Multiclass Classification

Pontus Giselsson
Learning goals

• Know multiclass logistic regression and SVM and their purpose
• Understand the logistic regression cost function
• Understand dual multiclass SVM formulations
• Be able to predict class beloning from dual SVM solutions
What is multiclass classification?

- We have previously seen binary classification
 - Two classes (cats and dogs)
 - Each sample belongs to one class (has one label)
- Multiclass classification
 - K classes with $K \geq 3$ (cats, dogs, rabbits, horses)
 - Each sample belongs to one class (has one label)
 - (Not to confuse with multilabel classification with ≥ 2 labels)
Multiclass classification from binary classification

• 1-vs-1: Train binary classifiers between all classes
 • Example:
 • cat-vs-dog,
 • cat-vs-rabbit
 • cat-vs-horse
 • dog-vs-rabbit
 • dog-vs-horse
 • rabbit-vs-horse
 • Prediction: Pick, e.g., the one that wins the most classifications
 • Number of classifiers: $\frac{K(K-1)}{2}$

• 1-vs-all: Train each class against the rest
 • Example
 • cat-vs-(dog,rabbit,horse)
 • dog-vs-(cat,rabbit,horse)
 • rabbit-vs-(cat,dog,horse)
 • horse-vs-(cat,dog,rabbit)
 • Prediction: Pick, e.g., the one that wins with highest margin
 • Number of classifiers: K
 • Always skewed number of samples in the two classes
Multiclass classification

• Labeled training data \(\{(x_i, y_i)\}_{i=1}^N \)
• \(K \geq 3 \) classes and class labels (responses) \(y \in \{1, \ldots, K\} \)
• Training problem, find model parameters \(\theta \) that solve

\[
\minimize_\theta \sum_{i=1}^N L(m(x_i; \theta), y_i)
\]

• Prediction: Based on model output
• We will cover:
 • Multiclass logistic regression
 • Two multiclass SVM versions
Multiclass Logistic Regression
Multiclass logistic regression

- K classes in $\{1, \ldots, K\}$ and data/labels $(x, y) \in \mathcal{X} \times \mathcal{Y}$
- Labels: $y \in \mathcal{Y} = \{e_1, \ldots, e_K\}$ where $\{e_j\}$ coordinate basis
 - Example, $K = 5$ class 2: $y = e_2 = [0, 1, 0, 0, 0]^T$
- Objective: Find θ such that $\sigma(m(x; \theta)) - y \approx 0$ where
 - $\sigma : \mathbb{R}^K \to \text{conv}(\mathcal{Y})$ is a fixed-function
 - $m : \mathcal{X} \to \mathbb{R}^K$ has K regression models, one per class:
 $$m(x; \theta) = \begin{bmatrix} m_1(x; \theta_1) \\ \vdots \\ m_K(x; \theta_K) \end{bmatrix} = \begin{bmatrix} w_1^T x + b_1 \\ \vdots \\ w_K^T x + b_K \end{bmatrix}$$
- Want to find θ and select σ such that:
 - $m_j(x; \theta_j) \gg 0$, if label $y = e_j$ and $m_j(x; \theta_j) \ll 0$ if $y \neq e_j$
 - $\sigma_j(m(x; \theta)) \approx 1$, if label $y = e_j$ and $\sigma_j(m(x; \theta)) \approx 0$ if $y \neq e_j$
Multiclass logistic regression – σ

• For $\mathcal{Y} = \{e_1, \ldots, e_K\}$, $\text{conv}(\mathcal{Y}) = \Delta_K$, where

$$\Delta_K = \{v \in \mathbb{R}^K : v_i \geq 0 \text{ and } 1^T v = 1\}$$

is probability simplex on \mathbb{R}^K, we want $\sigma : \mathbb{R}^K \rightarrow \Delta_K$

• The softmax function $\sigma : \mathbb{R}^K \rightarrow \Delta_K$ with $u = (u_1, \ldots, u_K)$

$$\sigma(u) = \frac{1}{\sum_{j=1}^{K} e^{u_j}} \begin{bmatrix} e^{u_1} \\ \vdots \\ e^{u_K} \end{bmatrix}$$

satisfies this and is gradient of convex function

• Graph for $\sigma_1(u_1)$ for some fixed u_2, \ldots, u_K

• Model $m_j(x; \theta_j) \rightarrow \infty$, other outputs fixed $\Rightarrow \sigma(m(x; \theta)) \rightarrow e_j$
Two-class logistic regression – σ

• Let $u = (u_1, u_2)$ and use $\sigma : \mathbb{R}^2 \rightarrow \Delta^2$:

$$\sigma(u) = \frac{1}{e^{u_1} + e^{u_2}} \begin{bmatrix} e^{u_1} \\ e^{u_2} \end{bmatrix}$$

that satisfies

• $m_1(x; \theta_1) \rightarrow \infty$ and $m_2(x; \theta_2)$ fixed $\Rightarrow \sigma(m(x; \theta)) \rightarrow (1, 0)$
• $m_2(x; \theta_2) \rightarrow \infty$ and $m_1(x; \theta_1)$ fixed $\Rightarrow \sigma(m(x; \theta)) \rightarrow (0, 1)$

• Will see this two-class version can give standard logistic regression
Multiclass logistic regression – Loss function

• Primitive function of softmax

\[
\left(\int \sigma(v)dv \right) (u) = \log \left(\sum_{j=1}^{K} e^{u_j} \right)
\]

• Same cost construction as for logistic regression,

\[
L(u, y) = \left(\int \sigma(v)dv \right) (u) - u^T y
\]

\[
= \log \left(\sum_{j=1}^{K} e^{u_j} \right) - u^T y
\]

\[
= \log \left(\sum_{j=1}^{K} e^{u_j} \right) - \sum_{j=1}^{K} \mathbb{I}(y_j = 1) u_j
\]

with last step since \(y \in \{e_1, \ldots, e_K\} \)
Multiclass logistic loss function – Example

- Multiclass logistic loss for $K = 3$, $u_1 = 1$, $y = e_1$
 \[
 L((1, u_2, u_3), 1) = \log(e^1 + e^{u_2} + e^{u_3}) - 1
 \]
- Increasing model outputs u_2 or u_3 gives higher cost
Multiclass logistic regression – Training problem

- Affine data model \(m(x; \theta) = w^T x + b \) with
 \[
 w = [w_1, \ldots, w_K] \in \mathbb{R}^{n \times K}, \quad b = [b_1, \ldots, b_K]^T \in \mathbb{R}^K
 \]

- One data model per class
- Training problem:

 \[
 \min_{\theta} \sum_{i=1}^{N} L(m(x_i; \theta), y_i) = \sum_{i=1}^{N} \log \left(\sum_{j=1}^{K} e^{w_j^T x_i + b_j} \right) - \sum_{j=1}^{K} \mathbb{I}(y_j = 1) (w_j^T x_i + b_j)
 \]

- Problem is convex since affine model is used
Multiclass logistic regression – Prediction

• Assume model is trained and want to predict label for new data x
• $\sigma(m(x; \theta))$ outputs probability of class belonging for all K classes
• The jth output, $\sigma_j(m(x; \theta_j))$, is probability for class j
• Predict label of x based on highest probability
Reduces to standard logistic regression

- Consider two-class version and let
 - \(\Delta u = u_1 - u_2, \Delta w = w_1 - w_2, \) and \(\Delta b = b_1 - b_2 \)
 - \(\Delta u = m_{\text{bin}}(x; \theta) = m_1(x; \theta_1) - m_2(x; \theta_2) = \Delta w^T x + \Delta b \)
 - \(y_{\text{bin}} = 1 \) if \(y = (1, 0) \) and \(y_{\text{bin}} = 0 \) if \(y = (0, 1) \)
 - \(\sigma_{\text{bin}}(\Delta u) = \frac{1}{1 + e^{-\Delta u}} \)

- Loss \(L \) is equivalent to nominal, but with different variables
 \[
 L(u, y) = \log(e^{u_1} + e^{u_2}) - y_1 u_1 - y_2 u_2 \\
 = \log \left(1 + e^{u_1-u_2} \right) + \log(e^{u_2}) - y_1 u_1 - y_2 u_2 \\
 = \log \left(1 + e^{\Delta u} \right) - y_1 u_1 - (y_2 - 1)u_2 \\
 = \log \left(1 + e^{\Delta u} \right) - y_{\text{bin}} \Delta u
 \]

- \(\sigma \) is equivalent to nominal, but with different input
 \[
 \sigma(u) = \frac{1}{e^{u_1} + e^{u_2}} \begin{bmatrix} e^{u_1} \\ e^{u_2} \end{bmatrix} = \begin{bmatrix} 1/(1 + e^{u_2-u_1}) \\ 1/(1 + e^{u_1-u_2}) \end{bmatrix} = \begin{bmatrix} 1/(1 + e^{-\Delta u}) \\ 1/(1 + e^{\Delta u}) \end{bmatrix} \\
 = \begin{bmatrix} \sigma_{\text{bin}}(\Delta u) \\ 1 - \sigma_{\text{bin}}(\Delta u) \end{bmatrix}
 \]
Multiclass logistic regression – Example

- Problem with 7 classes
Multiclass logistic regression – Example

- Problem with 7 classes and affine multiclass model
Multiclass logistic regression – Example

- Same data, new labels in 6 classes
Multiclass logistic regression – Example

- Same data, new labels in 6 classes, affine model
Multiclass logistic regression – Example

- Same data, new labels in 6 classes, quadratic model
Features

- Used quadratic features in last example
- Same procedure as before:
 - replace data vector x_i with feature vector $\phi(x_i)$
 - run classification method with feature vectors as inputs
• Tikhonov regularization to avoid overfitting
• Penalize all w_i vectors (not bias terms b_i):

$$\text{minimize } \sum_{i=1}^{N} \left(\log \left(\sum_{j=1}^{K} e^{w_j^T x_i + b_j} \right) - y_i^T m(x_i; \theta) \right) + \frac{\lambda}{2} \sum_{j=1}^{K} ||w_j||_2^2$$
Multiclass SVM
Deriving multiclass SVM

- Rewrite binary SVM with two models instead of one
- Generalize this model in two different ways
Rewrite binary SVM

• Introduce one model per class label ($y \in \{1, 2\}$):

$$m_1(x; \theta_1) = w_1^T x + b_1 \quad m_2(x; \theta_2) = w_2^T x + b_2$$

• We want class i to satisfy $m_i(x; \theta) > 0$ for $i = 1, 2$

• Define confidence for each class in relation to the other:

$$c_{1,2}(x; \theta) = m_1(x; \theta_1) - m_2(x; \theta_2)$$
$$c_{2,1}(x; \theta) = m_2(x; \theta_2) - m_1(x; \theta_1)$$

• $c_{1,2}(x_i; \theta) \gg 0$ confident that $y_i = 1$

• $c_{2,1}(x_i; \theta) \gg 0$ confident that $y_i = 2$

• Note that $c_{1,2}(x_i; \theta) = -c_{2,1}(x_i; \theta)$
SVM loss

- Penalize confidence for the two classes using hinge loss

\[c_1(x; \theta) \quad \text{cost if } y = 1 \]

\[c_2(x; \theta) \quad \text{cost if } y = 2 \]

- Find parameters \(\theta \) to have high confidence (low cost) for \(y = i \)
- \(c_{1,2} = -c_{2,1} \): high confidence in one gives low confidence in other
- Let \(y_i^c = \{1, 2\} \setminus y_i \) be complement and define training problem:

\[
\text{minimize} \sum_{i=1}^{N} \max(0, 1 - c_{y_i, y_i^c}(x; \theta))
\]

- Convex: sum of convex functions composed with affine mappings
Equivalent to standard formulation

• Training problem can be written as

\[
\min_{\theta} \sum_{i=1}^{N} \max(0, 1 - m_{y_i}(x_i; \theta_{y_i}) + m_{y^c_i}(x_i; \theta_{y^c_i}))
\]

\[
= \sum_{i=1}^{N} \max(0, 1 - (w_{y_i}^T x_i + b_{y_i}) + (w_{y^c_i}^T x_i + b_{y^c_i}))
\]

• Change of variables \(\theta = \theta_{y_2} - \theta_{y_1} \) gives equivalent problem

\[
\min_{\theta} \sum_{i=1}^{N} \max(0, 1 - 2(y_i - 1.5)(w^T x_i + b))
\]

\[
= \sum_{i=1}^{N} \max(0, 1 - 2(y_i - 1.5)m(x; \theta))
\]

i.e., SVM hinge loss since labels \(2(y_i - 1.5)\{1, 2\} = \{-1, 1\} \)
Multiclass SVM

• In binary SVM, confidence of label w.r.t. to complement
• In multiclass SVM, complement is more than one class
• Will compare to complement in two different ways
Multiclass SVM – Max version

- Multiclass SVM labels $y \in \mathcal{Y} = \{1, \ldots, K\}$
- Max version: Hinge on smallest confidence w.r.t. other classes

$$
\max(0, 1 - \min_{j \in \mathcal{Y} \setminus y} c_{y,j}(x; \theta))
$$

- Loss can be written as

$$
\max(0, 1 - \min_{j \in \mathcal{Y} \setminus y} c_{y,j}(x; \theta)) = \max_{j \in \mathcal{Y} \setminus y} (0, 1 - c_{y,j}(x_i; \theta)) = \max_{j \in \mathcal{Y} \setminus y} (0, 1 - m_y(x; \theta_y) + m_j(x; \theta_j))
$$
Multiclass Max-SVM

- Define loss

\[L(u, y) = \max_{j \in \mathcal{Y} \setminus y} (0, 1 - u_y + u_j) \]

- Let \(m = (m_1, \ldots, m_K) \) and define training problem

\[
\min_{\theta} \sum_{i=1}^{N} L(m(x_i; \theta), y_i) = \sum_{i=1}^{N} \max_{j \in \mathcal{Y} \setminus y_i} (0, 1 - m_{y_i}(x_i; \theta_{y_i}) + m_j(x_i; \theta_j))
\]

- Prediction: Predict class belonging of new data \(x \):

\[
\text{let } c_y := \min_{j \in \mathcal{Y} \setminus y} c_{y,j}(x; \theta) \text{ and select } y \in \mathcal{Y} \text{ that gives largest } c_y
\]

i.e., select the one with highest minimum confidence
Multiclass SVM – Sum version

• Multiclass SVM labels $y \in \mathcal{Y} = \{1, \ldots, K\}$
• Sum version: Sum hinge on confidence w.r.t. all other classes

$$\sum_{j \in \mathcal{Y} \setminus y} \max(0, 1 - c_{y,j}(x; \theta))$$

• Loss can be written as

$$\sum_{j \in \mathcal{Y} \setminus y} \max(0, 1 - c_{y,j}(x; \theta)) = \sum_{j \in \mathcal{Y} \setminus y} \max(0, 1 - m_y(x; \theta_y) + m_j(x; \theta_j))$$
Multiclass Sum-SVM

• Define loss

\[L(u, y) = \sum_{j \in Y \setminus y} \max(0, 1 - u_y + u_j) \]

• Let \(m = (m_1, \ldots, m_K) \) and define training problem

\[
\min_{\theta} \sum_{i=1}^{N} L(m(x_i; \theta), y_i) = \sum_{i=1}^{N} \sum_{j \in Y \setminus y_i} \max(0, 1 - m_{y_i}(x_i; \theta_{y_i}) + m_j(x_i; \theta_j))
\]

• Prediction: Predict class belonging of new data \(x \):

\[
\text{let } c_y := \sum_{j \in Y \setminus y} c_{y,j}(x; \theta) \text{ and select } y \in Y \text{ that gives largest } c_y
\]

i.e., select the one with highest average confidence
Comparing Max-SVM and Sum-SVM losses

- Multiclass Max-SVM and Sum-SVM for $K = 3$, $u_1 = 1$, $y = 1$

\[
L((1, u_2, u_3), 1) = \max(0, u_2, u_3)
\]
\[
L((1, u_2, u_3), 1) = \max(0, u_2) + \max(0, u_3)
\]

- Max-SVM similar to multiclass logistic loss, but sharp corners

![Diagram of Max SVM and Sum SVM losses]
Tikhonov regularized versions

- State versions with feature maps ϕ and without bias terms b_j
- Regularized multiclass Max-SVM training problem

$$\min_{\theta} \sum_{i=1}^{N} \max_{j \in \mathcal{Y} \setminus y_i} (0, 1 - \phi(x_i)^T w_{y_i} + \phi(x_i)^T w_j) + \frac{\lambda}{2} \sum_{j=1}^{K} \|w_j\|^2$$

- Regularized multiclass Sum-SVM training problem

$$\min_{\theta} \sum_{i=1}^{N} \sum_{j \in \mathcal{Y} \setminus y_i} \max(0, 1 - \phi(x_i)^T w_{y_i} + \phi(x_i)^T w_j) + \frac{\lambda}{2} \sum_{j=1}^{K} \|w_j\|^2$$
Dual problems and Kernel methods

- Multiclass SVM problems best solved via dual formulations
- Can exploit Kernel trick in dual also in multiclass setting
Dual of Max-SVM – Primal reformulation

Max-SVM with K classes can be written as

$$
\text{minimize} \sum_{i=1}^{N} \max(c - M_i X_i w) + \frac{\lambda}{2} \|w\|^2_2,
$$

where

$$
M_i = \begin{bmatrix}
0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\
-1 & \ddots & & & & & 1 \\
& \ddots & \ddots & & & & \\
& & -1 & 1 & & & \\
& & & 1 & -1 & & \\
& & & & \ddots & \ddots & \\
& & & & & 1 & -1 \\
\end{bmatrix} \in \mathbb{R}^{K \times K}
$$

and

$$
X_i = \begin{bmatrix}
\phi(x_i)^T \\
\vdots \\
\phi(x_i)^T \\
\end{bmatrix} \in \mathbb{R}^{K \times pK}
$$

$$
w = \begin{bmatrix}
w_1 \\
\vdots \\
w_K \\
\end{bmatrix} \in \mathbb{R}^{pK}
$$

where i:th column in M_i (except for row 1) is filled with 1s.
Dual of Max-SVM – Primal reformulation

• Further

\[M = \begin{bmatrix} M_1 & \cdots & \cdot & M_N \end{bmatrix} \in \mathbb{R}^{NK \times NK} \quad X = \begin{bmatrix} X_1 \\ \vdots \\ X_N \end{bmatrix} \in \mathbb{R}^{NK \times pK} \]

and \(M_i X_i = U_i M X \), where \(U_i = [0 \cdots 0 I 0 \cdots 0] \in \mathbb{R}^{K \times NK} \)

• The function \(f : \mathbb{R}^{NK} \rightarrow \mathbb{R} \) satisfies \(f(u) = \sum_{i=1}^{N} f_i(u_i) \), where
 • \(f_i(u_i) = \max(c - u_i) \)
 • \(u = (u_1, \ldots, u_N) \in \mathbb{R}^{KN} \) and \(u_i \in \mathbb{R}^{K} \)
Dual of Max-SVM

• Can be shown that \(\max_i (\cdot)^*(\mu_i) = \iota \Delta_K (\mu_i) \), therefore

\[
f_i^*(\mu_i) = \sup_{u_i} (\mu_i^T u_i - \max_i (c - u_i)) = \sup_{v_i} (\mu_i^T (c - v_i) - \max_i (v_i))
\]

\[
= \sup_{v_i} ((-\mu_i)^T v_i - \max_i (v_i)) + \mu_i^T c
\]

\[
= \iota \Delta_K (-\mu_i) + \mu_i^T c
\]

where \(\Delta_K \) is probability simplex in \(\mathbb{R}^K \)

• Further, conjugate of separable functions are separable:

\[
f^*(\mu) = \sum_{i=1}^{N} f_i^*(\mu_i) = \sum_{i=1}^{N} \iota \Delta_K (-\mu_i) + \mu_i^T c.
\]

• Conjugate of \(g(w) = \frac{\lambda}{2} \| w \|_2^2 \) satisfies \(g^*(\nu) = \frac{1}{2\lambda} \| \nu \|_2^2 \) and

\[
g^*\left(-(MX)^T \mu \right) = \frac{1}{2\lambda} \mu^T MXX^T M^T \mu
\]
The dual problem \(f^*(\mu) + g^*(-(MX)^T \mu) \) is
\[
\min_{\mu} \sum_{i=1}^{N} (c^T \mu_i) + \frac{1}{2\lambda} \mu^T MX X^T M^T \mu
\]
subject to \(-\mu_i \in \Delta_K \) for all \(i \in \{1, \ldots, N\} \)

\(g^* \) differentiable; recover primal solution from optimality condition
\[
w = \partial g^*(-M^T \mu) = -\frac{1}{\lambda} X^T M^T \mu
\]

Predict class belonging \(y \) from largest \(c_y = \min_{j \in Y \setminus y} c_{y,j}(x; \theta) \):
\[
c_{y,j}(x; \theta) = m_y(x; \theta_y) - m_j(x; \theta_j) = \phi(x)^T w_y - \phi(x)^T w_j
\]
\[= -\frac{1}{\lambda} (\phi(x)^T (X^T M^T \mu)_y - \phi(x)^T (X^T M^T \mu)_j)
\]
where \((\cdot)_y\) and \((\cdot)_j\) refer to the \(y\)th and \(j\)th blocks
Dual with Kernel matrix

• The matrix multiplication XX^T is

$$XX^T = \begin{bmatrix} X_1 \\ \vdots \\ X_N \end{bmatrix} \begin{bmatrix} X^T, \cdots, X_N^T \end{bmatrix} = \begin{bmatrix} X_1X_1^T & \cdots & X_1X_N^T \\ \vdots & \ddots & \vdots \\ X_NX_1^T & \cdots & X_NX_N^T \end{bmatrix}$$

$$= \begin{bmatrix} \phi(x_1)^T \phi(x_1)I_K & \cdots & \phi(x_1)^T \phi(x_N)I_K \\ \vdots & \ddots & \vdots \\ \phi(x_N)^T \phi(x_1)I_K & \cdots & \phi(x_N)^T \phi(x_N)I_K \end{bmatrix}$$

$$= K \otimes I_K$$

where \otimes is the Kronecker product and K is the Kernel matrix

$$K = \begin{bmatrix} \phi(x_1)^T \phi(x_1) & \cdots & \phi(x_1)^T \phi(x_N) \\ \vdots & \ddots & \vdots \\ \phi(x_N)^T \phi(x_1) & \cdots & \phi(x_N)^T \phi(x_N) \end{bmatrix}$$

• Can replace XX^T by this Kernel matrix in dual problem
Dual from Kernel operator

• Can implicitly define features using Kernel trick (see SVM lecture)
• Let $\kappa : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be Kernel operator and $[K]_{ij} = \kappa(x_i, x_j)$
• Then, dual problem:

$$\min_{\mu} \sum_{i=1}^{N} (c^T \mu_i) + \frac{1}{2\lambda} \mu^T \mathcal{M}(K \otimes I_K) \mathcal{M}^T \mu$$

subject to $-\mu_i \in \Delta_K$ for all $i \in \{1, \ldots, N\}$

solves primal problem with potentially infinite number of variables

$$\min_{\theta} \sum_{i=1}^{N} \max_{j \in \mathcal{Y} \setminus y_i} (0, 1 - \langle \phi(x_i), w_{y_i} \rangle + \langle \phi(x_i), w_j \rangle) + \frac{\lambda}{2} \sum_{j=1}^{K} \|w_j\|^2$$
Class prediction

Predict class belonging \(y \) from largest \(c_y = \sum_{j \in \mathcal{Y} \setminus y} c_{y,j}(x; \theta) \):

\[
c_{y,j}(x; \theta) = -\frac{1}{\lambda} (\phi(x)^T (X^T M^T \mu)_j - \phi(x)^T (X^T M^T \mu)_j)
\]

where

\[
\phi(x)^T (X^T M^T \mu)_j = \phi(x)^T \left(\begin{bmatrix} \phi(x_1) \\ \vdots \\ \phi(x_N) \end{bmatrix} \cdots \begin{bmatrix} \phi(x_1) \\ \vdots \\ \phi(x_N) \end{bmatrix} \right)^T M^T \mu_j
\]

\[
= \phi(x)^T \begin{bmatrix} \sum_{i=1}^{N} \phi(x_i) (M_i^T \mu_i)_j \\ \vdots \\ \sum_{i=1}^{N} \phi(x_i) (M_i^T \mu_i)_j \end{bmatrix}
\]

\[
= \sum_{i=1}^{N} \phi(x)^T \phi(x_i)(M_i^T \mu_i)_j
\]

Can be decided by evaluating Kernel operator
Dual of Sum-SVM – Primal reformulation

Sum-SVM with K classes can be written as

$$
\text{minimize} \sum_{i=1}^{N} 1^T \max(1 - D_i X_i w) + \frac{\lambda}{2} \|w\|^2,
$$

where

$$
D_i = \begin{bmatrix}
-1 & 1 \\
\vdots & \vdots \\
-1 & 1 \\
1 & 1 \\
\end{bmatrix} \in \mathbb{R}^{(K-1) \times K} \\
w = \begin{bmatrix}
w_1 \\
\vdots \\
w_K \\
\end{bmatrix} \in \mathbb{R}^{pK}
$$

$$
X_i = \begin{bmatrix}
\phi(x_i)^T \\
\vdots \\
\phi(x_i)^T \\
\end{bmatrix} \in \mathbb{R}^{K \times pK}
$$

where i:th column in D_i is filled with 1s
Dual of Sum-SVM – Primal reformulation

• Further

\[
D = \begin{bmatrix}
D_1 \\
\vdots \\
D_N
\end{bmatrix} \in \mathbb{R}^{N(K-1) \times NK} \quad X = \begin{bmatrix}
X_1 \\
\vdots \\
X_N
\end{bmatrix} \in \mathbb{R}^{NK \times pK}
\]

and \(D_i X_i = U_i DX \), where
\[
U_i = [0 \, \cdots \, 0 \, I \, 0 \, \cdots \, 0] \in \mathbb{R}^{(K-1) \times N(K-1)}
\]

• The function \(f : \mathbb{R}^{N(K-1)} \rightarrow \mathbb{R} \) satisfies \(f(u) = \sum_{i=1}^{N} f_i(u_i) \);

 • \(f_i(u_i) = 1^T \max(0, 1 - u_i) \) is sum of hinge losses

 • \(u = (u_1, \ldots, u_N) \in \mathbb{R}^{(K-1)N} \) and \(u_i \in \mathbb{R}^{K-1} \)
Dual of Sum-SVM

• Conjugate of sum of hinge losses f_i satisfies

$$f^*_i(\mu_i) = \mu_i^T 1 + \nu_{[-1,0]}(\mu_i)$$

• Further, conjugate of separable functions are separable:

$$f^*(\mu) = \sum_{i=1}^{N} f^*_i(\mu_i) = \sum_{i=1}^{N} (\nu_{[-1,0]}(-\mu_i) + 1^T \mu_i) = \nu_{[-1,0]}(-\mu) + 1^T \mu$$

• Conjugate of $g(w) = \frac{\lambda}{2} \|w\|_2^2$ satisfies $g^*(\nu) = \frac{1}{2\lambda} \|\nu\|_2^2$ and

$$g^*(-(DX)^T \mu) = \frac{1}{2\lambda} \mu^T DX X^T D^T \mu$$
Dual of Sum-SVM, primal recovery, class belonging

- The dual problem minimize $f^*(\mu) + g^*(-DX^T\mu)$ is

 $$\minimize_{\mu} \quad 1^T \mu + \frac{1}{2\lambda} \mu^T DX X^T D^T \mu$$

 subject to $\quad -1 \leq \mu \leq 0$

- g^* differentiable; recover primal solution from optimality condition

 $$w = \partial g^*(-D^T \mu) = -\frac{1}{\lambda} X^T D^T \mu$$

- Predict class belonging y from largest $c_y = \sum_{j \in \mathcal{Y} \setminus y} c_{y,j}(x; \theta)$:

 $$c_{y,j}(x; \theta) = m_y(x; \theta_y) - m_j(x; \theta_j) = \phi(x)^T w_y - \phi(x)^T w_j$$

 $$= -\frac{1}{\lambda} (\phi(x)^T (X^T D^T \mu)_y - \phi(x)^T (X^T D^T \mu)_j)$$

 where $(\cdot)_y$ and $(\cdot)_j$ refer to the y:th and j:th blocks
Dual with Kernel matrix

• The matrix multiplication XX^T is

$$XX^T = \begin{bmatrix} X_1 \\ \vdots \\ X_N \end{bmatrix} [X_1^T, \ldots, X_N^T] = \begin{bmatrix} X_1 X_1^T & \cdots & X_1 X_N^T \\ \vdots & \ddots & \vdots \\ X_N X_1^T & \cdots & X_N X_N^T \end{bmatrix}$$

$$= \begin{bmatrix} \phi(x_1)^T \phi(x_1) I_K & \cdots & \phi(x_1)^T \phi(x_N) I_K \\ \vdots & \ddots & \vdots \\ \phi(x_N)^T \phi(x_1) I_K & \cdots & \phi(x_N)^T \phi(x_N) I_K \end{bmatrix}$$

$$= K \otimes I_K$$

where \otimes is the Kronecker product and K is the Kernel matrix

$$K = \begin{bmatrix} \phi(x_1)^T \phi(x_1) & \cdots & \phi(x_1)^T \phi(x_N) \\ \vdots & \ddots & \vdots \\ \phi(x_N)^T \phi(x_1) & \cdots & \phi(x_N)^T \phi(x_N) \end{bmatrix}$$

• Can replace XX^T by this Kernel matrix in dual problem
Dual from Kernel operator

• Can implicitly define features using Kernel trick (see SVM lecture)
• Let $\kappa : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$ be Kernel operator and $[K]_{ij} = \kappa(x_i, x_j)$
• Then, dual problem:

$$
\begin{align*}
\text{minimize} \quad & \mathbf{1}^T \mu + \frac{1}{2\lambda} \mu^T D(K \otimes I_K)D^T \mu \\
\text{subject to} \quad & -1 \leq \mu \leq 0
\end{align*}
$$

solves primal problem with potentially infinite number of variables

$$
\begin{align*}
\text{minimize} \quad & \sum_{i=1}^{N} \sum_{j \in \mathcal{Y} \setminus y_i} \left(0, 1 - \langle \phi(x_i), w_{y_i} \rangle + \langle \phi(x_i), w_j \rangle \right) + \frac{\lambda}{2} \sum_{j=1}^{K} ||w_j||^2 \\
\end{align*}
$$
Class prediction

Predict class belonging y from largest $c_y = \min_{j \in \mathcal{Y} \setminus y} c_{y,j}(x; \theta)$:

$$c_{y,j}(x; \theta) = -\frac{1}{\lambda} (\phi(x)^T (X^T D^T \mu)_y - \phi(x)^T (X^T D^T \mu)_j)$$

where

$$\phi(x)^T (X^T D^T \mu)_j = \phi(x)^T \left(\begin{bmatrix} \phi(x_1) \\ \vdots \\ \phi(x_1) \end{bmatrix} \cdots \begin{bmatrix} \phi(x_N) \\ \vdots \\ \phi(x_N) \end{bmatrix} \right) D^T \mu)_j$$

$$= \phi(x)^T \left(\begin{bmatrix} \sum_{i=1}^{N} \phi(x_i)(D^T_i \mu_i)_1 \\ \vdots \\ \sum_{i=1}^{N} \phi(x_i)(D^T_i \mu_i)_K \end{bmatrix} \right)_j$$

$$= \sum_{i=1}^{N} \phi(x)^T \phi(x_i)(D^T_i \mu_i)_j$$

$$= \sum_{i=1}^{N} \kappa(x, x_i)(D^T_i \mu_i)_j$$

Can be decided by evaluating Kernel operator