
Optimization for Learning - FRTN50
Assignment 2

Written by: Martin Morin

Latest update: November 4, 2019

Introduction
This hand-in will cover the topic of overfitting and how it relates to regular-
ization, model selection, and the problem data itself. For simplicity we restrict
ourselves to models that results in convex problems but for non-convex models
the principles remain the same.

ProximalOperators.jl In Hand-In 1 you implemented functions that cal-
culate gradients and proximal operators of some objective functions. How-
ever, this be avoided whenever possible due to the ease of making mistakes.
In this hand-in we will therefore use a software package that contain imple-
mentations of gradients and proximal operators for a wide range of functions.1
The package is called ProximalOperators.jl and includes also basic operations
such as scaling and conjugation. Following is a short example on how to use
ProximalOperators.jl to compute the gradient and prox for the squared Eu-
clidean norm. For more information we refer to the package documentation
http://kul-forbes.github.io/ProximalOperators.jl/stable/. It contains sim-
ple examples and a list of supported functions and operations that can be per-
formed on them.

f = SqrNormL2() # Create the function
1
2
‖ · ‖22

val = f([1.0, 1.0]) # val = 1.0

df, _ = gradient(f, [1.0, 1.0]) # df = [1.0, 1.0]

pf, _ = prox(f, [1.0, 1.0], 0.5) # pf = [0.6666..., 0.6666...]

Assignment
The assignment consists of two parts: the first covers the effects of regularization
on a simple least squares problem, and the second covers hyper-parameter tuning
and validation for SVM.

1Another way to compute gradients is to automate it using backpropagation/automatic
differentiation. We will cover the basics of this later in the course.

1



Regularized Least Squares Regression
A regression problem consists of some data, yi, xi, and a model, mω, parame-
terized by w. The goal is to find w such that yi ≈ mw(xi),∀i. For simplicity of
plotting, the data in this part will be scalar, xi, yi ∈ R.

This problem depends on both what we mean by yi ≈ mw(xi) and what
model, mw, we choose. Here we take yi ≈ mw(x) to mean they are close in the
square L2-norm sense, ‖mw(xi)− yi‖22, and restrict ourselves to models linear
in w. This means models on the form mw(x) = wTφ(x) for some, possibly
non-linear, feature map φ. This results in the classic least squares problem

min
ω

1
2

∑N

i=1
‖mw(xi)− yi‖22 = min

ω

1
2‖X

Tw − y‖22

where X = [φ(x1), φ(x2), ..., φ(xN )], y = (y1, y2, ..., yn). We will further restrict
ourselves to polynomial models, i.e. yi ≈ mw(xi) =

∑p
k=0 wkx

k
i . Formulated

in terms of a feature map this can be written as, mw(x) = wTφp(x) where
φp(x) = (x0, x1, ..., xp).2

It is good practice to include some pre-scaling, r, of the data x in the feature
map, φ(r(x)). Having elements of X with wildly varying size can result in slow
convergence or other numerical problems. A simple translation and scaling,
r(x) = (x − β) · σ, that makes sure all the transformed data lie within (−1, 1)
can help with this.

It can often be beneficial to add a regularizing term that only act on the
model parameters.

min
ω

1
2‖X

Tw − y‖22 + λ‖w‖qq

where q will either be q = 1 or q = 2 in this task. Other regularization choices
can of course be made, it also does not need to be a norm, but common to
all choices is that they promote some property of the model which is deemed
desirable.

The data you will use can be found in the file problem.jl. Use the proximal
gradient method and ProximalOperators.jl to implement a solver, a suitable
step-size is ‖XXT ‖−1. Make sure to use a pre-scaling so r(xi) ∈ (−1, 1) for all
i.

Task 1 For p = 1 and λ = 0, plot and compare the resulting model mw(x)
and the data (xi, yi). Increase p in steps up to p = 10 and study what happens.
What happens with the model? In which ways is it better and/or worse? How
many iterations does it take to find a solution?

Task 2 Set p = 10 and introduce regularization with q = 2. Try different λ
in the range [0.001, 10] and study the resulting model mw(x), the solution w?

and convergence rate. Repeat for q = 1. The regularization promotes w? to be
small in ‖·‖qq sense, how does that manifest in w? and mw?(x)? Do you find
structure in any of the solutions?

2Instead of the simple monomial basis, x0, x1, ..., xp, some other polynomial basis could
of course be used, for instance Legendre polynomials. This can be beneficial for numerical
reasons but we choose the monomials here for simplicity.

2



Task 3 Chose a configuration, q and λ, from Task 2 and remove the pre-
scaling. What affect did it have? Was it necessary?

Comments The effect of the regularization will of course depend on the model
and/or how it is parameterized. For instance, given the linear model mw(x) =
φ(x)Tw an equivalent model can be formed simply by adding a shift of the
parameters mŵ(x) = φ(x)T (ŵ − a). A ‖w‖qq-regularizer would then promote
mŵ(x) = −φ(x)Ta instead of mŵ(x) = 0.

In deep learning is this type of explicit regularization not as common. Instead
concepts like early termination, dropout or stochastic gradient methods are
used to achieve regularization. The common property is that they prevent the
algorithm from finding the true minimum and thereby avoid overfitting to the
fine structure. An added benefit is that they also reduce the computational
cost compared to standard gradient descent. Their main drawbacks are weaker
theory and arguably less control.

Support Vector Machines
Given training data xi ∈ Rn with corresponding class labels yi ∈ {−1, 1} we
want to find a classifier such that yi ≈ mw(xi) = sign(wTφ(xi)). Support vector
machines do this by solving the following problem

min
w

h(Y XTw) + λ
2 ‖w‖

2
2

where X = [φ(x1), φ(x2), ..., φ(xN )], Y = diag(y1, y2, ..., yN ), and h is the hinge
loss,

h(z) = 1
N

∑N

i=1
max(0, 1− zi).

This problem is easiest to solve via the dual

min
ν

h∗(ν) + 1
2λ‖−XY ν‖22.

The last term is a quadratic, 1
2λ‖−XY ν‖22 = 1

2λν
TY XTXY ν = 1

2ν
TQν where

the matrix Q is given by Qij = λ−1yiφ(xi)
Tφ(xj)yj , i.e. Q can be evaluated

by only evaluating the kernel, K(x, y) = φ(x)Tφ(y), associated with the feature
map φ. This allows for simpler/cheaper computation since there is no need
to explicitly evaluate the (potentially) very high dimensional feature map. For
example, a polynomial model of order p is simply given by K(x, y) = (xT y+a)p.

Using only kernel evaluations also removes the need to find the feature map
explicitly. It is possible to define a kernel and as long as it is proper, i.e.
there exists some feature map such that K(x, y) = φ(x)Tφ(y), it will result
in a well-posed convex problem. Existence of a feature map is typically be
established via Mercer’s condition. When choosing/designing a kernel it can
be viewed as a correlation measure between data points. Choosing the right
model/kernel/feature map is then choosing a measure such that data points of
different classes are far away form each other.

For the rest of this assignment the Gaussian kernel will be used K(xi, xj) =

e−
1

2σ2 ‖xi−xj‖2
2 . This kernel is interesting since the corresponding feature map

3



is infinite dimensional and can therefore not be used directly. The hyper-
parameter σ in the kernel determines the length-scale of which points are con-
sidered near each other. In practice this controls the smoothness of the resulting
model.

If a small length-scale is used, even points close to each other will be consid-
ered far apart in the kernels point of view. The SVM can then relatively easy
find a separating ‘plane’ between the points and the resulting decision boundary
will be very curvy as it snakes its way between points. For longer length-scales
will the kernel not be able to distinguish points close to each other. The SVM
will only be able to separate point further apart, resulting in a smoother model
with less overfitting. However, too large σ will result in the SVM not being able
to separate any points at all.

The data you will use can be found in the file problem.jl. Use the proximal
gradient method and ProximalOperators.jl to implement a solver for the SVM
dual problem. A suitable step-size is 1/‖Q‖. Note that ProximalOperators.jl

can perform conjugation for you and that the data is already appropriately
scaled. Implement the predictive model, mw(x), using the results from Task 4.

Task 4 Derive an expression for recovering the primal solution from the dual.
Using this expression, show that it is possible to evaluate the model mw(x̂) =
sign(wTφ(x̂)) with only the kernel, data points (xi, yi), and dual solution.

Testing
In the least squares problem, the model and data could easily be inspected
visually but it is hard to get any quantitative performance from it. When
the data lies in higher dimensional spaces it can also be hard to visualize the
results. In these cases must different models and/or regularization selections be
evaluated in some other way.

Arguably the simplest form of validation is holdout cross-validation. It splits
the data set into two disjoint sets, one training data set and one validation data
set. You train the model using the training data and perform some form of
performance test on the validation data. For a classifier, a natural performance
measure is the error rate on the validation set, i.e. ratio between the number
of miss-classified validation data points and the total number of validation data
points.

Task 5 Use the data from svm_train() for training. Try different hyper-
parameters λ and σ over coarse grids, for instance λ ∈ {0.1, 0.01, 0.001, 0.0001}
and σ ∈ {1, 0.5, 0.25}. For each configuration, calculate the error rate on the
validation data from svm_test_1() but also calculate the error rate on the train-
ing data. Are the error rates on the two sets the same? What is the lowest error
rate you can achieve on each set? Can you identify overfitting? Based on your
findings, select the λ and σ you feel is best.

Splitting data into a training and validation data is not without drawbacks.
The most obvious drawback is that you do not use all available data for training.
For this reason, once the hyper-parameters have been selected, it is a good idea

4



to retrain the model using both the training and validation data before the
model is used.

Another potential issue is that any time you do some sort of selection of
data, there is a risk of inadvertently introducing bias. The goal is to train a
model that fits well to all data, even future data that are yet to be sampled. By
tuning the hyper-parameters for specific validation data, there is actually a risk
of overfitting to the bias of the validation data. For this reason, in for instance
classification competitions, the final performance benchmark is performed on a
test data set that is withheld completely during all hyper-parameter tuning to
avoid overfitting to the benchmark data.

Task 6 Four different validation sets are contained in problem.jl: svm_test_1(),
svm_test_2(), svm_test_3(), and svm_test_4(). Does your selected model from
Task 5 have the same error rate on all four validation sets? Try different hyper-
parameters, would you have made different hyper-parameter choices if you had
been given a different validation set?

Bias have intentionally been introduced to two of the validation sets, making
them unsuitable to validate the model on. Can you identify the biased sets?
(Without looking at the code.) Can you explain what has been done to them
and explain why it is bad? Hint: Look at the error rates on both the training
and validation sets for different hyper-parameter choices. For instance, (λ, σ) =
(0.1, 2), (λ, σ) = (0.001, 0.5), and (λ, σ) = (0.00001, 0.25). It can also be a good
idea to compare with a constant classifier (m(x) = 1 or m(x) = −1).

If a relatively small amount of data is available it can be hard to make a train-
ing/validation split that keeps enough diversity in both data sets for holdout
cross-validation to work well. The resulting performance estimate would then
have a high dependence on the particular split, resulting in a large variance. An
alternative to holdout cross-validation that tries avoid this problem by using all
the data both for training and validation is k-fold cross-validation.

k-fold cross-validation works by randomly splitting the data into k equal size
data sets and then performing k rounds of holdout cross-validation. For each
round a different sub-set is used for validation while the remaining sub-sets are
used for training. After all rounds of training/validation, the k performance
scores are averaged to get a final score.

The drawback of this approach is that for each hyper-parameter configura-
tion we wish to test, k models needs to be trained. For this reason, k is usually
quite small, k = 10 is a common choice.

Task 7 Using the λ and σ you chose from Task 5, compare the error rate
estimates given by 10-fold cross-validation and holdout cross-validation. Use
only the data from svm_training() and randomly set aside 100 data points for
the holdout cross-validation.

Do the two methods give similar error rate estimates? If you re-run the
cross-validations with different random permutations of the training/validation
splits, are the error rates the same? How much do they vary? Examine the
variance and/or create a histogram of the estimated error rates. Which cross-
validation method seem more reliable? Hint: To randomly permute the data,
look at the function randperm in the standard library Random.

5



Submission
See the latest version of the course program for instruction on how to submit
the assignment. Your submission should contain the following.

• Your code that solves the regularized least squares and SVM problems.

• Your code for k-fold and holdout cross-validation from Task 7.

• A single pdf containing the following:

– A couple of paragraphs describing your findings form Task 1-3.
– Your derivation from Task 4.
– A couple of paragraphs describing your findings form Task 5-7.

Use plots, figures and tables to motivate your answers when possible.

6


