
Optimization for Learning - FRTN50
Extra Credit Assignment: Differential Neural Networks

Written by: Mattias Fält

Latest update: October 18, 2019

Introduction
Background
In this hand-in you will try to estimate differential equation using a techniques
from this course with the purpose of identifying the dynamics of a quad-rotor.
The high level model is a continuous time differential equation

ẋ = f(x).

There are many techniques from the field of system identification that could be
used to estimate such a model. In this hand-in we will be using a new approach
known as Neural Differential Equations. This approach was presented in 2018
and won the prestigious best paper award at the machine learning conference
NeurIPS [1] . The idea is to directly identify the continuous dynamics f using a
neural network, instead of, as was previously the norm, a discrete mapping from
the initial point x(0) to the states at some fix times (x(t1), x(t2), ...). However,
learning the function f is not trivial. Even if f could be represented by a
neural network, the derivatives ẋ are generally not available, so the problem
does not reduce to a standard function-approximation problem. Instead, the
current guess has to be simulated, and gradient back-propagation (or similar)
has to be done trough the differential equation solver. Although the theory on
how to do those computations is well know, it is not trivial in practice. But
now, because of the speed and versatility of the Julia language, and some very
well written libraries in Julia, in particular the differential equations library
DifferentialEquations.jl and the learning library Flux.jl, it turns out to be
quite manageable. To simplify some of the details, the package DiffEqFlux.jl

[2] was released in early 2019 for specifically this task.

Problem formulation
When doing machine learning or system identification, it is important to incor-
porate as much knowledge and insight as possible into the model before trying to
learn it. For example, in image recognition this is done by using convolutional-
layers to signify that adjacent pixels are related. In this task, we will not try to
learn the full model f from scratch, this would probably be almost impossible,

1



and require a large amount of data. Instead, we will start with a know mathe-
matical model, learn only the parts that are unknown. The description of the
model can be written as

ẋ = f(x, u, p) +m(x)

where f is the dynamics of the model of the quad-rotor that we know, u is
the control signal, p is a set of unknown parameters, and m is an additional
unknown parts of the model. The goal is then to identify the parameters p, and
the unknown function m. This makes it possible to train with a much smaller
data-set, and allows us to learn about the real quantities p. A more detailed
description of the quad-rotor model can be found in the Model section.

Closed loop
Since a quad-rotor is a highly unstable system, it is not possible to send ran-
dom inputs u(t) and simply observe the output x(t). And even if the inputs u(t)
were chosen wisely when generating the data, a non-perfect model (as is the case
when training) would result in simulations where the sates quickly go towards
infinity. The data is instead gathered “in closed loop” where the control signal is
generated by a controller u(t) = c(x, r(t)), where r is some known reference tra-
jectory. However, this introduces theoretical problems with identifying exactly
how f depends on the input u. To alleviate this, a small noise rn(t) is added to
the control signal to “excite” the system properly, without making it unstable.
Moreover, the full state vector x(t) is not measurable. In the case of the quad-
rotor, we assume that we can only measure the position in the room, and not
the velocities, angles and angular velocities. If we let y = (xy1

(t), xy2
(t), ...) be

the states we can measure, the final model can be described as

ẋ = f(x, u, p) +m(x), x(0) = x0

y = (xy1
, xy2

, ...)

u = c(x, r) + rn

where the signals y(t), r(t), rn(t) are known, as well as the functions f and c
and the initial state x0. Finally, the control signal is computed at a fixed time
points (t1, t2, . . . , tk) with ti − ti−1 = ∆t, and kept constant until the next time
point, known as a zero-order-hold output.

Problem data
Input vectors r[k] and rn[k] have been randomly generated and applied to the
system as zero-order-hold inputs r(t) and rn(t) at a set time points (t0, t2, . . . , tk)
from t0 = 0, to tk = 10s, and the output y(t) was measured and stored as the
vectors y[k] when the system was initiated at x0.

Tasks
Four different data sets with increasing difficulty has been generated from dif-
ferent models. For each task the data u0s, rds, rdns, yreals is available and

2



corresponds to the initial states x(0) the (discrete) references r[k], the (dis-
crete) input noise rn[k] and the recorded outputs (x[k], y[k], z[k]). Note that
the parameters Ix, Iy, Iz change between the different tasks, so you can not
reuse the result from one task to the next. As initial guess, you can use
[Ix, Iy, Iz] = [6, 7, 11] · 10−6. Note: although noise is added to tasks 3 and
4, we assume that the controller still had access to the true positions in the
feedback for all tasks.

Task 1
The reference system f was simulated with m(x) = 0. The task is to identify the
inertia parameters Ix, Iy, Iz. The problem data for this task is available through
the function u0s, rds, rdns, yreal = data1(). The data reference noise is set
to zero in this first task, i.e. rn[k] = 0.

Task 2
The reference system f was simulated with a drag model m(x) added to the
velocities u, v, w. The task is to identify the inertia parameters Ix, Iy, Iz and
the drag model. Data is available with data2().

Task 3
The reference system f was simulated with a drag model m(x) added to the
velocities u, v, w. The model m(x) is slightly different form in Task 2. Only
noisy measurements are available now, i.e y[k] = (xy1

[k]+n1[k], xy2
+n2[k], ...),

where ni[k] is zero mean gaussian noise with standard deviation 3cm. The
task is to identify the inertia parameters Ix, Iy, Iz and the drag model. Data is
available with data3().

Task 4
The reference system f was simulated with a drag model added to the velocities
u, v, w. Additional constant wind was present in each of the x, y, z directions
(in the global frame) during simulation which also affects the velocities u, v, w.
The drag model is the same as in Task 3, but you need to understand of how the
wind affects it if you chose to re-use the model you identified in Task 3. Only
noisy measurements are available now, i.e y[k] = (xy1

[k]+n1[k], xy2
+n2[k], ...),

where ni[k] is zero mean gaussian noise with standard deviation 3cm. The task
is to identify the inertia parameters Ix, Iy, Iz and the wind + drag model. If
you use your understanding of the model, it should be possible to estimate a
constant wind vector [wx, wy, wz]. Data is available with data4().

Report
There are no specific requirements on what you have to try or how you identify
your model. There are many different possible things to try such as: differ-
ent optimizers, hyper-parameters, network structure and size, pre-processing of
data, validation sets, regularizations and so on. You do not have to try ev-
erything, or solve all of the tasks, the important thing is that you discuss and

3



reason about the choices you made, and how good you think your predictions
are.

In addition to reporting the identified parameters Ix, Iy, Iz for each test, and
possibly some explanation of the models m(x), you should submit predictions for
each of the tasks you solve. The function u0s, rds, rdns = data_test1() (and
data_test2() and so on) provides you with inputs for which you can simulate
the system, but contains no reference output. The output (x, y, z) of these
simulations with your model should be saved using save_trajectories(outputs,

taskid), and submitted to us together with your report. This makes it possible
for us to test how well your model generalizes to unseen data. You should also
submit the code model.jl you used to train your models.

Code
The four files model-ex.jl, model.jl, data.jl and data.jld2 contain everything
you need to get going. model-ex.jl contains a (relatively) simple example of a
model and the surrounding code to train and evaluate it. You can use this as a
reference for how the code and training on the quad-rotor can be done.

model.jl contains the quad-rotor dynamics, the controller and a set of useful
functions to get started with the task. data.jl constrains the functions for
loading the training data from data.jld as well as for saving the data you need
to submit. The data is loaded as u0s, rds, rdns, yreals = data2(), where the
first index correspond to each simulation. I.e. u0s[1] contains the initial state
for the first simulation, rds1[1][2] contains the reference vector at the second
time step of the first simulation, and so on.

Model
This section contains the quad-rotor dynamics. These are not necessary to
understand, but as with any real problem, it is always useful with a better
understanding of the model. This is particularly true for the last task. The
dynamics can be described by the differential equation

φ̇ =p+ r cos(φ) tan(θ) + q sin(φ) tan(θ)
θ̇ =q cos(φ)− r sin(φ)
Ψ̇ =r cos(φ)/ cos(θ) + q sin(φ)/ cos(θ)
ṗ =rq(Iy − Iz)/Ix + τx/Ix

q̇ =pr(Iz − Ix)/Iy + τy/Iy

ṙ =pq(Ix − Iy)/Iz + τz/Iz

u̇ =rv − qw − g sin(θ) + fwx/m

v̇ =pw − ru+ g sin(φ) cos(θ) + fwy/m

ẇ =qu− pv + g cos(θ) cos(φ)− ft/m+ fwz/m

ẋ =R1(φ, θ,Ψ)[u, v, w]

ẏ =R2(φ, θ,Ψ)[u, v, w]

ż =R3(φ, θ,Ψ)[u, v, w]

4



where φ, θ,Ψ are the pitch, roll and yaw Tait–Bryan angles describing the ro-
tation of the quad-rotor (radians), p, q, r are their respective angular-velocities,
u, v, w are the velocities of the quad-rotor in its own coordinate system (m/s),
and x, y, z are the positions in the global coordinate frame (position in the room)
in meters. τx, τy, τz are torques generated by the motors, Ix, Iy, Iz are the in-

ertia around the axes of the quad-rotor, and R =

R1(φ, θ,Ψ)
R2(φ, θ,Ψ)
R3(φ, θ,Ψ)

 is the rotation

matrix from the quad-rotors coordinate system to the global, given by

R =

cθcΨ cΨsφsθ − cφsΨ sφsΨ + cφcΨsθ
cθsΨ cφcΨ + sφsθsΨ cφsΨsθ − cΨsφ
−sθ cθsφ cφcθ

 .

where sα := sin(α) and cα := cos(α). The reverse transformation (from global
to local frame) is given by R−1 = RT . The 4 control signals Ω1,Ω2,Ω3,Ω4

(one for each motor) are responsible for the generated torques τx, τy, τz and the
force ft. fwx, fwy, fwz are possible additional forces (in the quad-rotors local
coordinate system).

References
[1] Tian Qi Chen et al. “Neural ordinary differential equations”. In: Advances

in neural information processing systems. 2018, pp. 6571–6583. url: https:
//papers.nips.cc/paper/7892-neural-ordinary-differential-equations.

pdf.
[2] Christopher Rackauckas et al. “DiffEqFlux.jl - A Julia Library for Neu-

ral Differential Equations”. In: CoRR abs/1902.02376 (2019). arXiv: 1902.
02376. url: http://arxiv.org/abs/1902.02376.

5


