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Learning goals

• Understand logistic regression and its purpose – classification

• Understand that the training problem is convex

• Understand the problem of overparameterization and overfitting

• Understand the purpose and need for regularization

• Familiar with the effect of some convex regularization choices

• Understand the use and purpose of feature maps

• Understand hyperparameters and how they can be chosen
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Supervised learning

• Let (x, y) represent object and label pairs
• Object x ∈ X ⊆ Rn

• Label y ∈ Y ⊆ RK

• Available: Labeled training data (training set) {(xi, yi)}Ni=1

• Data xi ∈ Rn are called examples (often n large)
• Labels yi ∈ RK are called response variables (often K = 1)

Objective:

• Find data to label transformation ψ : X → Y such that

ψ(x) ≈ y

for all data label pairs (x, y)

• Learn ψ from training data, but should generalize to all (x, y)
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Notation

• (Primal) Optimization variable notation:
• Optimization literature: x, y, z (as in first part of course)
• Statistics literature: β
• Machine learning literature: θ, w, b

• Reason: data, labels in statistics and machine learning are x, y

• Will use machine learning notation in these lectures

• We collect training data in matrices (one example per row)

X =

x
T
1
...
xTN

 Y =

y
T
1
...
yTN


• Columns Xj of data matrix X = [X1, . . . , Xn] are called features
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Regression vs Classification

There are two main types of supervised learning tasks:

• Regression:
• Predicts quantities
• Example: Least squares

• Classification:
• Predicts class beloning
• Example: Logistic regression (dispite its name)
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Classification

• Y has finite cardinality (finite number of outcomes, e.g., {0, 1})
• The data to label transformation ψ is a composition ψ = σ ◦m

• m : Rn → RK is parameter dependent data regression model
• σ : RK → Y is a fixed function that:

• maps regression model output to response range Y (or convY)
• is typically the (sub)gradient of a convex function (monotone)

• Classification problems try to find model parameters θ such that

σ(m(x; θ)) ≈ y ⇐⇒ σ(m(x; θ))− y ≈ 0

for all data and label pairs (x, y) by solving training problem

minimize
θ

N∑
i=1

L(m(xi; θ), yi)

• Learn model from training data, but should generalize to all (x, y)
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Classification loss function

• Many different classification loss functions exist

• This lecture: specific construction that gives logistic regression
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First – Does least squares loss work?

• Objective: Find model paramters θ such that for all (x, y):

σ(m(x; θ))− y ≈ 0

• Let model output u = m(x; θ); Least squares loss:

L(u, v) = ‖σ(u)− y‖22

typically not convex in u due to nonlinear σ

• This works for regression (σ = I) but not used for classification!
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A classification loss function

• Objective: Find model parameters θ such that for all (x, y):

σ(m(x; θ))− y ≈ 0

• Require σ to be the (sub-)gradient of a convex function

• Convex function is
∫
σ(u)du where

∫
denotes primitive function1

• Let model output u = m(x; θ); and define loss:

L(u, y) =

∫
σ(u)du− yTu+ C,

where C is arbitrary constant

• Loss is convex in u since integral and −yTu are convex

1Primitive function should really be (
∫
σ(v)dv)(u)
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Loss function mimimum

• Loss function L(u, y) =
∫
σ(u)du− yTu+ C

• Subdifferential1 (by definition) ∂L(u, y) = σ(u)− y
• Fermat’s rule says loss function minimized if and only if

0 ∈ σ(u)− y

and if σ single-valued, i.e., the cost is differentiable:

0 = σ(u)− y

• Loss minimized if model output u = m(x; θ) equals response y

• How to choose σ?

1We use notation ∂L(u, y) for ∂L(·, y)(u), i.e., w.r.t. first argument
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Logistic regression – σ-function

• Response y ∈ {0, 1}, approximation σ(m(x)) ≈ y
• Uses logistic function σ(u) = 1

1+e−u (also called sigmoid):

u

σ(u)

• Function is maximal monotone and gradient of convex function

• Range is (0, 1), i.e., interior of probability interval [0, 1]
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Logistic regression – Loss function

• Primitive function of σ:∫
σ(u)du =

∫
1

1 + e−u
du = log(1 + eu) + C

• Let C = 0 to get

L(u, y) =

∫
σ(u)du− yu+ C = log(1 + eu)− yu

• Loss function for y = 0 and y = 1:

u

L(u, 0)

u

L(u, 1)

12



Alternative labels

• Multiply responses by 2 and subtract 1 to get y ∈ {−1, 1}
• Multiply logistic function by 2 and subtract 1 to get new

σ(u) :=
2

1 + e−u
− 1 =

1− e−u

1 + e−u
=
eu/2 − e−u/2

eu/2 + e−u/2
= tanh(u/2)

• Loss function

L(u, y) =

∫
σ(u)du− yu+ C = 2 log(1 + eu)− u− yu

equivalent (modulo scaling by 2) to before for y = −1 and y = 1

• If y only −1 or 1, loss function (scaled by 1/2) can be written as

L(u, y) = log(1 + e−yu)

(this formula is not equivalent to the above for other values of y!)
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Logistic regression – Model and training problem

• Logistic regression uses affine model m(x; θ) = wTx+ b

• Training problem:

minimize
θ

N∑
i=1

L(m(xi; θ), yi) =

N∑
i=1

(
log(1 + ex

T
i w+b)− yi(xTi w + b)

)
• Training problem convex in θ = (w, b) since model affine

• y = 0: low cost for m(x; θ)� 0, y = 1: low cost for m(x; θ)� 0
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The bias term

• The model m(x; θ) = wTx+ b bias term is b

• Least squares: optimal b has simple formula

• No simple formula to remove bias term here!
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Bias term gives shift invariance

• Assume all data points shifted xci := xi − c
• We want same hyperplane to separate data, but shifted

xi xci

• Assume (w, b) = (w̄, b̄) is optimal for (xi, yi)

• Then (w, b) = (w̄, b̄c) with b̄c = b̄+ w̄T c optimal for (xci , yi)

• Why? Model outputs the same:
• Model output m(xi; θ) = wTxi + b
• Model output m(xci ; θ) = wTxci + b = wTxi + (b+ wT c)
• Exactly the same output by shifting bias term with wT c
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Prediction

• Assume we have trained model m and want to predict label using

σ(m(x; θ)) ≈ y

• If m(x; θ)� 0, then label estimate σ(m(x; θ)) ≈ 1

• If m(x; θ)� 0, then label estimate σ(m(x; θ)) ≈ 0

• Logistic function assigns probabilities for class beloning:
• probability σ(m(x; θ)) that x has label 1
• probability 1− σ(m(x; θ)) that x has label 0

• Predict label of x by thresholding u = m(x; θ) at 0 (prob. 0.5)

m(x; θ)

σ(m(x; θ))
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Prediction

• Since affine model m(x; θ) = wTx+ b, prediction for x becomes:
• If wTx+ b < 0, predict corresponding label y = 0
• If wTx+ b > 0, predict corresponding label y = 1
• If wTx+ b = 0, predict either y = 0 or y = 1 (equally probable)

• Therefore, the hyperplane (decision boundary)

H := {x : wTx+ b = 0}

separates class predictions

wTx+ b

σ(wTx+ b)
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Example

• Fully separable training data
• Decision boundary decides label estimate for new data
• Optimal model parameters define normal to hyperplane
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Logistic regression – Nonlinear example

• Logistic regression tries to affinely separate data

• Can nonlinear boundary be approximated by logistic regression?

• Introduce features (perform lifting)
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Logistic regression – Example

• Seems linear in feature 2 and quadratic in feature 1

• Add a third feature which is feature 1 squared
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Nonlinear models – Features

• Create feature map φ : Rn → Rp of training data

• Data points xi ∈ Rn replaced by featured data points φ(xi) ∈ Rp

• New model: m(x; θ) = wTφ(x) + b, still linear in parameters

• Feature can include original data x

• We can add feature 1 and remove bias term b

• Logistic regression training problem

minimize
θ

N∑
i=1

(
log(1 + eφ(xi)

Tw+b)− yi(φ(xi)
Tw + b)

)
same as before, but with features as inputs
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Graphical model representation

• A graphical view of model m(x; θ) = wTφ(x):

m(xi; θ)

φ(xi)

w
T
φ

(x
i
)

φx
i

• The input xi is transformed by fixed nonlinear features φ
• Feature-transformed input is multiplied by model parameters θ
• Model output is then fed into cost L(m(xi; θ), y)
• Problem convex since L convex and model affine in θ
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Polynomial features

• Polynomial feature map for Rn with n = 2 and degree d = 3

φ(x) = (x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2)

(note that original data is also there)

• New model: m(x; θ) = wTφ(x) + b, still linear in parameters

• Number of features p+ 1 =
(
n+d
d

)
= (n+d)!

d!n! grows fast!

• Training problem has p+ 1 instead of n+ 1 decision variables
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Example – Different polynomial model orders

“Lifting” example with fewer samples and some mislabels

Logistic regression (no regularization) polynomial features of degree:
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Example – Different polynomial model orders
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Example – Different polynomial model orders
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Logistic regression (no regularization) polynomial features of degree: 4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

25



Example – Different polynomial model orders

“Lifting” example with fewer samples and some mislabels

Logistic regression (no regularization) polynomial features of degree: 5
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Example – Different polynomial model orders

“Lifting” example with fewer samples and some mislabels

Logistic regression (no regularization) polynomial features of degree: 6
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Overfitting

• Models with higher order polynomials overfit

• Use, e.g., Tikhonov regularization to reduce overfitting
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Tikhonov regularization

Regularized problem:

minimize
θ

N∑
i=1

(
log(1 + ex

T
i w+b)− yi(xTi w + b)

)
+ λ‖w‖22

Regularization:

• Regularize only w and not the bias term b

• Why? Model looses shift invariance if also b regularized

Problem properties

• Problem is strongly convex in w ⇒ optimal w exists and is unique

• Optimal b is bounded if examples from both classes exist
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Fully separable data

• Regularization also useful when linearly fully separable data

m(x; θ̄) < 0
m(x; θ̄) > 0

w̄

• Suppose data is fully separable and no regularization, then
• Smallest possible logistic regression cost is 0 (no regularization)
• Normal vector w̄ to hyperplane exists that fully separates data
• Normal vector tw̄ also separates where t→∞
• Model outputs → −∞ ( ) or →∞ ( ) as t→∞ ⇒ cost → 0

m(x; θ)

L(m(x; θ), 0)

m(x; θ)

L(m(x; θ), 1)

• Regularization gives bounded solution 28



Example – Different regularization

Regularized logistic regression and polynomial features of degree 6

Regularization parameter λ, training cost J , # mislabels in training

λ J # mislabels
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Example – Different regularization

Regularized logistic regression and polynomial features of degree 6

Regularization parameter λ, training cost J , # mislabels in training

λ J # mislabels
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Example – Different regularization

Regularized logistic regression and polynomial features of degree 6

Regularization parameter λ, training cost J , # mislabels in training

λ J # mislabels
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Example – Different regularization

Regularized logistic regression and polynomial features of degree 6

Regularization parameter λ, training cost J , # mislabels in training

λ J # mislabels
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Example – Different regularization

Regularized logistic regression and polynomial features of degree 6

Regularization parameter λ, training cost J , # mislabels in training

λ J # mislabels
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Example – Different regularization

Regularized logistic regression and polynomial features of degree 6

Regularization parameter λ, training cost J , # mislabels in training

λ J # mislabels
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Example – Different regularization

Regularized logistic regression and polynomial features of degree 6

Regularization parameter λ, training cost J , # mislabels in training

λ J # mislabels
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Example – Different regularization

Regularized logistic regression and polynomial features of degree 6

Regularization parameter λ, training cost J , # mislabels in training

λ J # mislabels
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Selecting model

• Model order and regularization parameter are hyperparameters

• Select using holdout or cross validation
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Holdout

• Randomize data and assign to train, validate, or test set

Train Validate Test

Training set:

• Solve training problems with different hyperparameters

Validation set:

• Estimate generalization performance of all trained models
• Use this to select model that seems to generalize best

Test set:

• Final assessment on how chosen model generalizes to unseen data
• Not for model selection, then final assessment too optimistic
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k-fold cross validation

• Similar to hold out – divide first into training/validate and test set

• Divide/validate set into k data chunks

• Train k models with k − 1 chunks, use k:th chunk for validation

• Loop

1. Set hyperparameters and train all k models
2. Evaluate generalization score on its validation data
3. Sum scores to get model performance

• Select final model hyperparameters based on best score

• Simpler model with slightly worse score may generalize better

• Estimate generalization performance via test set
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4-fold cross validation – Graphics

Train/Validate Test

Validate Train Train Train Test

Train Validate Train Train Test

Train Train Validate Train Test

Train Train Train Validate Test
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Example – Validation data

Regularized logistic regression and polynomial features of degree 6

J and # mislabels specify training/test values

λ J # mislabels
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Example – Validation data

Regularized logistic regression and polynomial features of degree 6

J and # mislabels specify training/test values

λ J # mislabels
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Example – Validation data

Regularized logistic regression and polynomial features of degree 6

J and # mislabels specify training/test values

λ J # mislabels

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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0.00036 9.94/13.4 5/8
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Example – Validation data

Regularized logistic regression and polynomial features of degree 6

J and # mislabels specify training/test values

λ J # mislabels
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0.0021 12.1/8.70 6/5
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Example – Validation data

Regularized logistic regression and polynomial features of degree 6

J and # mislabels specify training/test values

λ J # mislabels
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Example – Validation data

Regularized logistic regression and polynomial features of degree 6

J and # mislabels specify training/test values

λ J # mislabels
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Example – Validation data

Regularized logistic regression and polynomial features of degree 6

J and # mislabels specify training/test values

λ J # mislabels
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Example – Validation data

Regularized logistic regression and polynomial features of degree 6

J and # mislabels specify training/test values

λ J # mislabels
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0.6

0.8
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Test vs training error – Cost

• Increasing λ gives lower complexity model

• Overfitting to the left, underfitting to the right

• Select lowest complexity model that gives good generalization

log(λ)

Training vs test cost

train
test
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Test vs training error – Classification accuracy

• Increasing λ gives lower complexity model

• Overfitting to the left, underfitting to the right

• Cost often better measure of over/underfitting

log(λ)

Number of misclassifications

train
test
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Composite optimization

Logistic regression problems are convex problems of the form

minimize
θ

f(Xθ) + g(θ),

where

• f(u) =
∑N
i=1(

∫
σ(vi)dvi)(ui)− yiui is data misfit term

• σ(ui) = 1
1+e−ui

: R→ R is a sigmoid function

• X is training data matrix (potentially extended with features)

• g is regularization term (squared 2-norm, 1-norm)
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Gradient and function properties

• Gradient of f ◦X satisfies:

∇(f ◦X)(θ) = ∇
N∑
i=1

(∫
σ(vi)dvi

)
(xTi θ)− yixTi θ

=

N∑
i=1

xiσ(xTi θ)− xiyi =

N∑
i=1

xi(σ(xTi θ)− yi)

= XT (σ(Xθ)− Y )

where last σ : RN → RN applies 1
1+e−ui

to all elements in Xθ

• (Compare to least squares gradient which is same with σ = I)

• Function and σ properties
• σ is 0.25 Lipschitz continuous
• f is convex and 0.25-smooth and f ◦X is 0.25‖X‖2-smooth
• g is convex and possibly nondifferentiable
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