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Learning goals

Understand logistic regression and its purpose — classification
Understand that the training problem is convex

Understand the problem of overparameterization and overfitting
Understand the purpose and need for regularization

Familiar with the effect of some convex regularization choices
Understand the use and purpose of feature maps

Understand hyperparameters and how they can be chosen



Supervised learning

® Let (x,y) represent object and label pairs
® Objectz € X CR"
® Label y € Y CR¥
® Available: Labeled training data (training set) {(z;,v:)}

® Data x; € R™ are called examples (often n large)
® Labels y; € R¥ are called response variables (often K = 1)

N
i=1

Objective:
® Find data to label transformation v : X — Y such that
Y(x) =y

for all data label pairs (z,y)

® Learn ¢ from training data, but should generalize to all (z,y)



Notation

(Primal) Optimization variable notation:

® Optimization literature: z,y, z (as in first part of course)
® Statistics literature: 3
® Machine learning literature: 6, w,b

Reason: data, labels in statistics and machine learning are x,y
Will use machine learning notation in these lectures

We collect training data in matrices (one example per row)

xf yi
X=|: y=|:
Ty vk

Columns X of data matrix X = [Xy,...,X,,] are called features



Regression vs Classification

There are two main types of supervised learning tasks:

® Regression:

® Predicts quantities
® Example: Least squares

e (Classification:

® Predicts class beloning
® Example: Logistic regression (dispite its name)



Classification

® Y has finite cardinality (finite number of outcomes, e.g., {0,1})
® The data to label transformation v is a composition 1) = o om

® m:R" — R¥ is parameter dependent data regression model
® 5 :R¥ — Yis a fixed function that:

® maps regression model output to response range ) (or conv))
® is typically the (sub)gradient of a convex function (monotone)

® (lassification problems try to find model parameters 8 such that
o(m(z;0)) =y — om(z;0)) —y=~0
for all data and label pairs (z,y) by solving training problem
N
miniemize ; L(m(z;;0),v:)

® Learn model from training data, but should generalize to all (z,y)



Classification loss function

® Many different classification loss functions exist

® This lecture: specific construction that gives logistic regression



First — Does least squares loss work?

® Objective: Find model paramters 6 such that for all (x,y):
o(m(z;0)) —y~0
® Let model output u = m(x;0); Least squares loss:
L(u,v) = |lo(u) — yl3

typically not convex in u due to nonlinear o

® This works for regression (o = I) but not used for classification!



A classification loss function

Objective: Find model parameters 6 such that for all (z,y):
olm(z;0)) —y=~0

® Require o to be the (sub-)gradient of a convex function

Convex function is [ o(u)du where | denotes primitive function®

Let model output u = m(x;6); and define loss:

L(u,y) = /U(u)du —yTu+C,

where C'is arbitrary constant

® Loss is convex in u since integral and —y”u are convex

LPrimitive function should really be ([ o(v)dv)(u)



Loss function mimimum

® Loss function L(u,y) = [o(u)du —yTu+C
e Subdifferential® (by definition) dL(u,y) = o(u) —y

® Fermat's rule says loss function minimized if and only if
0€o(u)—y
and if o single-valued, i.e., the cost is differentiable:
0=0(u)—vy

® | oss minimized if model output u = m(x;0) equals response y
® How to choose o7

LWe use notation OL(u,y) for OL(-,y)(u), i.e., w.r.t. first argument
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Logistic regression — o-function

Response y € {0, 1}, approximation a(m(z)) ~ y

Uses logistic function o(u) = (also called sigmoid):

_1
1+e—u

o(u)

u

Function is maximal monotone and gradient of convex function

Range is (0,1), i.e., interior of probability interval [0, 1]
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Logistic regression — Loss function

® Primitive function of o:

1
= = log(1 v
/U(u)du / T du=1log(l+e*)+C

® et C =0 to get
L(u,y) = /U(u)du —yu+ C =log(l+e") —yu

® Loss function for y =0 and y = 1:

L(u,0) L(u,1)
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Alternative labels

Multiply responses by 2 and subtract 1 to get y € {—1,1}
Multiply logistic function by 2 and subtract 1 to get new
2 1—eu eu/2 o e—u/2

1+4+e v Ttev w2 feuwz o0 (u/2)

o(u):
Loss function
L(u,y) = /U(u)du —yu+C =2log(l+e") —u—yu

equivalent (modulo scaling by 2) to before for y = —1 and y = 1
If y only —1 or 1, loss function (scaled by 1/2) can be written as

L(u,y) = log(1 + e ¥")

(this formula is not equivalent to the above for other values of y!)
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Logistic regression — Model and training problem

® Logistic regression uses affine model m(z;6) = wlz +b

® Training problem:

N N
Mimi . ) w?w-&-b (T
minimize Zl L(m(z;0),y;) = Z (log(l +e ) — yi(z; w+ b))

i=1

® Training problem convex in § = (w, b) since model affine
® y =0: low cost for m(z;0) < 0, y = 1: low cost for m(z;8) > 0
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The bias term

® The model m(z;6) = w”xz + b bias term is b
® | east squares: optimal b has simple formula

® No simple formula to remove bias term here!
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Bias term gives shift invariance

® Assume all data points shifted z§ := z; — ¢

® \We want same hyperplane to separate data, but shifted

® Assume (w,b) = (w,b) is optimal for (z;, ;)
® Then (w,b) = (w,b.) with b, = b+ w”c optimal for (¢, ;)
® Why? Model outputs the same:

® Model output m(z;60) = wTa; +b

® Model output m(z§;0) = w”zf +b=w"x; + (b+ w Te)

® Exactly the same output by shifting bias term with w”¢
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Prediction

Assume we have trained model m and want to predict label using
o(m(z;0)) =y

If m(x;0) > 0, then label estimate o(m(z;0)) ~ 1
If m(x;0) < 0, then label estimate o(m(z;6)) ~ 0
Logistic function assigns probabilities for class beloning:

® probability o(m(x;0)) that = has label 1
® probability 1 — o(m(x;#)) that  has label 0

Predict label of x by thresholding u = m(x; ) at 0 (prob. 0.5)
o(m(z;0))

m(x;0)
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Prediction

® Since affine model m(z;6) = w™x + b, prediction for = becomes:

e If wTz 4+ b < 0, predict corresponding label 4 = 0
® If wTz +b >0, predict corresponding label y = 1
e If wTz +b =0, predict either y = 0 or y = 1 (equally probable)

® Therefore, the hyperplane (decision boundary)
H:={z:wz+b=0}

separates class predictions

o(wTz 4 b)

wle+b
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Example

® Fully separable training data
® Decision boundary decides label estimate for new data
® Optimal model parameters define normal to hyperplane
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Logistic regression — Nonlinear example

® | ogistic regression tries to affinely separate data
® Can nonlinear boundary be approximated by logistic regression?

® Introduce features (perform lifting)
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Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

<«——Feature 3—
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Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

e Data linearly separable in lifted (feature) space

21



ic regression — Example

Logist

® Seems linear in feature 2 and quadratic in feature 1

® Add a third feature which is feature 1 squared

e Data linearly separable in lifted (feature) space

21



Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

e Data linearly separable in lifted (feature) space

21



Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

e Data linearly separable in lifted (feature) space

21



Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

}.‘u ot

T ey

‘§" + w)‘o"
+

+
LR o
Sty 1

e Data linearly separable in lifted (feature) space

21



Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

e Data linearly separable in lifted (feature) space

21



Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

e Data linearly separable in lifted (feature) space

21



Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

e Data linearly separable in lifted (feature) space

21



Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

*
""’
MR INY
R
N +
NIV R *
“}Y\’ + (;'{3
Wty PSRRI
+a, &0 PR K

+, R X

L4 +
R get! ol B fat
o 4+, :g;»;’ﬁ"“‘g 4

VBTN
o“o’ “;;3;?«»?‘{; ¥ ";33"'
3 &

e Data linearly separable in lifted (feature) space

21



Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

e Data linearly separable in lifted (feature) space

21



Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

e Data linearly separable in lifted (feature) space

21



Nonlinear models — Features

Create feature map ¢ : R™ — RP of training data

Data points x; € R™ replaced by featured data points ¢(z;) € RP
New model: m(z;0) = w’ ¢(z) + b, still linear in parameters
Feature can include original data =

We can add feature 1 and remove bias term b

Logistic regression training problem

N
e d(xi)Twtby A\T
minimize Z-E,l (log(l +e ) — yi(o(zi)" w+ b))

same as before, but with features as inputs
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Graphical model representation

® A graphical view of model m(x;0) = w? ¢(z):

(i)

T;
ASS

m(z;;60)

—

The input z; is transformed by fixed nonlinear features ¢
Feature-transformed input is multiplied by model parameters 6
Model output is then fed into cost L(m(z;;6),y)

Problem convex since L convex and model affine in 6
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Polynomial features

Polynomial feature map for R™ with n = 2 and degree d = 3
2 2,3 2 2 3
d)(:ﬁ) = (zlamanhxleaxQVIhx1x27l‘1x27'x2)

(note that original data is also there)
New model: m(x;0) = wT ¢(x) + b, still linear in parameters

+d +d)!
Number of features p + 1 = (") = (ZW)

Training problem has p + 1 instead of n + 1 decision variables

grows fast!
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Example — Different polynomial model orders

e “Lifting” example with fewer samples and some mislabels

e Logistic regression (no regularization) polynomial features of degree:
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Example — Different polynomial model orders

e “Lifting” example with fewer samples and some mislabels

e Logistic regression (no regularization) polynomial features of degree: 2
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Example — Different polynomial model orders

e “Lifting” example with fewer samples and some mislabels

e Logistic regression (no regularization) polynomial features of degree: 3
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Example — Different polynomial model orders

e “Lifting” example with fewer samples and some mislabels

e Logistic regression (no regularization) polynomial features of degree: 4
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Example — Different polynomial model orders

e “Lifting” example with fewer samples and some mislabels

e Logistic regression (no regularization) polynomial features of degree: 5
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Example — Different polynomial model orders

e “Lifting” example with fewer samples and some mislabels

e Logistic regression (no regularization) polynomial features of degree: 6
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Overfitting

® Models with higher order polynomials overfit

® Use, e.g., Tikhonov regularization to reduce overfitting
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Tikhonov regularization

Regularized problem:

N
miniHmizeZ (log(l + eziT“’H’) — yi(xTw + b)) + Mwl|3
i=1

Regularization:

® Regularize only w and not the bias term b

® Why? Model looses shift invariance if also b regularized
Problem properties

® Problem is strongly convex in w = optimal w exists and is unique

® Optimal b is bounded if examples from both classes exist
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Fully separable data

® Regularization also useful when linearly fully separable data
*

m(x;0) <0

® Suppose data is fully separable and no regularization, then
® Smallest possible logistic regression cost is 0 (no regularization)
® Normal vector w to hyperplane exists that fully separates data
® Normal vector tw also separates where t — oo
® Model outputs — —oco (¥) or — oo (%) as t — co = cost — 0

L(m(z;0),0) L(m(x;0),1)

e m(z; 0) m(x;0)

® Regularization gives bounded solution
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Example — Different regularization

e Regularized logistic regression and polynomial features of degree 6

e Regularization parameter A, training cost .J, # mislabels in training

A J # mislabels
0.00001 4.60 1

* ¥

* * *
*

* * *

* *
*
* ¥ 4
* *
* *
* *,
*
*
*

* **

29



Example — Different regularization

e Regularized logistic regression and polynomial features of degree 6

e Regularization parameter A, training cost .J, # mislabels in training

A J # mislabels
0.00006 6.83 5
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Example — Different regularization

e Regularized logistic regression and polynomial features of degree 6

e Regularization parameter A, training cost .J, # mislabels in training

A J # mislabels
0.00036 9.94 5
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Example — Different regularization

e Regularized logistic regression and polynomial features of degree 6

e Regularization parameter A, training cost .J, # mislabels in training

A J # mislabels
6

* *

*
*

*

*
*
* *
*
*

*| *
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Example — Different regularization

e Regularized logistic regression and polynomial features of degree 6

e Regularization parameter A, training cost .J, # mislabels in training

# mislabels

*
*
*
*
*
* *
*
*
* *
*
*
* *
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Example — Different regularization

e Regularized logistic regression and polynomial features of degree 6

e Regularization parameter A, training cost .J, # mislabels in training

A J # mislabels
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Example — Different regularization

e Regularized logistic regression and polynomial features of degree 6

e Regularization parameter A, training cost .J, # mislabels in training

A J # mislabels
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Selecting model

® Model order and regularization parameter are hyperparameters

® Select using holdout or cross validation
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Holdout

® Randomize data and assign to train, validate, or test set

Train Validate Test

Training set:
® Solve training problems with different hyperparameters
Validation set:

® Estimate generalization performance of all trained models
® Use this to select model that seems to generalize best

Test set:

® Final assessment on how chosen model generalizes to unseen data
® Mot for model selection, then final assessment too optimistic



k-fold cross validation

Similar to hold out — divide first into training/validate and test set
Divide/validate set into k data chunks

Train k models with &£ — 1 chunks, use k:th chunk for validation
Loop

1. Set hyperparameters and train all k& models
2. Evaluate generalization score on its validation data
3. Sum scores to get model performance

Select final model hyperparameters based on best score
Simpler model with slightly worse score may generalize better

Estimate generalization performance via test set
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4-fold cross validation — Graphics

Train/Validate Test

Test

Test

Test

Test
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Example — Validation data

e Regularized logistic regression and polynomial features of degree 6

e J and # mislabels specify training/test values

A J # mislabels
0.00001 4.60/38.5 1/7
<
)
3
<
o
3 o
<
3
<
<
o 0 ©
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Example — Validation data

e Regularized logistic regression and polynomial features of degree 6

e J and # mislabels specify training/test values

A J # mislabels
0.00006 6.83/25.7 5/7
)
o
o
<
o 0 ©
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Example — Validation data

e Regularized logistic regression and polynomial features of degree 6

e J and # mislabels specify training/test values

A J # mislabels
0.00036 9.94/13.4 5/8
¢ o
o 3
0
13
¢ 6
13
Oog 13
% o
o 0° o 0 ¢
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Example — Validation data

e Regularized logistic regression and polynomial features of degree 6

e J and # mislabels specify training/test values

A J # mislabels
0.0021 12.1/8.70 6/5
o
)
o
o
<
o o

34



Example — Validation data

e Regularized logistic regression and polynomial features of degree 6

e J and # mislabels specify training/test values

A J # mislabels
0.013 13.6/8.12 7/2
< ¢ o
o 3
9
) o
0 ¢ o
8 ’ ’
15 o
o, o ©
<
. o
o ¢ o 0 ¢
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Example — Validation data

e Regularized logistic regression and polynomial features of degree 6

e J and # mislabels specify training/test values

A J # mislabels
0.077 15.4/10.2 8/3
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Example — Validation data

e Regularized logistic regression and polynomial features of degree 6

e J and # mislabels specify training/test values

J # mislabels
0.46 19.2/15.2 7/4
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Example — Validation data

e Regularized logistic regression and polynomial features of degree 6

e J and # mislabels specify training/test values

J # mislabels
2.78 25.2/23.2 8/4
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Test vs training error — Cost

® |ncreasing A gives lower complexity model

® Qverfitting to the left, underfitting to the right

® Select lowest complexity model that gives good generalization

Training vs test cost

log ()

— train
— test
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Test vs training error — Classification accuracy

® Increasing A gives lower complexity model

® Qverfitting to the left, underfitting to the right
® Cost often better measure of over/underfitting

Number of misclassifications

log(A)

— train
— test
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Composite optimization

Logistic regression problems are convex problems of the form
minigmize F(X0)+ g(6),

where

* flu)= Zf;l(f o(v;)dv;)(u;) — yiu; is data misfit term
® g(u;) = 1+51*“'i : R — R is a sigmoid function

¢ X is training data matrix (potentially extended with features)

® g is regularization term (squared 2-norm, 1-norm)
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Gradient and function properties

® Gradient of f o X satisfies:

V(fo VZ </ o(v; dvz> (z70) — y;2T0
N
= sza( — LY = sz yz)
i=1
= XT(0(X0) - Y)
where last o : RY — RY applies ﬁ to all elements in X6

¢ (Compare to least squares gradient which is same with o = I)
® Function and o properties

® o is 0.25 Lipschitz continuous
® fis convex and 0.25-smooth and f o X is 0.25||X||?-smooth
® g is convex and possibly nondifferentiable
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