Lecture 13 — Nonlinear Control Synthesis Cont’d

Today’s Goal: To understand the meaning of the concepts

» Gain scheduling

» Internal model control

v

Model predictive control
» Nonlinear observers

» Lie brackets

Material:

> Lecture notes

> Internal model, more info in e.g.,

> Section 8.4 in [Glad&Ljung]
» Ch 121 in [Khalil

Gain Scheduling
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Example of scheduling variables

» Production rate
» Machine speed

» Mach number and dynamic pressure

Compare structure with adaptive control!
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> state dependent controller parameters.
> K =K(q)

> design controllers for a number of operating points.
> use the closest controller.

Problems:

» How should you switch between different controllers?
» Bumpless transfer

» Switching between stabilizing controllers can cause instability.

o Gain scheduling

e Internal model control
o Model predictive control
o Nonlinear observers

o Lie brackets




Internal Model Control

Feedback from model error y — 3.

Design: Choose G~ G and Q stable with Q ~ G~1.

Two equivalent diagrams

Example
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o 1+ ST1
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Gives the Pl controller
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Internal Model Control Can Give Problems

Unstable G
Q % G~ due to RHP zeros

» Cancellation of process poles may show up in some signals

v

v

Internal Model Control with Static Nonlinearity

Include the nonlinearity in the model in the controller.

Choose Q ~ G~ 1.

Example (cont’d)

Assume 7 =0 and G = G-

u=-Qy—Gv)=

14T 1

_ y v
1+ 7s 14+ 7s

Same as before if |u| < umax: Integrating controller.

If |u| > Umax then

1+ sTy Umax
_ y+
14+7s 1+7s

No integration. (A way to implement anti-windup.)

Outline

o Gain scheduling

o Internal model control

e Model predictive control
o Nonlinear observers

o Lie brackets

Model Predictive Control — MPC
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1. Derive the future controls u(t +j), j7=0,1,...,N —1 that
give an optimal predicted response.

2. Apply the first control u(t).

3. Start over from 1 at next sample.




What is Optimal?

Minimize a cost function, V, of inputs and predicted outputs.

ult+ N —1) Yt + M|t)
V=V({U,Y,), U= : , Y= :
u(t) y(t+1|t)
V often quadratic
V(U Yy) = Y QY + U QuU;

= linear controller
u(t) = —LZ(t|t)

Model Predictive Control

+ Flexible method
* Many types of models for prediction:
> state space, input—output, step response, FIR filters
* MIMO
* Time delays

+ Can include constraints on input signal and states
+ Can include future reference and disturbance information
— On-line optimization needed

— Stability (and performance) analysis can be complicated

Typical application:
Chemical processes with slow sampling (minutes)

A predictor for Linear Systems

Discrete-time model

x(t 4+ 1) = Az(t) + Bu(t) + By (t)

t=0,1,...
y(t) = Ca(t) +va(t)
Predictor (v unknown)

B(t + k + 1]t) = AZ(t + k[t) + Bu(t + k)
Gt + k[t) = CF(t + klt)

The M-step predictor for Linear Systems

Z(t|t) is predicted by a standard Kalman filter, using outputs up to
time ¢, and inputs up to time ¢ — 1.

Future predicted outputs are given by

u(t+ M —1)]
gt + Mlt) cAM CB CAB CA’B :
: =| : |z@e+| 0 CB CAB u(t + N —1)
Gt +11t) cA o : ;
u(t)

Y, = D,E(t[t) + DUy

Limitations

Limitations on control signals, states and outputs,
lu@)| < Cu |ai(t)] < Cay  |y(t)] < Cy,

leads to linear programming or quadratic optimization.

Efficient optimization software exists.

Design Parameters

> Model

» M (look on settling time)

» N as long as computational time allows

> If N < M — 1 assumption on u(t + N),...,u(t + M — 1)
needed (e.g., =0, =u(t+ N —1).)

> Qy, Qu (trade-offs between control effort etc)

> Cy, Cy limitations often given

» Sampling time

Product: ABB Advant

Example—Motor

1 0.139 0.214
A= [0 0.861] » B= [2.786]’ o= (1 0]

.

Minimize V(U;) = ||Y; — R|| where R = , r=reference,
r

M=8 N=2ut+2) =u(t+3)=u(t+7)=...=0

Example—Motor

cAs CASB CA'B
i=| : |=@®)+ : :
CA 0 CB
= Dya(t) + DU,

(")

Solution without control constraints

Ui =—(DID,)'DIDx 4+ (DID,)'DIR =
_ (250 —018) (x1(t) -7
- 277 0.51 (1)

u(t) = —=2.77(x1 (t) — r) — 0.51za(t)




Example—Motor—Results

No control constraints in opti- Control constraints |u(¢)] <1 in
mization (but in simulation) optimization.

Outline

o Gain scheduling

o Internal model control
o Model predictive control
e Nonlinear observers

o Lie brackets

Nonlinear Observers

What if x is not measurable?
&= f(z,u), y=nh(z)
Simplest observer (open loop — only works for as. stable systems).
7= f(@u)
Correction, as in linear case,
7= f(@u)+ K(y - h(z))
Choices of K

» Linearize f at xg, find K for the linearization
» Linearize f at Z(t), find K (t) for the linearization

Second case is called Extended Kalman Filter

A Nonlinear Observer for the Pendulum

Control tasks:
1. Swing up
2. Catch
3. Stabilize in upward position

The observer must to be valid for
a complete revolution

A Nonlinear Observer for the Pendulum

d%0
i sinf + w cos 6
xr] = 0, Tog = %? -
dml
= _
a P
dxo . n
— =sinx U COS T
i 1 1
Observer structure:
di
% =T +k‘1(.l‘1 — il)
dio

sin &1 + wcos T1 +ho(z1 — 21)

dt

A Nonlinear Observer for the Pendulum

Introduce the error =& —

I = —k1Z1 + o
e
% =sind; —sinzy + u(cos &y — cos 1) — kaZy
d [#] [~k 1] [&] [0
%{@]*Lkz 0] [#) T [1]"”
v = 251n%(cos (x1 + %) — usin(z; + %))

il - !

G(s)

Stability with Small Gain Theorem

The linear block:

1 1

Cls) = —
(5) s24+kis+ky 82+ 2Cwos + wi

With ¢ > % this gives

Ve = max |G(iw)| = |G(0)] =

ogw‘ =

Moreover

2sin %(cos (21 + %) — usin(z; + %))‘ <aVI+ad,,

[v] =

so the observer is stable by the small gain theorem provided that
kg = wd is selected to satisfy %g*/l +uZ e <1

A Nonlinear Observer for the Pendulum

Control Signal




Outline

o Gain scheduling

o Internal model control
o Model predictive control
o Nonlinear observers

e Lie brackets

Controllability

Linear case
i = Ax + Bu

All controllability definitions coincide
0— z(T),
z(0) = 0,
z(0) = z(T)
T either fixed or free
Rank condition System is controllable iff
W, = [B AB AHB) full rank

Is there a corresponding result for nonlinear systems?

Lie Brackets

Lie bracket between f(z) and g(z) is defined by

_dg, Of
[f,g] = oz *%9

Why interesting?

&= g1(v)u1 + g2(x)u2

Example:
(1,0), telo,e
_ [cosxy (= . -~ (0,1), tele2¢
f= [ . ] ; g= [ ) ] , > The motion (u1,us) = (=1,0), t € [2¢,3¢]
dg, 9f (0,=1), € [3e.4¢
[f.9] = oz’ " oY gives motion z(4¢) = x(0) + €2[g1, ga] + O(€3)
10 cos T 0 —sinx x t T VEgVigVigVE
N [0 0] [ 3 2] B [1 0 2] [ 11] > Py gy = J (D1 @Y gy " D, )"
. » The system is controllable if the Lie bracket tree has full
cos T + sin xg ) '
= [ ] rank (controllable=the states you can reach from = = 0 at fixed time T contains a ball around = = 0)
—1
The Lie Bracket Tree Parking Your Car Using Lie-Brackets
g1, (91, 92]) v lonae]

lg1: (91, g1, go]]] o lg1, 92]]] g1, [92. (91 g2]]]

x 0 cos(p +0)
d 1yl _ 1|0 sin(e + 6)
at o] ~ Jo|™ + sin(6) 2
0 1 0
Parking the Car Once More

Can the car be moved sideways?

Sideways: in the (—sin(¢), cos(), 0,0)T-direction?

_ 992 9g1
[91,!]2] = g1 o 92

0 0 —sin(p+60) —sin(p+86)
|0 0 cos(¢p+6) cos(p+6)
“lo o 0 cos(6)

00 0 0

—sin(p +0)

_|ocostetO) |
= cos(6) =: g3 = "wriggle
0

= =]

) dgs
[!]3792] = 677(]3 - E!]z =...
—sin(yp)
= cos(p) = "sideways'
0
0

The motion [g3, g2] takes the car sideways.

(=sin(p), cos())




The Parking Theorem

You can get out of any parking lot that is bigger than your car.
Use the following control sequence:

Wriggle, Drive, —~Wriggle(this requires a cool head), —Drive
(repeat).

Outline

o Gain scheduling

o Internal model control
o Model predictive control
o Nonlinear observers

o Lie brackets

e Extra: Integral quadratic constraints

Integral Quadratic Constraint

m

The (possibly nonlinear) operator A on L3'[0, c0) is said to satisfy
the IQC defined by 11 if

o [ Hliw) |7 . B(iw)
/m[mv)(m) He) <Av><z‘w>}dw>°

for all v € Ly[0, c0).

A structure T (iw) Condition
A passive { ? é }
ladr<t [0 8 (i) > 0
X(iw) Y (iw) X=X*>0
§el-1.1] { Y(iw)* —X(iw) } Y =-v*
5(t) € [-1,1] &N }
plw) =

2 max|g|<g, sin(fw/2)

IQC Stability Theorem

TA

G(s) f—( =—

Let G(s) be stable and proper and let A be causal.

For all 7 € [0, 1], suppose the loop is well posed and TA satisfies
the 1QC defined by II(iw). If

[ G(IW) ]*H(z’w) [ G(;“) } <0 forwe[0,00]

then the feedback system is input/output stable.

A Matlab toolbox for system analysis

http://www.ee.mu.oz.au/staff/cykao/

N oA o o

>> abst_init_iqc;

>>
>>
>>
>>

G
e
W

y

= tf£([10 0 0],[1 2 2 11);
= signal

= signal

= -Gx(e+w)

>> w==iqc_monotonic(y)
>> iqc_gain_tbx(e,y)

A servo with friction
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uncertain delay




iqc_gui(’fricSYSTEM?)

extracting information from fricSYSTEM ...

scalar inputs: 5
states: 10
simple g-forms: 7

LMI #1 size = 1 states: O
LMI #2 size = 1 states: 0
LMI #3 size = 1 states: 0O
LMI #4 size = 1 states: 0
LMI #5 size = 1 states: 0

Solving with 62 decision variables ...

A library of analysis objects

Transfer Fen  Zero-Pole

X = AxsBu
y=CxiDu
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The friction example in text format Summary

d=signal; % disturbance signal

e=signal; % error signal e Gain scheduling

wl=signal; % friction force

w2=signal; % delay perturbation e Internal model control

u=signal; f contr?l force e Model predictive contro

v=tf(1,[1 0])*(u-wl) % velocity

x=tf (1, [1 0])*v; % position e Nonlinear observers

e==d-x-w2; .

u==10%t£ ([2 2 11,[0.01 1 0.01])*e; e Lie brackets

wi==iqc_monotonic(v,0, [1 5],10) e Extra: Integral quadratic constraints

w2==iqc_cdelay(x,.01)
igc_gain_tbx(d,e)

Next: Lecture 14

» Course Summary




