Scaling, Newton’s method
quasi-Newton

Pontus Giselsson
Learning goals

• Understand how scaling can be used in proximal gradient method
• Know that scaling can improve performance greatly
• Know Newton’s method and computational effort per iteration
• Know quasi-Newton method and basic idea with secant condition
• Have seen Newton proximal gradient method
Optimization algorithm overview

Algorithms can roughly be divided into the following classes:

- Second-order methods
- Quasi second-order methods
- First-order methods
- Stochastic and coordinate-wise first-order methods
Composite optimization

We consider problems

$$\text{minimize } f(x) + g(x)$$

where

- \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is
 - continuously differentiable (\(\nabla f \) continuous)
 - \(\beta \)-smooth (will use new definition with scaled norm, next slide)
- \(g : \mathbb{R}^n \rightarrow \mathbb{R} \cup \{\infty\} \) is closed convex
Smoothness w.r.t. $\| \cdot \|_H$

What is $\| \cdot \|_H$:

- Requirement: $H \in \mathbb{R}^{n \times n}$ is symmetric positive definite ($H \succ 0$)
- The norm $\|x\|_H^2 := x^T H x$, for $H = I$, we get $\|x\|_I^2 = \|x\|_2^2$

Smoothness:

- Function $f : \mathbb{R}^n \to \mathbb{R}$ is β-smooth if for all $x, y \in \mathbb{R}^n$:

\[
 f(y) \leq f(x) + \nabla f(x)^T (y - x) + \frac{\beta}{2} \|x - y\|_2^2
\]

- We say $f \beta_H$-smoothness w.r.t. scaled norm $\| \cdot \|_H$ if

\[
 f(y) \leq f(x) + \nabla f(x)^T (y - x) + \frac{\beta_H}{2} \|x - y\|_H^2
\]

 for all $x, y \in \mathbb{R}^n$

- If f is smooth (w.r.t. $\| \cdot \|_2$) it is also smooth w.r.t. $\| \cdot \|_H$
Example: A quadratic

• Let \(f(x) = \frac{1}{2} x^T H x = \frac{1}{2} \|x\|_H^2 \) with \(H \succ 0 \)

• \(f \) is \(1 \)-smooth w.r.t \(\| \cdot \|_H \) (with equality):

\[
\begin{align*}
 f(y) & = f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} \|x - y\|_H^2 \\
 & = \frac{1}{2} x^T H x + (Hx)^T (y - x) + \frac{1}{2} \|x - y\|_H^2 \\
 & = \frac{1}{2} x^T H x + (Hx)^T (y - x) + \frac{1}{2} (\|x\|_H^2 - 2(Hx)^T y + \|y\|_H^2) \\
 & = \frac{1}{2} \|y\|_H^2 = f(y)
\end{align*}
\]

• \(f \) is \(\lambda_{\text{max}}(H) \)-smooth (w.r.t. \(\| \cdot \|_2 \)), continue equality:

\[
\begin{align*}
 f(y) & = f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} \|x - y\|_H^2 \\
 \leq & \frac{1}{2} x^T H x + (Hx)^T (y - x) + \frac{\lambda_{\text{max}}(H)}{2} \|x - y\|_2^2
\end{align*}
\]

much more conservative estimate of function!
Proximal Gradient Method
Proximal gradient method

- Proximal gradient method:

\[
x_{k+1} = \arg\min_y \left(f(x_k) + \nabla f(x_k)^T (y - x) + \frac{1}{2\gamma_k} \|y - x_k\|^2 + g(y) \right)
\]

\(\hat{f}_{x_k}(y)\)

approximates function \(f(y)\) around \(x_k\) by \(\hat{f}_{x_k}(y)\)

- The better the approximation, the faster the convergence

- By scaling: we mean to use an approximation of the form

\[
f_{x_k}(y) = f(x_k) + \nabla f(x_k)^T (y - x_k) + \frac{1}{2\gamma_k} \|x_k - y\|^2_{H_k}
\]

where \(H_k \in \mathbb{R}^{n \times n}\) is a positive definite matrix
Gradient descent – Example

• Gradient descent on β-smooth quadratic problem

$$\minimize_{x} \quad \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• Step-size $\gamma = \frac{1}{\beta}$ and norm $\| \cdot \|_2$ in model
Gradient descent – Example

• Gradient descent on β-smooth quadratic problem

$$\text{minimize } \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• Step-size $\gamma = \frac{1}{\beta}$ and norm $\| \cdot \|_2$ in model
Gradient descent – Example

• Gradient descent on β-smooth quadratic problem

$$\minimize_x \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• Step-size $\gamma = \frac{1}{\beta}$ and norm $\| \cdot \|_2$ in model
Gradient descent – Example

• Gradient descent on β-smooth quadratic problem

\[
\text{minimize } \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
\]

• Step-size $\gamma = \frac{1}{\beta}$ and norm $\| \cdot \|_2$ in model
Gradient descent – Example

• Gradient descent on β-smooth quadratic problem

$$\min_{x} \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• Step-size $\gamma = \frac{1}{\beta}$ and norm $\| \cdot \|_2$ in model
Scaled norm in model

• Gradient descent on β-smooth quadratic problem

$$\minimize_{x} \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• Model $H = \text{diag}(\nabla^2 f)$, γ is inverse smoothness w.r.t. $\| \cdot \|_H$
Scaled norm in model

• Gradient descent on β-smooth quadratic problem

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \\
\end{align*}
\]

• Model \(H = \text{diag}(\nabla^2 f) \), \(\gamma \) is inverse smoothness w.r.t. \(\| \cdot \|_H \)
Scaled norm in model

- Gradient descent on β-smooth quadratic problem

$$\text{minimize } \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- Model $H = \text{diag}(\nabla^2 f)$, γ is inverse smoothness w.r.t. $\| \cdot \|_H$
Scaled norm in model

- Gradient descent on β-smooth quadratic problem

$$\min_{x} \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- Model $H = \text{diag}(\nabla^2 f)$, γ is inverse smoothness w.r.t. $\| \cdot \|_H$
Scaled norm in model

• Gradient descent on β-smooth quadratic problem

$$\min_x \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 0.1 & -0.1 \\ -0.1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• Model $H = \text{diag}(\nabla^2 f)$, γ is inverse smoothness w.r.t. $\| \cdot \|_H$
Example: A quadratic

• Let $f(x) = \frac{1}{2} x^T H x$ with $H \succ 0$, which is 1-smooth w.r.t. $\| \cdot \|_H$
• Approximation with scaled norm $\| \cdot \|_H$ and $\gamma_k = 1$ satisfies $\forall x_k$:

$$\hat{f}_{x_k}(y) = f(x_k) + \nabla f(x_k)^T(y - x_k) + \frac{1}{2}\|x_k - y\|_H^2 = f(y)$$

since f is 1-smooth w.r.t. $\| \cdot \|_H$ with equality
• An iteration then reduces to solving problem itself:

$$x_{k+1} = \arg\min_y (\hat{f}_{x_k}(y) + g(y)) = \arg\min_y (f(y) + g(y))$$

• Model very accurate, but very expensive iterations
Scaled proximal gradient method

- Proximal gradient method with scaled norm $\| \cdot \|_{H_k}$:

$$x_{k+1} = \arg\min_y \left(f(x_k) + \nabla f(x_k)^T (y - x) + \frac{1}{2\gamma_k} \| y - x_k \|_2^{H_k} + g(y) \right)$$

$$= \arg\min_y \left(g(y) + \frac{1}{2\gamma_k} \| y - (x_k - \gamma_k H_k^{-1} \nabla f(x_k)) \|_2^{H_k} \right)$$

$$=: \text{prox}_{\gamma_k g}^{H_k}(x_k - \gamma_k H_k^{-1} \nabla f(x_k))$$

where $H_k = I$ gives nominal algorithm (note γ_k could be in H_k)

- Computational difference per iteration:
 1. Need to invert H_k^{-1} (or solve $H_k d_k = \nabla f(x_k)$)
 2. Need to compute prox with new metric

$$\text{prox}_{\gamma_k g}^{H_k}(z) := \arg\min_x (g(x) + \frac{1}{2\gamma_k} \| x - z \|_{H_k}^2)$$
Computational cost

• Assume that H_k is dense or general sparse
 • H_k^{-1} dense: cubic complexity (vs maybe quadratic for gradient)
 • H_k^{-1} sparse: lower than cubic complexity
 • $\text{prox}_{\gamma_k H_k} g$: difficult optimization problem

• Assume that H_k is diagonal
 • H_k^{-1}: invert diagonal elements – linear complexity
 • $\text{prox}_{\gamma_k H_k} g$: often as cheap as nominal prox (e.g., for separable g)

• Assume that H_k is block-diagonal with small blocks
 • H_k^{-1}: invert individual blocks – also cheap
 • $\text{prox}_{\gamma_k H_k} g$: often quite cheap (e.g., for block-separable g)

• If $H_k = I$, method is nominal method
Before discussing choices of H_k, we show convergence
Proximal gradient – Optimality condition

• Proximal gradient iteration:

\[x_{k+1} = \text{prox}_{H_k}^g(x_k - H_k^{-1}\nabla f(x_k)) \]

\[= \arg\min_y (g(y) + \frac{1}{2}\|y - (x_k - H_k^{-1}\nabla f(x_k))\|^2_{H_k}) \]

where \(x_{k+1} \) is unique due to strong convexity of \(h \)

• Fermat’s rule (and since CQ holds) gives optimality condition:

\[0 \in \partial g(x_{k+1}) + \partial h(x_{k+1}) \]

\[= \partial g(x_{k+1}) + H_k(x_{k+1} - (x_k - H_k^{-1}\nabla f(x_k))) \]

\[= \partial g(x_{k+1}) + \nabla f(x_k) + H_k(x_{k+1} - x_k) \]

since \(h \) differentiable

• A consequence: \(\partial g(x_{k+1}) \) is nonempty
Fixed-points and convergence

Scaled proximal gradient has

• same fixed-points as nominal proximal gradient
• same convergence guarantees
Proximal gradient – Fixed-point set

• Let $T_{PG}^{H,\gamma} := \text{prox}_{\gamma g}^{H}(I - \gamma H^{-1} \nabla f)$; algorithm $x_{k+1} = T_{PG}^{H,\gamma} x_k$

• Proximal gradient fixed-point set definition

$$\text{fix}T_{PG}^{H,\gamma} = \{ x : x = T_{PG}^{H,\gamma} x \} = \{ x : x = \text{prox}_{\gamma g}^{H}(x - \gamma H^{-1} \nabla f(x)) \}$$

i.e., set of points for which $x_{k+1} = x_k$
Let $H \succ 0$, $\gamma > 0$. Then $\bar{x} \in \text{fix}T^{H,\gamma}_{\text{PG}}$ if and only if $0 \in \partial g(\bar{x}) + \nabla f(\bar{x})$.

• Proof: by proximal gradient step optimality condition

\[
\bar{x} \in \text{fix}T^{H,\gamma}_{\text{PG}} \iff \bar{x} = \text{prox}_{\gamma g}^{H}(\bar{x} - \gamma H^{-1}\nabla f(\bar{x})) \\
\iff 0 \in \partial g(\bar{x}) + \gamma^{-1}H(\bar{x} - (\bar{x} - \gamma H^{-1}\nabla f(\bar{x}))) \\
\iff 0 \in \partial g(\bar{x}) + \nabla f(\bar{x})
\]

• Consequence: fixed-point set same for all $H \succ 0$, $\gamma > 0$
• Still call inclusion $0 \in \partial g(\bar{x}) + \nabla f(\bar{x})$ fixed-point characterization
Meaning of fixed-point characterization

From proximal gradient lecture:

- Fixed-point characterization solves problem when f convex
- For nonconvex f, are critical points
Assumptions for convergence – Nonconvex case

• Difference to proximal gradient:
 • new upper bound on \(f \) with scaled norm \(\| \cdot \|_{H_k} \)

• Assumptions:

 (i) \(f : \mathbb{R}^n \to \mathbb{R} \) is continuously differentiable (not necessarily convex)
 (ii) \(\forall x_k, x_{k+1}, \) it exists \(\beta_k \in [\eta, \eta^{-1}], \rho I \preceq H_k \preceq \rho^{-1} I, \eta, \rho \in (0, 1) \):
 \[
 f(x_{k+1}) \leq f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{\beta_k}{2} \| x_k - x_{k+1} \|_{H_k}^2
 \]
 which means \(f \) is “locally \(\beta_k \) smooth w.r.t. \(\| \cdot \|_{H_k} \)

 (iii) \(g : \mathbb{R}^n \to \mathbb{R} \cup \{ \infty \} \) is closed convex
 (iv) A minimizer exists (and \(p^* = \min_x (f(x) + g(x)) \) is optimal value)
 (v) Algorithm parameters \(\gamma_k \in [\epsilon, \frac{2}{\beta_k} - \epsilon] \), where \(\epsilon > 0 \)

• Assumption on \(f \) satisfied with \(\beta_k H_k = \beta I \) if \(f \) \(\beta \)-smooth
A basic inequality

Using

(a) Upper bound assumption on f, i.e., Assumption (ii)

(b) Prox optimality condition: There exists $s_{k+1} \in \partial g(x_{k+1})$

\[
0 = s_{k+1} + \gamma_k^{-1} H_k (x_{k+1} - (x_k - \gamma_k H_k^{-1} \nabla f(x_k)))
\]

(c) Subgradient definition: $g(x_k) \geq g(x_{k+1}) + s_{k+1}^T (x_k - x_{k+1})$

\[
\begin{align*}
 f(x_{k+1}) + g(x_{k+1}) & \leq f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{\beta_k}{2} \| x_{k+1} - x_k \|_{H_k}^2 + g(x_{k+1}) \\
 & \leq f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{\beta_k}{2} \| x_{k+1} - x_k \|_{H_k}^2 + g(x_k) \\
 & \quad - s_{k+1}^T (x_k - x_{k+1}) \\
 & \overset{(b)}{=} f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{\beta_k}{2} \| x_{k+1} - x_k \|_{H_k}^2 + g(x_k) \\
 & \quad + \gamma_k^{-1} H_k (x_{k+1} - (x_k - \gamma_k H_k^{-1} \nabla f(x_k)))^T (x_k - x_{k+1}) \\
 & = f(x_k) + g(x_k) - (\gamma_k^{-1} - \frac{\beta_k}{2}) \| x_{k+1} - x_k \|_{H_k}^2
\end{align*}
\]
Function value decrease

• What conclusions can we draw from

\[f(x_{k+1}) + g(x_{k+1}) \leq f(x_k) + g(x_k) - (\gamma_k^{-1} - \frac{\beta_k}{2})\|x_{k+1} - x_k\|_2^2 \]

• The requirements: \(\gamma_k \in [\epsilon, \frac{2}{\beta_k} - \epsilon] \):
 • since \(\beta_k \in [\eta, \eta^{-1}] \) there is \(\epsilon > 0 \) such that \([\epsilon, \frac{2}{\beta_k} - \epsilon] \) nonempty
 • therefore \(\delta > 0 \) exists such that

\[\gamma_k^{-1} \in \left[\frac{\beta_k}{2} + \delta, \delta^{-1} \right] \quad \Rightarrow \quad \gamma_k^{-1} - \frac{\beta_k}{2} \geq \delta > 0 \]

which implies, since \(H_k \succeq \rho I \), that function value decreases:

\[f(x_{k+1}) + g(x_{k+1}) \leq f(x_k) + g(x_k) - \rho \delta \|x_{k+1} - x_k\|_2^2 \]

• Not very useful!
Fixed-point residual converges

• Rearrange inequality from previous slide:

\[\rho \delta \| x_{k+1} - x_k \|^2_2 \leq f(x_k) + g(x_k) - (f(x_{k+1}) + g(x_{k+1})) \]

• Telescope summation gives for all \(n \in \mathbb{N} \):

\[
\rho \delta \sum_{k=1}^{n} \| x_{k+1} - x_k \|^2_2 \leq \sum_{k=1}^{n} (f(x_k) + g(x_k) - (f(x_{k+1}) + g(x_{k+1})))
\]

\[
= f(x_1) + g(x_1) - (f(x_{n+1}) + g(x_{n+1}))
\]

\[
\leq f(x_1) + g(x_1) - p^* < \infty
\]

where \(p^* = \min_x (f(x) + g(x)) \) and \(< \infty \) since \(x_1 \in \text{dom} g \)

• Since \(\rho \delta > 0 \), this implies:

\[
\| \text{prox}_{\gamma g}(x_k - \gamma \nabla f(x_k)) - x_k \|_2 = \| x_{k+1} - x_k \|_2 \to 0
\]
Residual convergence – Implication

What does $\|\text{prox}_{\gamma_k g}(x_k - \gamma_k \nabla f(x_k)) - x_k\|_2 \to 0$ mean and imply?

- That fixed-point equation will be satisfied in the limit
- By prox-grad optimality condition:
 \[
 \partial g(x_{k+1}) + \nabla f(x_k) \ni \gamma_k^{-1} H_k(x_k - x_{k+1}) \to 0
 \]
 as $k \to \infty$ (since $\gamma_k \geq \epsilon$, i.e., $0 < \gamma_k^{-1} \leq \epsilon^{-1}$) or equivalently
 \[
 \partial g(x_{k+1}) + \nabla f(x_{k+1}) \ni \gamma_k^{-1} H_k(x_k - x_{k+1}) + \nabla f(x_{k+1}) - \nabla f(x_k) \to 0
 \]
 where $u_k \to 0$ is concluded by continuity of ∇f, implications:
 - Fixed-point characterization satisfied in the limit
 - Nonconvex f: Critical point definition satisfied in the limit
 - Convex f: Global optimality condition satisfied in the limit
 - However, does not imply that (x_k) converges to a fixed-point
Selecting algorithm parameters

- How to select β_k, γ_k, and H_k?
- Start with β_k and γ_k, given H_k.
Choose β_k and γ_k.

- Convergence based on assumption that β_k known that satisfies
 \[
 f(x_{k+1}) \leq f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{\beta_k}{2} \|x_k - x_{k+1}\|^2_{H_k}
 \]
 call this descent condition (DC)

- If $H_k = H$ and f is β-smooth w.r.t. $\|\cdot\|_H$; $\beta_k = \beta$ works since
 \[
 f(y) \leq f(x) + \nabla f(x)^T (y - x) + \frac{\beta}{2} \|x - y\|^2_H
 \]
 for all x, y
Choose β_k and γ_k – Backtracking

• Backtracking, choose $\delta > 1$, $\beta_k \in [\eta, \eta^{-1}]$ and increase β_k as:
 1. choose $\gamma_k \in [\epsilon, \frac{2}{\beta_k} - \epsilon]$
 2. compute $x_{k+1} = \text{prox}_{\gamma_k}^{H_k} (x_k - \gamma_k H_k^{-1} \nabla f(x_k))$
 3. if descent condition (DC) satisfied
 break
 else
 set $\beta_k \leftarrow \delta \beta_k$ and go to 1
 end
• Initialization of β_k depends on choice of H_k
Backtracking – Convergence

• For convergence, need to verify that (DC):

\[f(x_{k+1}) \leq f(x_k) + \nabla f(x_k)^T(x_{k+1} - x_k) + \frac{\beta_k}{2} \|x_k - x_{k+1}\|_2^2 \]

will hold within finite number of backtracking steps

• Assume and recall that

 • \(f : \mathbb{R}^n \to \mathbb{R} \) is \(\beta \)-smooth
 • \(\beta_k \in [\eta, \eta^{-1}] \), \(\rho I \preceq H_k \preceq \rho^{-1} I \), \(\eta, \rho \in (0, 1) \):

which gives

\[f(x_{k+1}) \leq f(x_k) + \nabla f(x_k)^T(x_{k+1} - x_k) + \frac{\beta}{2} \|x_k - x_{k+1}\|_2^2 \]

\[\leq f(x_k) + \nabla f(x_k)^T(x_{k+1} - x_k) + \frac{\beta}{2\rho} \|x_k - x_{k+1}\|_2^2 \]

i.e, (DC) satisfied whenever \(\beta_k \geq \frac{\beta}{\rho} \) (maybe before)
Selecting H_k

- H_k should capture (some) second-order (Hessian) information
- Examples:
 - $H_k = I$ is identity matrix (gives proximal gradient method)
 - $H_k = \text{diag}(h)$ is fixed diagonal matrix with diagonal h
 - $H_k = H$ is fixed full or structured matrix
 - $H_k = \nabla^2 f(x_k)$ is true Hessian (proximal Newton method)
 - H_k is chosen from (limited memory) quasi-Newton
- Recall, prox update at iteration x_k is
 \[
 \text{prox}^{H_k}_{\gamma_k}(x_k - \gamma_k H_k^{-1} \nabla f(x_k))
 \]
- Will first focus on case without prox, i.e., $g = 0$;
 \[
 x_{k+1} = x_k - \gamma_k H_k^{-1} \nabla f(x_k)
 \]
Newton’s method

- Newton’s method given by iteration ($H_k = \nabla^2 f(x_k)$)

$$x_{k+1} = x_k - \gamma_k \nabla^2 f(x_k)^{-1} \nabla f(x_k)$$

where $f : \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable
- Requires backtracking scheme (no fixed γ_k works in general)
 - Initialize $\beta_k = 1$ in every iteration k in backtracking
 - Select stepsize $\gamma_k = \frac{1}{\beta_k}$
 - Within finite number of iterations, $\gamma_k = 1$ will be accepted
- Typically requires very few iterations to converge
- However, can be costly to invert matrix (solve linear system)
- Note: $\nabla^2 f(x_k)$ must be positive definite, i.e., $\nabla^2 f(x) \succ 0$:
 - always true if problem strictly convex; else:
 - add ϵI with $\epsilon > 0$ such that $H_k = \nabla^2 f(x_k) + \epsilon I \succ 0$
Quasi-Newton methods

• Mimic Newton’s method but with less computational effort
• Approximate Hessian by $H_k \approx \nabla^2 f(x_k)$ to get

$$x_{k+1} = x_k - \gamma_k H_k^{-1} \nabla f(x_k)$$

where $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is twice continuously differentiable

• Many schemes for finding H_k, will cover BFGS1

1 BFGS: Broyden-Fletcher-Goldfarb-Shanno
Secant condition

- Consider quadratic approximation of the function f
 \[\hat{f}_{x_k}(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} \| x_k - x \|_H^2 \]

- Approximation satisfies $\nabla \hat{f}_{x_k}(x_k) = \nabla f(x_k)$

- Secant condition: Let H_k be such that
 \[\nabla \hat{f}_{x_k}(x_{k-1}) = \nabla f(x_{k-1}), \]
 which is satisfied when secant condition holds:
 \[H_k(x_k - x_{k-1}) = \nabla f(x_k) - \nabla f(x_{k-1}) \]

Proof: differentiate \hat{f}_{x_k} (w.r.t x) and evaluate at x_{k-1}
Quasi-Newton update

- Define $s_k = x_k - x_{k-1}$ and $y_k = \nabla f(x_k) - \nabla f(x_{k-1})$, then

 $$H_k s_k = y_k$$

 is secant condition

- Quasi-Newton: select H_k such that secant condition satisfied
 - H_k contains n^2 variables
 - secant condition contains only n constraints \Rightarrow underdetermined
 - Select H_k “close” to H_{k-1} subject to secant condition holds:

 $$\begin{align*}
 \text{minimize} & \quad D(H_k, H_{k-1}) \\
 \text{subject to} & \quad H_k s_k = y_k
 \end{align*}$$

 where D measures distance between H_k and H_{k-1}

- Often initialized as $H_0 = I$
Different choices of D

- $D(H_k, H_{k-1}) = \|H_k - H_{k-1}\|_F^2$
 - gives Broyden method
 - H_k not necessarily symmetric and positive definite
- $D(H_k, H_{k-1}) = \text{tr}(H_k^{-1}H_{k-1}) - \log \det(H_k^{-1}H_{k-1}) - n$
 - Cost called *relative entropy* and method is BFGS
 - H_k is symmetric and positive definite
 - This method is preferred over Broyden for smooth minimization
The BFGS update formula

- BFGS update formula \((H_+ = H_k, H = H_{k-1}, s = s_k, y = y_k)\):

\[
H_+ = H - \frac{H s s^T H}{s^T H s} + \frac{y y^T}{y^T s}
\]

(1)

- Estimating the Hessian requires a matrix inverse in algorithm:

\[
x_{k+1} = x_k - \gamma_k H_k^{-1} \nabla f(x_k)
\]

- Store and update inverse Hessian \(B_k = H_k^{-1}\) instead
The BFGS Hessian inverse update formula

• Write Hessian update formula as

\[H_+ = H + \begin{bmatrix} Hs & y \end{bmatrix} \begin{bmatrix} \frac{1}{s^T H s} & 0 \\ 0 & \frac{1}{y^T s} \end{bmatrix} \begin{bmatrix} s^T H^T \\ y^T \end{bmatrix} \]

• Identify structure and use Woodbury matrix inversion formula:

\[(A + UDV)^{-1} = A^{-1} - A^{-1}U(D^{-1} + VA^{-1}U)^{-1}VA^{-1}\]

To after algebraic manipulation find inverse update

\[B_+ = (I - \frac{sy^T}{y^T s})B(I - \frac{ys^T}{y^T s}) + \frac{s s^T}{y^T s} \]

where \(B = H^{-1} \) and \(B_+ = H_+^{-1} \)

• Algorithm performs multiplications with \(B_k \) (initialize \(B_0 = I \))

\[x_{k+1} = x_k - \gamma_k B_k \nabla f(x_k) \]

• Cheaper updates than using Newton’s method
Limited-memory BFGS (LBFGS)

• BFGS stores full matrix B_k and has dense matrix update:

$$x_{k+1} = x_k - \gamma_k B_k \nabla f(x_k)$$

memory requirement: n^2 elements (or $\frac{n(n+1)}{2}$ since symmetric)

• LBFGS uses less memory, derived from implicit form BFGS

• Inverse update formula

$$B_+ = (I - \frac{sy^T}{y^Ts}) B (I - \frac{ys^T}{y^Ts}) + \frac{ss^T}{y^Ts}$$

which can be evaluated when multiplied by vector g as

$$B_+ g = (I - s \frac{y^T}{y^Ts}) B (g - y\frac{s^Tg}{y^Ts}) + s \frac{s^Tg}{y^Ts}$$

which gives

$$B_+ g = p + s(\alpha - \beta)$$

where $\alpha = \frac{s^Tg}{y^Ts}, q = g - y\alpha, p = Bq, \beta = \frac{y^Tp}{y^Ts}$
Implicit form BFGS

- Instead of storing B_k, we store all s_l and y_l for $l = \{1, \ldots, k\}$
- Recursively use (2) k times; gives two-loop calculation of $B + g$
 1. Let $q = \nabla f(x_k)$
 2. For $l = k, \ldots, 1$ do
 a) Compute $\alpha_l = \frac{s_l^T q}{y_l^T s_l}$
 b) Update $q = q - \alpha_l y_l$
 3. Let $p = B_0 q$
 4. For $l = 1, \ldots, k$ do
 a) Let $\beta_l = \frac{y_l^T p}{y_l^T s_l}$
 b) Update $p = p + (\alpha_l - \beta_l) s_l$

- Memory requirement: $2nk$, grows with iteration k
- Inefficient implementation for BFGS, but used for LBFGS
LBFGS – Limited memory BFGS

• Recursively use (2) \(m \) times, where \(m \) is buffer size
• BFGS but look only \(m \) step back in history
• Algorithm cuts loops in two-loop procedure to be of length \(m \)

1. Let \(q = \nabla f(x_k) \)
2. For \(l = k, \ldots, k - m + 1 \) do
 (a) Compute \(\alpha_l = \frac{s_l^T q}{y_l^T s_l} \)
 (b) Update \(q = q - \alpha_l y_l \)
3. Let \(p = B_{k-m} q \)
4. For \(l = k - m + 1, \ldots, k \) do
 (a) Let \(\beta_l = \frac{y_l^T p}{y_l^T s_l} \)
 (b) Update \(p = p + (\alpha_l - \beta_l) s_l \)

• Memory requirement: \(2nm \), where buffer size \(m \) can be small
Example – Logistic regression

- Logistic regression with $\theta = (w, b)$:

$$\minimize_{\theta} \sum_{i=1}^{N} \log(1 + e^{w^T \phi(x_i) + b}) - y_i(w^T \phi(x_i) + b) + \frac{\lambda}{2} \|w\|_2^2$$

on the following data set (from logistic regression lecture)
- Polynomial features of degree 6, Tikhonov regularization $\lambda = 0.01$
- Number of decision variables: 28
Algorithms

Compare the following algorithms, all with backtracking:

1. Gradient method
2. Gradient method with fixed diagonal scaling
3. Gradient method with fixed full scaling
4. Newton’s method
5. BFGS
6. Limited-memory BFGS with buffer size 3
Fixed scaling methods

• Logistic regression gradient and Hessian satisfy

\[\nabla f(\theta) = X^T(\sigma(X\theta) - Y) + \lambda w \quad \nabla^2 f(\theta) = X^T \sigma'(X\theta)X + \lambda I_w \]

where \(\sigma \) is the (vector-version of) sigmoid, and \(I_w(w, b) = w \)

• The gradient of the sigmoid is 0.25-Lipschitz continuous

• Gradient method with fixed full scaling (3.) uses

\[H_k = H = 0.25X^TX + \lambda I_w \]

• Gradient method with fixed diagonal scaling (2.) uses

\[H_k = H = \text{diag}(0.25X^TX + \lambda I_w) \]
Example – Numerics

- Logistic regression polynomial features of degree 6, $\lambda = 0.01$
- Standard gradient method with backtracking (GM)
Example – Numerics

- Logistic regression polynomial features of degree 6, $\lambda = 0.01$
- Gradient method with diagonal scaling (GM DS)
Example – Numerics

- Logistic regression polynomial features of degree 6, $\lambda = 0.01$
- Gradient method with full matrix scaling (GM FS)
Example – Numerics

- Logistic regression polynomial features of degree 6, $\lambda = 0.01$
- Newtons method with backtracking (NM)
Example – Numerics

- Logistic regression polynomial features of degree 6, $\lambda = 0.01$
- BFGS with backtracking (BFGS)
Example – Numerics

- Logistic regression polynomial features of degree 6, $\lambda = 0.01$
- LBFGS with backtracking and buffer length three (LBFGS)
Adding nonsmooth term

- Newton’s method and BFGS for smooth minimization
- Example with logistic regression is smooth
- What happens when we have nonsmooth term? Iteration is

\[x_{k+1} = \text{prox}_{\gamma_k g}^H(x_k - \gamma_k H_k^{-1} \nabla f(x_k)) \]

\[= \arg\min_y (g(y) + \frac{1}{2\gamma_k} \|y - (x_k - \gamma_k H_k^{-1} \nabla f(x_k))\|^2_{H_k}) \]

- Depending on structure of \(H_k \), \text{prox} can be expensive to compute
Diagonal scaling

- A diagonal H_k does often not increase computational cost of prox
- If model used in method

$$\hat{f}_{x_k}(y) = f(x_k) + \nabla f(x_k)^T(y - x_k) + \frac{\beta_k}{2} \|y - x_k\|^2_{H_k}$$

better than nominal model,

$$\hat{f}_{x_k}(y) = f(x_k) + \nabla f(x_k)^T(y - x_k) + \frac{\beta_k}{2} \|y - x_k\|^2_2$$

method can be improved
- Difficult to find good diagonal scaling, examples:
 - If f quadratic, let H_k be diagonal elements of Hessian
 - Adaptive choices for stochastic gradient descent (Adagrad, Adam)
Dense matrix scaling

- Assume we select H_k to be dense (all elements nonzero)
- Cost of computing prox will dominate cost of $H_k^{-1}\nabla f(x_k)$
- No reason not to use Hessian
- Prox using BFGS will be as expensive, but worse approximation
Newton proximal gradient

• The Newton proximal gradient method is

\[x_{k+1} = \text{prox}_{\gamma_k g}(x_k - \gamma_k \nabla^2 f(x_k)^{-1} \nabla f(x_k)) \]

\[= \arg\min_y (f(x_k) + \nabla f(x_k)^T(y - x_k) + \frac{1}{2\gamma_k} \|y - x_k\|_2^2 + \nabla^2 f(x_k) + g(y)) \]

• If \(f \) quadratic, iteration reduces to solving problem
• For nonquadratic \(f \), in each iteration: solve prox with dense \(H_k \)
• Scaled coordinate descent can solve these subproblems efficiently
• Proximal Newton plus scaled coordinate descent can be efficient
Newton proximal gradient – Backtracking

Backtracking is needed for convergence

- Previous backtracking works; find β_k such that

$$ f(x_{k+1}) \leq f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{\beta_k}{2} \| x_k - x_{k+1} \|^2 \nabla^2 f(x_k), $$

requires recomputing prox for every test-value of β_k, expensive!

- Algorithm and backtracking variation (avoids prox recomputation)

$$ v_k = \arg\min_y (f(x_k) + \nabla f(x_k)^T (y - x_k) + \frac{1}{2} \| y - x_k \|^2 \nabla^2 f(x_k) + g(y)) $$

$$ x_{k+1} = x_k + \gamma_k (v_k - x_k) $$

with backtracking from $\gamma_k = 1$ and decrease while

$$ F(x_{k+1}) > F(x_k) + \alpha (\gamma_k \nabla f(x_k)^T (x_{k+1} - x_k) + (g(x_{k+1}) - g(x_k))) $$

where using $\alpha \in (0, \frac{1}{2}]$, $F = f + g$, requires different analysis
Second-order alternative: Interior point method

- Can treat nonsmooth term g in $\min_x (f(x) + g(x))$ by
 1. replacing it by smooth approximation \hat{g}
 2. solve smooth problem $f + \hat{g}$
 (use previous iterate solution as initial point)
 3. refine approximation \hat{g} of g and goto 2.

- This is idea behind interior point methods
- Why refining approximation?
 - Newton method has very fast local convergence
 - If solution with previous \hat{g} close enough, new solution found fast