to time t− 1.

Future predicted outputs are given by



ŷ(t+M |t)

...
ŷ(t+ 1|t)


 =



CAM

...
CA


 x̂(t|t)+



CB CAB CA2B . . .
0 CB CAB . . .
...

. . .
. . .

...







u(t+M − 1)
...

u(t+N − 1)
...

u(t)




Yt = Dxx̂(t|t) +DuUt

Limitations

Limitations on control signals, states and outputs,

|u(t)| ≤ Cu |xi(t)| ≤ Cxi |y(t)| ≤ Cy,

leads to linear programming or quadratic optimization.

Efficient optimization software exists.

Design Parameters

◮ Model

◮ M (look on settling time)

◮ N as long as computational time allows

◮ If N < M − 1 assumption on u(t+N), . . . , u(t+M − 1)
needed (e.g., = 0, = u(t+N − 1).)

◮ Qy, Qu (trade-offs between control effort etc)

◮ Cy, Cu limitations often given

◮ Sampling time

Product: ABB Advant

Example–Motor

A =


1 0.139
0 0.861


 , B =


0.214
2.786


 , C =


1 0




Minimize V (Ut) = ‖Yt −R‖ where R =




r
...
r



, r=reference,

M = 8, N = 2, u(t+ 2) = u(t+ 3) = u(t+ 7) = . . . = 0

Example–Motor

Yt =




CA8

...
CA




x(t) +




CA6B CA7B
...

...
0 CB





u(t+ 1)

u(t)




= Dxx(t) +DuUt

Solution without control constraints

Ut = −(DT
uDu)

−1DT
uDxx+ (DT

uDu)
−1DT

uR =

= −

−2.50 −0.18

2.77 0.51





x1(t)− r

x2(t)




Use
u(t) = −2.77(x1(t)− r)− 0.51x2(t)
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Example–Motor–Results

No control constraints in opti-
mization (but in simulation)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

5

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−1

0

1

Control constraints |u(t)| ≤ 1 in
optimization.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

5

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−1

0

1

Outline

◦ Gain scheduling

◦ Internal model control

◦ Model predictive control

• Nonlinear observers

◦ Lie brackets

Nonlinear Observers

What if x is not measurable?

ẋ = f(x, u), y = h(x)

Simplest observer (open loop – only works for as. stable systems).

˙̂x = f(x̂, u)

Correction, as in linear case,

˙̂x = f(x̂, u) +K(y − h(x̂))

Choices of K

◮ Linearize f at x0, find K for the linearization

◮ Linearize f at x̂(t), find K(t) for the linearization

Second case is called Extended Kalman Filter

A Nonlinear Observer for the Pendulum

Control tasks:

1. Swing up

2. Catch

3. Stabilize in upward position

The observer must to be valid for
a complete revolution

A Nonlinear Observer for the Pendulum

d2θ

dt2
= sin θ + u cos θ

x1 = θ, x2 =
dθ
dt =⇒

dx1
dt

= x2

dx2
dt

= sinx1 + u cosx1

Observer structure:

dx̂1
dt

= x̂2 +k1(x1 − x̂1)

dx̂2
dt

= sin x̂1 + u cos x̂1 +k2(x1 − x̂1)

A Nonlinear Observer for the Pendulum

Introduce the error x̃ = x̂− x





dx̃1
dt

= −k1x̃1 + x̃2

dx̃2
dt

= sin x̂1 − sinx1 + u(cos x̂1 − cosx1)− k2x̃1

d

dt

[
x̃1
x̃2

]
=

[
−k1 1
−k2 0

] [
x̃1
x̃2

]
+

[
0
1

]
v

v = 2 sin
x̃1
2

(
cos (x1 +

x̃1
2
)− u sin(x1 +

x̃1
2
)
)

G(s)

x̃1 v

Stability with Small Gain Theorem

The linear block:

G(s) =
1

s2 + k1s+ k2
=

1

s2 + 2ζω0s+ ω2
0

With ζ ≥ 1√
2
, this gives

γG = max |G(iω)| = |G(0)| = 1

ω2
0

Moreover

|v| =
∣∣∣∣2 sin

x̃1
2

(
cos (x1 +

x̃1
2
)− u sin(x1 +

x̃1
2
)
)∣∣∣∣ ≤ |x̃1|

√
1 + u2max

so the observer is stable by the small gain theorem provided that
k2 = ω2

0 is selected to satisfy 1
ω2
0

√
1 + u2max ≤ 1.

A Nonlinear Observer for the Pendulum
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Outline

◦ Gain scheduling

◦ Internal model control

◦ Model predictive control

◦ Nonlinear observers

• Lie brackets

Controllability

Linear case
ẋ = Ax+Bu

All controllability definitions coincide

0 → x(T ),

x(0) → 0,

x(0) → x(T )

T either fixed or free

Rank condition System is controllable iff

Wn =

B AB . . . An−1B


 full rank

Is there a corresponding result for nonlinear systems?

Lie Brackets

Lie bracket between f(x) and g(x) is defined by

[f, g] =
∂g

∂x
f − ∂f

∂x
g

Example:

f =


cosx2

x1


 , g =


x1

1


 ,

[f, g] =
∂g

∂x
f − ∂f

∂x
g

=


1 0
0 0





cosx2

x1


−


0 − sinx2
1 0





x1

1




=


cosx2 + sinx2

−x1




Why interesting?

ẋ = g1(x)u1 + g2(x)u2

◮ The motion (u1, u2) =





(1, 0), t ∈ [0, ǫ]
(0, 1), t ∈ [ǫ, 2ǫ]

(−1, 0), t ∈ [2ǫ, 3ǫ]
(0,−1), t ∈ [3ǫ, 4ǫ]

gives motion x(4ǫ) = x(0) + ǫ2[g1, g2] +O(ǫ3)

◮ Φt
[g1,g2]

= lim
n→∞

(Φ

√
t
n

−g2 Φ

√
t
n

−g1 Φ

√
t
n

g2 Φ

√
t
n

g1 )n

◮ The system is controllable if the Lie bracket tree has full
rank (controllable=the states you can reach from x = 0 at fixed time T contains a ball around x = 0)

The Lie Bracket Tree

[g1, g2]

[g1, [g1, g2]]
[g2, [g1, g2]]

[g1, [g1, [g1, g2]]] [g2, [g1, [g1, g2]]] [g1, [g2, [g1, g2]]] [g2, [g2, [g1, g2]]]

Parking Your Car Using Lie-Brackets

ϕ

θ

x

y

(x, y)

d

dt




x
y
ϕ
θ




=




0
0
0
1




u1 +




cos(ϕ+ θ)
sin(ϕ+ θ)
sin(θ)

0




u2

Parking the Car

Can the car be moved sideways?

Sideways: in the (− sin(ϕ), cos(ϕ), 0, 0)T -direction?

[g1, g2] =
∂g2
∂x

g1 −
∂g1
∂x

g2

=




0 0 − sin(ϕ+ θ) − sin(ϕ+ θ)
0 0 cos(ϕ+ θ) cos(ϕ+ θ)
0 0 0 cos(θ)
0 0 0 0







0
0
0
1




− 0

=




− sin(ϕ+ θ)
cos(ϕ+ θ)
cos(θ)

0




=: g3 = “wriggle”

Once More

[g3, g2] =
∂g2
∂x

g3 −
∂g3
∂x

g2 = . . .

=




− sin(ϕ)
cos(ϕ)

0
0




= “sideways”

The motion [g3, g2] takes the car sideways.

(−sin(ϕ), cos(ϕ))
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The Parking Theorem

You can get out of any parking lot that is bigger than your car.
Use the following control sequence:

Wriggle, Drive, –Wriggle(this requires a cool head), –Drive
(repeat).

Outline

◦ Gain scheduling

◦ Internal model control

◦ Model predictive control

◦ Nonlinear observers

◦ Lie brackets

• Extra: Integral quadratic constraints

Integral Quadratic Constraint

replacements

∆vv

∆

The (possibly nonlinear) operator ∆ on Lm
2 [0,∞) is said to satisfy

the IQC defined by Π if

∫ ∞

−∞

[
v̂(iω)

(̂∆v)(iω)

]∗

Π(iω)

[
v̂(iω)

(̂∆v)(iω)

]
dω ≥ 0

for all v ∈ L2[0,∞).

∆ structure Π(iω) Condition

∆ passive

[
0 I
I 0

]

‖∆(iω)‖ ≤ 1

[
x(iω)I 0

0 −x(iω)I

]
x(iω) ≥ 0

δ ∈ [−1, 1]

[
X(iω) Y (iω)
Y (iω)∗ −X(iω)

]
X = X∗ ≥ 0
Y = −Y ∗

δ(t) ∈ [−1, 1]

[
X Y
Y T −X

]

∆(s) = e−θs − 1

[
x(iω)ρ(ω)2 0

0 −x(iω)

]
ρ(ω) =

2max|θ|≤θ0 sin(θω/2)

IQC Stability Theorem

G(s)

τ∆

Let G(s) be stable and proper and let ∆ be causal.

For all τ ∈ [0, 1], suppose the loop is well posed and τ∆ satisfies
the IQC defined by Π(iω). If

[
G(iω)

I

]∗
Π(iω)

[
G(iω)

I

]
< 0 for ω ∈ [0,∞]

then the feedback system is input/output stable.

A Matlab toolbox for system analysis

http://www.ee.mu.oz.au/staff/cykao/

−e y
G

−4 −2 0 2 4 6 8

−2

0

2

4

6

8

G(iω)

>> abst_init_iqc;

>> G = tf([10 0 0],[1 2 2 1]);

>> e = signal

>> w = signal

>> y = -G*(e+w)

>> w==iqc_monotonic(y)

>> iqc_gain_tbx(e,y)

A servo with friction

2s  +2s+12

.01s  +s2

Transfer Fcn
Sum1Sum

Step

Scope

Saturation

s

1

Integrator1
s

1

Integrator

−K−

Gain2

−1

Gain1

10

Gain

An analysis model defined graphically

 Exp(−ds)−1

uncertain delay

performance

monotonic with 
restrict rate

2s  +2s+12

0.01s  +s+.012

Transfer Fcn

Sum2

Sum1Sum

s

1

Integrator1
s

1

Integrator

10

Gain
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iqc_gui(’fricSYSTEM’)

extracting information from fricSYSTEM ...

scalar inputs: 5

states: 10

simple q-forms: 7

LMI #1 size = 1 states: 0

LMI #2 size = 1 states: 0

LMI #3 size = 1 states: 0

LMI #4 size = 1 states: 0

LMI #5 size = 1 states: 0

Solving with 62 decision variables ...

ans = 4.7139

A library of analysis objects

1

Out

window

white noise
performance

unknown const

slope nonlinearity

sector+popov

sector
sat−int

Popov

popov IQC

polytope with
restrict rate

polytope

performance

odd slope nonlinearity

norm bounded

monotonic with 
restrict rate

harmonic

encapsulated odd deadzone

encapsulated deadzone

diagonal structure

 Exp(−ds)−1

cdelay

(s−1)

s(s+1)

Zero−Pole

1

s+1

Transfer Fcn

|D(t)|<k

TV scalar

Sum
Step Source

x’ = Ax+Bu
 y = Cx+Du

State−Space

STV scalar

Mux

Mux

K

Matrix
Gain

LTI unmodeled

1

Gain

Demux

Demux

1

In

The friction example in text format

d=signal; % disturbance signal

e=signal; % error signal

w1=signal; % friction force

w2=signal; % delay perturbation

u=signal; % control force

v=tf(1,[1 0])*(u-w1) % velocity

x=tf(1,[1 0])*v; % position

e==d-x-w2;

u==10*tf([2 2 1],[0.01 1 0.01])*e;

w1==iqc_monotonic(v,0,[1 5],10)

w2==iqc_cdelay(x,.01)

iqc_gain_tbx(d,e)

Summary

• Gain scheduling

• Internal model control

• Model predictive control

• Nonlinear observers

• Lie brackets

• Extra: Integral quadratic constraints

Next: Lecture 14

◮ Course Summary
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