Logistic Regression

Pontus Giselsson

Learning goals

- Understand logistic regression and its purpose classification
- Understand that the training problem is convex
- Understand the problem of overparameterization and overfitting
- Understand the purpose and need for regularization
- Familiar with the effect of some convex regularization choices
- Understand the use and purpose of feature maps
- Understand hyperparameters and how they can be chosen

Supervised learning

- Let $\left(x,y\right)$ represent object and label pairs
 - Object $x \in \mathcal{X} \subseteq \mathbb{R}^n$
 - Label $y \in \mathcal{Y} \subseteq \mathbb{R}^{K}$
- Available: Labeled training data (training set) $\{(x_i, y_i)\}_{i=1}^N$
 - Data $x_i \in \mathbb{R}^n$ are called *examples* (often n large)
 - Labels $y_i \in \mathbb{R}^K$ are called *response variables* (often K = 1)

Objective:

• Find data to label transformation $\psi:\mathcal{X}\rightarrow\mathcal{Y}$ such that

$$\psi(x)\approx y$$

for all data label pairs (x, y)

• Learn ψ from training data, but should generalize to all (x,y)

Notation

- (Primal) Optimization variable notation:
 - Optimization literature: x, y, z (as in first part of course)
 - Statistics literature: β
 - Machine learning literature: θ, w, b
- Reason: data, labels in statistics and machine learning are $\boldsymbol{x},\boldsymbol{y}$
- Will use machine learning notation in these lectures
- We collect training data in matrices (one example per row)

$$X = \begin{bmatrix} x_1^T \\ \vdots \\ x_N^T \end{bmatrix} \qquad \qquad Y = \begin{bmatrix} y_1^T \\ \vdots \\ y_N^T \end{bmatrix}$$

• Columns X_j of data matrix $X = [X_1, \dots, X_n]$ are called *features*

Regression vs Classification

There are two main types of supervised learning tasks:

- Regression:
 - Predicts quantities
 - Example: Least squares
- Classification:
 - Predicts class beloning
 - Example: Logistic regression (dispite its name)

Classification

- \mathcal{Y} has finite cardinality (finite number of outcomes, e.g., $\{0,1\}$)
- The data to label transformation ψ is a composition $\psi = \sigma \circ m$
 - $m: \mathbb{R}^n \to \mathbb{R}^K$ is parameter dependent data regression model
 - $\sigma : \mathbb{R}^K \to \mathcal{Y}$ is a *fixed* function that:
 - maps regression model output to response range \mathcal{Y} (or $\mathrm{conv}\mathcal{Y}$)
 - is typically the (sub)gradient of a convex function (monotone)
- Classification problems try to find model parameters θ such that

$$\sigma(m(x;\theta))\approx y \qquad \Longleftrightarrow \qquad \sigma(m(x;\theta))-y\approx 0$$

for all data and label pairs (x, y) by solving training problem

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i; \theta), y_i)$$

• Learn model from training data, but should generalize to all (x,y)

Classification loss function

- Many different classification loss functions exist
- This lecture: specific construction that gives logistic regression

First – Does least squares loss work?

• Objective: Find model paramters θ such that for all (x, y):

$$\sigma(m(x;\theta)) - y \approx 0$$

• Let model output $u = m(x; \theta)$; Least squares loss:

$$L(u, v) = \|\sigma(u) - y\|_2^2$$

typically *not* convex in u due to nonlinear σ

• This works for regression ($\sigma = I$) but *not* used for classification!

A classification loss function

• Objective: Find model parameters θ such that for all (x, y):

$$\sigma(m(x;\theta)) - y \approx 0$$

- Require σ to be the (sub-)gradient of a convex function
- Convex function is $\int \sigma(u) du$ where \int denotes primitive function¹
- Let model output $u = m(x; \theta)$; and define loss:

$$L(u,y) = \int \sigma(u) du - y^T u + C,$$

where \boldsymbol{C} is arbitrary constant

• Loss is convex in u since integral and $-y^T u$ are convex

¹Primitive function should really be $(\int \sigma(v) dv)(u)$

Loss function mimimum

- Loss function $L(u,y) = \int \sigma(u) du y^T u + C$
- Subdifferential 1 (by definition) $\partial L(u,y)=\sigma(u)-y$
- Fermat's rule says loss function minimized if and only if

$$0 \in \sigma(u) - y$$

and if σ single-valued, i.e., the cost is differentiable:

$$0 = \sigma(u) - y$$

- Loss minimized if model output $u = m(x; \theta)$ equals response y
- How to choose σ ?

¹We use notation $\partial L(u,y)$ for $\partial L(\cdot,y)(u)$, i.e., w.r.t. first argument

Logistic regression – σ -function

- Response $y \in \{0,1\}$, approximation $\sigma(m(x)) \approx y$
- Uses *logistic* function $\sigma(u) = \frac{1}{1+e^{-u}}$ (also called *sigmoid*):

- Function is maximal monotone and gradient of convex function
- Range is (0,1), i.e., interior of probability interval [0,1]

Logistic regression – Loss function

• Primitive function of σ :

$$\int \sigma(u)du = \int \frac{1}{1+e^{-u}}du = \log(1+e^u) + C$$

• Let C = 0 to get

$$L(u,y) = \int \sigma(u)du - yu + C = \log(1 + e^u) - yu$$

• Loss function for y = 0 and y = 1:

Alternative labels

- Multiply responses by 2 and subtract 1 to get $y \in \{-1, 1\}$
- Multiply logistic function by 2 and subtract 1 to get new

$$\sigma(u) := \frac{2}{1 + e^{-u}} - 1 = \frac{1 - e^{-u}}{1 + e^{-u}} = \frac{e^{u/2} - e^{-u/2}}{e^{u/2} + e^{-u/2}} = \tanh(u/2)$$

Loss function

$$L(u,y) = \int \sigma(u)du - yu + C = 2\log(1+e^u) - u - yu$$

equivalent (modulo scaling by 2) to before for y = -1 and y = 1

• If y only -1 or 1, loss function (scaled by 1/2) can be written as

$$L(u,y) = \log(1 + e^{-yu})$$

(this formula is not equivalent to the above for other values of y!)

Logistic regression – Model and training problem

- Logistic regression uses affine model $m(x;\theta) = w^T x + b$
- Training problem:

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i; \theta), y_i) = \sum_{i=1}^{N} \left(\log(1 + e^{x_i^T w + b}) - y_i(x_i^T w + b) \right)$$

- Training problem convex in $\boldsymbol{\theta} = (w,b)$ since model affine
- y = 0: low cost for $m(x; \theta) \ll 0$, y = 1: low cost for $m(x; \theta) \gg 0$

The bias term

- The model $m(x; \theta) = w^T x + b$ bias term is b
- Least squares: optimal b has simple formula
- No simple formula to remove bias term here!

Bias term gives shift invariance

- Assume all data points shifted $x_i^c := x_i c$
- We want same hyperplane to separate data, but shifted

- Assume $(w, b) = (\bar{w}, \bar{b})$ is optimal for (x_i, y_i)
- Then $(w,b)=(\bar{w},\bar{b}_c)$ with $\bar{b}_c=\bar{b}+\bar{w}^Tc$ optimal for (x^c_i,y_i)
- Why? Model outputs the same:
 - Model output $m(x_i; \theta) = w_{-}^T x_i + b$
 - Model output $m(x_i^c; \theta) = w^T x_i^c + b = w^T x_i + (b + w^T c)$
 - Exactly the same output by shifting bias term with $\boldsymbol{w}^T\boldsymbol{c}$

Prediction

• Assume we have trained model m and want to predict label using

 $\sigma(m(x;\theta))\approx y$

- If $m(x;\theta) \gg 0$, then label estimate $\sigma(m(x;\theta)) \approx 1$
- If $m(x;\theta) \ll 0$, then label estimate $\sigma(m(x;\theta)) \approx 0$
- Logistic function assigns probabilities for class beloning:
 - probability $\sigma(m(x;\theta))$ that x has label 1
 - probability $1 \sigma(m(x; \theta))$ that x has label 0
- Predict label of x by thresholding $u = m(x; \theta)$ at 0 (prob. 0.5)

Prediction

- Since affine model $m(x; \theta) = w^T x + b$, prediction for x becomes:
 - If $w^T x + b < 0$, predict corresponding label y = 0
 - If $w^T x + b > 0$, predict corresponding label y = 1
 - If $w^T x + b = 0$, predict either y = 0 or y = 1 (equally probable)
- Therefore, the hyperplane (decision boundary)

$$H := \{x : w^T x + b = 0\}$$

separates class predictions

Example

- Fully separable training data
- Decision boundary decides label estimate for new data
- Optimal model parameters define normal to hyperplane

Logistic regression – Nonlinear example

- Logistic regression tries to affinely separate data
- Can nonlinear boundary be approximated by logistic regression?
- Introduce features (perform lifting)

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

- Seems linear in feature 2 and quadratic in feature 1
- Add a third feature which is feature 1 squared

Nonlinear models – Features

- Create feature map $\phi:\mathbb{R}^n\to\mathbb{R}^p$ of training data
- Data points $x_i \in \mathbb{R}^n$ replaced by featured data points $\phi(x_i) \in \mathbb{R}^p$
- New model: $m(x; \theta) = w^T \phi(x) + b$, still linear in parameters
- Feature can include original data x
- We can add feature 1 and remove bias term b
- Logistic regression training problem

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} \left(\log(1 + e^{\phi(x_i)^T w + b}) - y_i(\phi(x_i)^T w + b) \right)$$

same as before, but with features as inputs

Graphical model representation

• A graphical view of model $m(x; \theta) = w^T \phi(x)$:

- The input x_i is transformed by *fixed* nonlinear features ϕ
- Feature-transformed input is multiplied by model parameters $\boldsymbol{\theta}$
- Model output is then fed into cost $L(m(x_i; \theta), y)$
- Problem convex since L convex and model affine in θ

Polynomial features

• Polynomial feature map for \mathbb{R}^n with n=2 and degree d=3

$$\phi(x) = (x_1, x_2, x_1^2, x_1 x_2, x_2^2, x_1^3, x_1^2 x_2, x_1 x_2^2, x_2^3)$$

(note that original data is also there)

- New model: $m(x; \theta) = w^T \phi(x) + b$, still linear in parameters
- Number of features $p + 1 = \binom{n+d}{d} = \frac{(n+d)!}{d!n!}$ grows fast!
- Training problem has p+1 instead of n+1 decision variables

- "Lifting" example with fewer samples and some mislabels
- Logistic regression (no regularization) polynomial features of degree:

- "Lifting" example with fewer samples and some mislabels
- Logistic regression (no regularization) polynomial features of degree: 2

- "Lifting" example with fewer samples and some mislabels
- Logistic regression (no regularization) polynomial features of degree: 3

- "Lifting" example with fewer samples and some mislabels
- Logistic regression (no regularization) polynomial features of degree: 4

- "Lifting" example with fewer samples and some mislabels
- Logistic regression (no regularization) polynomial features of degree: 5

- "Lifting" example with fewer samples and some mislabels
- Logistic regression (no regularization) polynomial features of degree: 6

Overfitting

- Models with higher order polynomials overfit
- Use, e.g., Tikhonov regularization to reduce overfitting

Tikhonov regularization

Regularized problem:

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} \left(\log(1 + e^{x_i^T w + b}) - y_i(x_i^T w + b) \right) + \lambda \|w\|_2^2$$

Regularization:

- Regularize only \boldsymbol{w} and not the bias term \boldsymbol{b}
- Why? Model looses shift invariance if also b regularized

Problem properties

- Problem is strongly convex in $w \Rightarrow$ optimal w exists and is unique
- Optimal b is bounded if examples from both classes exist

Fully separable data

• Regularization also useful when linearly fully separable data

• Suppose data is fully separable and no regularization, then

- Smallest possible logistic regression cost is 0 (no regularization)
- Normal vector \bar{w} to hyperplane exists that fully separates data
- Normal vector $t\bar{w}$ also separates where $t \to \infty$
- Model outputs $\rightarrow -\infty$ (*) or $\rightarrow \infty$ (*) as $t \rightarrow \infty \Rightarrow \text{cost} \rightarrow 0$

Regularization gives bounded solution

- Regularized logistic regression and polynomial features of degree 6
- Regularization parameter λ , training cost J, # mislabels in training

- Regularized logistic regression and polynomial features of degree 6
- Regularization parameter λ , training cost J, # mislabels in training

- Regularized logistic regression and polynomial features of degree 6
- Regularization parameter λ , training cost J, # mislabels in training

- Regularized logistic regression and polynomial features of degree 6
- Regularization parameter λ , training cost J, # mislabels in training

- Regularized logistic regression and polynomial features of degree 6
- Regularization parameter λ , training cost J, # mislabels in training

- Regularized logistic regression and polynomial features of degree 6
- Regularization parameter λ , training cost J, # mislabels in training

- Regularized logistic regression and polynomial features of degree 6
- Regularization parameter λ , training cost J, # mislabels in training

- Regularized logistic regression and polynomial features of degree 6
- Regularization parameter λ , training cost J, # mislabels in training

Selecting model

- Model order and regularization parameter are hyperparameters
- Select using holdout or cross validation

Holdout

• Randomize data and assign to train, validate, or test set

Training set:

• Solve training problems with different hyperparameters

Validation set:

- Estimate generalization performance of all trained models
- Use this to select model that seems to generalize best

Test set:

- Final assessment on how chosen model generalizes to unseen data
- Not for model selection, then final assessment too optimistic

k-fold cross validation

- Similar to hold out divide first into training/validate and test set
- Divide/validate set into k data chunks
- Train k models with k-1 chunks, use k:th chunk for validation
- Loop
 - 1. Set hyperparameters and train all k models
 - 2. Evaluate generalization score on its validation data
 - 3. Sum scores to get model performance
- Select final model hyperparameters based on best score
- Simpler model with slightly worse score may generalize better
- Estimate generalization performance via test set

4-fold cross validation – Graphics

Train	Train	Train	Validate	Test
-------	-------	-------	----------	------

Train Train Validate Train Test

Train <mark>Validate</mark> Train Train Test	
--	--

Validate	Train	Train	Train	Test

- Regularized logistic regression and polynomial features of degree 6
- J and # mislabels specify training/test values

- Regularized logistic regression and polynomial features of degree 6
- + J and # mislabels specify training/test values

- Regularized logistic regression and polynomial features of degree 6
- + J and # mislabels specify training/test values

- Regularized logistic regression and polynomial features of degree 6
- + J and # mislabels specify training/test values

- Regularized logistic regression and polynomial features of degree 6
- J and # mislabels specify training/test values

- Regularized logistic regression and polynomial features of degree 6
- J and # mislabels specify training/test values

Example – Validation data

- Regularized logistic regression and polynomial features of degree 6
- J and # mislabels specify training/test values

Example – Validation data

- Regularized logistic regression and polynomial features of degree 6
- J and # mislabels specify training/test values

Test vs training error – Cost

- Increasing λ gives lower complexity model
- Overfitting to the left, underfitting to the right
- Select lowest complexity model that gives good generalization

Test vs training error – Classification accuracy

- Increasing λ gives lower complexity model
- Overfitting to the left, underfitting to the right
- Cost often better measure of over/underfitting

Composite optimization

Logistic regression problems are convex problems of the form

$$\min_{\theta} f(X\theta) + g(\theta),$$

where

•
$$f(u) = \sum_{i=1}^{N} (\int \sigma(v_i) dv_i)(u_i) - y_i u_i$$
 is data misfit term

- $\sigma(u_i) = \frac{1}{1+e^{-u_i}} : \mathbb{R} \to \mathbb{R}$ is a sigmoid function
- X is training data matrix (potentially extended with features)
- g is regularization term (squared 2-norm, 1-norm)

Gradient and function properties

• Gradient of $f \circ X$ satisfies:

$$\nabla (f \circ X)(\theta) = \nabla \sum_{i=1}^{N} \left(\int \sigma(v_i) dv_i \right) (x_i^T \theta) - y_i x_i^T \theta$$
$$= \sum_{i=1}^{N} x_i \sigma(x_i^T \theta) - x_i y_i = \sum_{i=1}^{N} x_i (\sigma(x_i^T \theta) - y_i)$$
$$= X^T (\sigma(X\theta) - Y)$$

where last $\sigma:\mathbb{R}^N\to\mathbb{R}^N$ applies $\frac{1}{1+e^{-u_i}}$ to all elements in $X\theta$

- (Compare to least squares gradient which is same with $\sigma = I$)
- Function and σ properties
 - σ is 0.25 Lipschitz continuous
 - f is convex and 0.25-smooth and $f \circ X$ is $0.25 ||X||^2$ -smooth
 - g is convex and possibly nondifferentiable