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Learning goals

• Understand least squares and its purpose

• Understand that the training problem is convex

• Understand the problem of overparameterization and overfitting

• Understand the purpose and need for regularization

• Familiar with the effect of common convex regularization choices

• Understand the use and purpose of feature maps

• Understand hyperparameters and how they can be chosen
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Supervised Learning
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Machine learning

• Machine learning can roughly be divided into:
• Supervised learning
• Unsupervised learning
• Semisupervised learning (between supervised and unsupervised)
• Reinforcement learning

• We will focus on supervised learning
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Supervised learning

• Let (x, y) represent object and label pairs
• Object x ∈ X ⊆ Rn

• Label y ∈ Y ⊆ RK

• Available: Labeled training data (training set) {(xi, yi)}Ni=1

• Data xi ∈ Rn are called examples (often n large)
• Labels yi ∈ RK are called response variables (often K = 1)

Objective:

• Find data to label transformation ψ : X → Y such that

ψ(x) ≈ y

for all data label pairs (x, y), called training problem

• Learn ψ from training data, but should generalize to all (x, y)
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Relation to optimization

Training the machine consists in solving optimization problem
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Regression vs Classification

There are two main types of supervised learning tasks:

• Regression:
• Predicts quantities
• Real-valued labels y ∈ Y = RK (will mainly consider K = 1)

• Classification:
• Predicts class belonging
• Finite number of class labels, e.g., y ∈ Y = {1, 2, . . . , k}
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Examples of data and label pairs

Data Label R/C
text in email spam? C
dna blood cell concentration R
dna cancer? C
image cat or dog C
advertisement display click? C
image of handwritten digit digit C
house address selling cost R
stock price R
sport analytics winner C
speech representation spoken word C

R/C is for regression or classification
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In this course

Lectures will cover different supervised learning methods:

• Classical methods with convex training problems
• Least squares (this lecture)
• Logistic regression
• Support vector machines
• Multiclass classification

• Deep learning methods with nonconvex training problem

Highlight difference:

• Deep learning (specific) nonlinear model instead of linear
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Notation

• (Primal) Optimization variable notation:
• Optimization literature: x, y, z (as in first part of course)
• Statistics literature: β
• Machine learning literature: θ, w, b

• Reason: data, labels in statistics and machine learning are x, y

• Will use machine learning notation in these lectures

• We collect training data in matrices (one example per row)

X =

x
T
1
...
xTN

 Y =

y
T
1
...
yTN


• Columns Xj of data matrix X = [X1, . . . , Xn] are called features
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Least Squares

11



Regression training problem

• Objective: Find data model m = ψ such that for all (x, y):

m(x)− y ≈ 0

• Let model output u = m(x); Examples of data misfit losses

L(u, y) = 1
2 (u− y)2

L(u, y) = |u− y|

L(u, y) =

{
1
2 (u− y)2 if |u− v| ≤ c
c(|u− y| − c/2) else

u− y
Square

u− y
1-norm

u− y
Huber

• Training: find model m that minimizes sum of training set losses

minimize
m

N∑
i=1

L(m(xi), yi) 12



Supervised learning – Least squares

• Parameterize model m and set a linear (affine) structure

m(x; θ) = wTx+ b

where θ = (w, b) are parameters (also called weights)

• Training: find model parameters that minimize training cost

minimize
θ

N∑
i=1

L(m(xi; θ), yi) = 1
2

N∑
i=1

(wTxi + b− yi)2

(note: optimization over model parameters θ)

• Once trained, predict response of new input x as ŷ = wTx+ b
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Example – Least squares

• Find affine function parameters that fit data:

variable x

re
sp
o
n
se
y
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Example – Least squares

• Find affine function parameters that fit data:

variable x

re
sp
o
n
se
y

Data points (x, y) marked with ( ), LS model wx+ b ( )
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Example – Least squares

• Find affine function parameters that fit data:

variable x

re
sp
o
n
se
y

Data points (x, y) marked with ( ), LS model wx+ b ( )

Least squares finds affine function that minimizes squared distance 14



Solving for constant term

• Constant term b also called bias term or intercept

• What is optimal b?

minimize
w,b

1
2

N∑
i=1

(wTxi + b− yi)2

• Optimality condition w.r.t. b (gradient w.r.t. b is 0):

0 = Nb+

N∑
i=1

(wTxi − yi) ⇔ b = ȳ − wT x̄

where x̄ = 1
N

∑N
i=1 xi and ȳ = 1

N

∑N
i=1 yi are mean values
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Equivalent problem

• Plugging in optimal b = ȳ − wT x̄ in least squares estimate gives

minimize
w,b

1
2

N∑
i=1

(wTxi + b− yi)2 = 1
2

N∑
i=1

(wT (xi − x̄)− (yi − ȳ))2

• Let x̃i = xi − x̄ and ỹi = yi − ȳ, then it is equivalent to solve

minimize
w

1
2

N∑
i=1

(wT x̃i − ỹi)2 = 1
2‖Xw − Y ‖

2
2

where X and Y now contain all x̃i and ỹi respectively

• Obviously x̃i and ỹi have zero averages (by construction)

• Will often assume averages subtracted from data and responses

16



Least squares – Solution

• Training problem

minimize
w

1
2‖Xw − Y ‖

2
2

• Strongly convex if X full column rank
• Features linearly independent and more examples than features
• Consequences: XTX is invertible and solution exists and is unique

• Optimal w satisfies (set gradient to zero)

0 = XTXw −XTY

if X full column rank, then unique solution w = (XTX)−1XTY
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Scaling response variables

• What happens if responses y scaled with a nonzero scalar γ?

• The problem becomes

minimize
w

1
2‖Xw − γY ‖

2
2 = 1

2‖γ(X w
γ − Y )‖22 = γ2

2 ‖X
w
γ − Y ‖

2
2

• Solution is scaled with γ−1

• Scale Y to have, e.g., unit norm or norm
√
n
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Scaling features

• Consider least squares problem

minimize 1
2‖Xw − Y ‖

2
2 = 1

2

∥∥∥∥∥
n∑
i=1

wiXi − Y

∥∥∥∥∥
2

2

where X = [X1, . . . , Xn] and Xi are features (columns of X)

• “Select linear combination of features that best approximates Y ”

• Large value of wi means feature i important in describing Y

• Scale feature Xi by 2, what happens with solution wi?

• Solution wi scaled by 1
2 , (other wj not affected)

• Scale all features to have unit norm to avoid confusion

• (Diagonal elements of XTX become 1 ⇒ Jacobi scaling)
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Scaling features

• Consider least squares problem

minimize 1
2‖Xw − Y ‖

2
2 = 1

2

∥∥∥∥∥
n∑
i=1

wiXi − Y

∥∥∥∥∥
2

2

where X = [X1, . . . , Xn] and Xi are features (columns of X)

• “Select linear combination of features that best approximates Y ”

• Large value of wi means feature i important in describing Y

• Scale feature Xi by 2, what happens with solution wi?

• Solution wi scaled by 1
2 , (other wj not affected)

• Scale all features to have unit norm to avoid confusion

• (Diagonal elements of XTX become 1 ⇒ Jacobi scaling)
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Nonaffine example

• What if data that cannot be well approximated by affine mapping?

variable x

re
sp
o
n
se
y
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Nonaffine example

• What if data that cannot be well approximated by affine mapping?

variable x

re
sp
o
n
se
y

20



Nonaffine example

• What if data that cannot be well approximated by affine mapping?

variable x

re
sp
o
n
se
y
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Adding nonlinear features

• A linear model is not rich enough to model relationship

• Try, e.g., a quadratic model

m(x; θ) = b+

n∑
i=1

wixi +

n∑
i=1

i∑
j=1

qijxixj

with parameters θ = (b, w, q)

• For x ∈ R2, the model is

m(x; θ) = b+ w1x1 + w2x2 + q11x
2
i + q12xixj + q22x

2
j = θTφ(x)

where

θ = (b, w1, w2, q11, q12, q22)

φ(x) = (1, x1, x2, x
2
1, x1x2, x

2
2)

• Add nonlinear features φ(x), but model still linear in parameter θ
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Least squares with nonlinear features

• Can, of course, use other nonlinear feature maps φ
• Gives models m(x; θ) = θTφ(x) with increased fitting capacity
• Use least squares estimate with new model

minimize
θ

1
2

N∑
i=1

(m(xi; θ)− yi)2 = 1
2

N∑
i=1

(θTφ(xi)− yi)2

which is still convex since φ does not depend on θ!
• Build new data matrix (with one column per feature in φ)

X =

φ(x1)T

...
φ(xN )T


to arrive at least squares formulation

minimize
θ

1
2‖Xθ − Y ‖

2
2

• The more features, the more parameters θ to optimize (lifting)
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Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

variable x

re
sp
o
n
se
y
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Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

variable x

re
sp
o
n
se
y

k = 1, J = 0.635, ‖θ‖2 = 0.60
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Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

variable x

re
sp
o
n
se
y

k = 2, J = 0.113, ‖θ‖2 = 0.94
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Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

variable x

re
sp
o
n
se
y

k = 3, J = 0.112, ‖θ‖2 = 0.96
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Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

variable x

re
sp
o
n
se
y

k = 4, J = 0.108, ‖θ‖2 = 0.83
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Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

variable x

re
sp
o
n
se
y

k = 5, J = 0.105, ‖θ‖2 = 1.27
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Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

variable x

re
sp
o
n
se
y

k = 6, J = 0.075, ‖θ‖2 = 5.46
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Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

variable x

re
sp
o
n
se
y

k = 7, J = 0.028, ‖θ‖2 = 22.5
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Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

variable x

re
sp
o
n
se
y

k = 8, J = 0.026, ‖θ‖2 = 26.6
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Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

variable x

re
sp
o
n
se
y

k = 9, J = 0.001, ‖θ‖2 = 147.5
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Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):

variable x

re
sp
o
n
se
y

k = 10, J = 0.000, ‖θ‖2 = 167.8
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Generalization and overfitting

• Generalization: How well does model perform on unseen data

• Overfitting: Model explains training data, but not unseen data

• Which of the previous models would generalize best?

• How to reduce overfitting/improve generalization?
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Regularization

• Reducing ‖θ‖2 seems to reduce overfitting

• Least squares with Tikhonov regularization:

minimize
θ

1
2‖Xθ − Y ‖

2
2 + λ

2 ‖θ‖
2
2

• Regularization parameter λ ≥ 0 controls fit vs model expressivity

• Optimization problem called ridge regression in statistics

• (Could regularize with ‖θ‖2, but square easier to solve)

• (Don’t regularize b – constant data offset gives different solution)
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Ridge Regression – Solution

• Recall ridge regression problem for given λ:

minimize
θ

1
2‖Xθ − Y ‖

2
2 + λ

2 ‖θ‖
2
2

• Objective λ-strongly convex for all λ > 0, hence unique solution

• Objective is differentiable, Fermat’s rule:

0 = XT (Xθ − Y ) + λθ ⇐⇒ (XTX + λI)θ = XTY

⇐⇒ θ = (XTX + λI)−1XTY
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Ridge Regression – Example

• Same problem data as before
• Fit 10-degree polynomial with Tikhonov regularization
• λ: regularization parameter, J LS cost, ‖θ‖2 norm of weights

variable x

re
sp
o
n
se
y
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Ridge Regression – Example

• Same problem data as before
• Fit 10-degree polynomial with Tikhonov regularization
• λ: regularization parameter, J LS cost, ‖θ‖2 norm of weights

variable x

re
sp
o
n
se
y

λ = 10−5, J = 0.017, ‖θ‖2 = 20.2
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Ridge Regression – Example

• Same problem data as before
• Fit 10-degree polynomial with Tikhonov regularization
• λ: regularization parameter, J LS cost, ‖θ‖2 norm of weights

variable x

re
sp
o
n
se
y

λ = 6.0 · 10−5, J = 0.023, ‖θ‖2 = 12.2
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Ridge Regression – Example

• Same problem data as before
• Fit 10-degree polynomial with Tikhonov regularization
• λ: regularization parameter, J LS cost, ‖θ‖2 norm of weights

variable x

re
sp
o
n
se
y

λ = 3.6 · 10−4, J = 0.04, ‖θ‖2 = 6.21

27



Ridge Regression – Example

• Same problem data as before
• Fit 10-degree polynomial with Tikhonov regularization
• λ: regularization parameter, J LS cost, ‖θ‖2 norm of weights

variable x

re
sp
o
n
se
y

λ = 2.2 · 10−3, J = 0.064, ‖θ‖2 = 2.43

27



Ridge Regression – Example

• Same problem data as before
• Fit 10-degree polynomial with Tikhonov regularization
• λ: regularization parameter, J LS cost, ‖θ‖2 norm of weights

variable x

re
sp
o
n
se
y

λ = 1.3 · 10−2, J = 0.086, ‖θ‖2 = 1.10

27



Ridge Regression – Example

• Same problem data as before
• Fit 10-degree polynomial with Tikhonov regularization
• λ: regularization parameter, J LS cost, ‖θ‖2 norm of weights

variable x

re
sp
o
n
se
y

λ = 7.7 · 10−2, J = 0.109, ‖θ‖2 = 0.63
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Ridge Regression – Example

• Same problem data as before
• Fit 10-degree polynomial with Tikhonov regularization
• λ: regularization parameter, J LS cost, ‖θ‖2 norm of weights

variable x

re
sp
o
n
se
y

λ = 0.46, J = 0.15, ‖θ‖2 = 0.43
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Ridge Regression – Example

• Same problem data as before
• Fit 10-degree polynomial with Tikhonov regularization
• λ: regularization parameter, J LS cost, ‖θ‖2 norm of weights

variable x

re
sp
o
n
se
y

λ = 2.8, J = 0.29, ‖θ‖2 = 0.26
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Ridge Regression – Example

• Same problem data as before
• Fit 10-degree polynomial with Tikhonov regularization
• λ: regularization parameter, J LS cost, ‖θ‖2 norm of weights

variable x

re
sp
o
n
se
y

λ = 16.7, J = 0.68, ‖θ‖2 = 0.091
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Ridge Regression – Example

• Same problem data as before
• Fit 10-degree polynomial with Tikhonov regularization
• λ: regularization parameter, J LS cost, ‖θ‖2 norm of weights

variable x

re
sp
o
n
se
y

λ = 100, J = 0.92, ‖θ‖2 = 0.019

27



Selecting model hyperparameters

• Parameters in machine learning models are called hyperparameters

• Ridge model has polynomial order and λ as hyperparameters

• How to select hyperparameters?

• Divide data into train, validate, and test data sets
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Data division

• Randomize data and assign to train, validate, or test set

Train Validate Test

Training set:

• Solve training problems with different hyperparameters

Validation set:

• Estimate generalization performance of all trained models
• Use this to select model that seems to generalize best

Test set:

• Final assessment on how chosen model generalizes to unseen data
• Not for model selection, then final assessment too optimistic

29



Data division – Comments

• Typical division between sets 50/25/25

• Sometimes no test set (then no assessment of final model)

• If no test set, then validation set often called test set

• Approach sometimes called holdout (often without test set)

• Works well if lots of data, if less, use cross validation
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k-fold cross validation

• Similar to hold out – divide first into training/validate and test set

• Divide/validate set into k data chunks

• Train k models with k − 1 chunks, use k:th chunk for validation

• Loop

1. Set hyperparameters and train all k models
2. Evaluate generalization score on its validation data
3. Sum scores to get model performance

• Select final model hyperparameters based on best score

• Simpler model with slightly worse score may generalize better

• Estimate generalization performance via test set
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4-fold cross validation – Graphics

Train/Validate Test

Validate Train Train Train Test

Train Validate Train Train Test

Train Train Validate Train Test

Train Train Train Validate Test
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Evaluate generalization score/performance

• Ridge regression example generalization, validation data ( )
• λ: regularization parameter, Jt train cost, Jv validation cost

variable x

re
sp
o
n
se
y
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Evaluate generalization score/performance

• Ridge regression example generalization, validation data ( )
• λ: regularization parameter, Jt train cost, Jv validation cost

variable x

re
sp
o
n
se
y

λ = 10−5, Jt = 0.017, Jv = 0.422
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Evaluate generalization score/performance

• Ridge regression example generalization, validation data ( )
• λ: regularization parameter, Jt train cost, Jv validation cost

variable x

re
sp
o
n
se
y

λ = 6.0 · 10−5, Jt = 0.023, Jv = 0.358
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Evaluate generalization score/performance

• Ridge regression example generalization, validation data ( )
• λ: regularization parameter, Jt train cost, Jv validation cost

variable x

re
sp
o
n
se
y

λ = 3.6 · 10−4, Jt = 0.04, Jv = 0.293
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Evaluate generalization score/performance

• Ridge regression example generalization, validation data ( )
• λ: regularization parameter, Jt train cost, Jv validation cost

variable x

re
sp
o
n
se
y

λ = 2.2 · 10−3, Jt = 0.064, Jv = 0.260
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Evaluate generalization score/performance

• Ridge regression example generalization, validation data ( )
• λ: regularization parameter, Jt train cost, Jv validation cost

variable x

re
sp
o
n
se
y

λ = 1.3 · 10−2, Jt = 0.086, Jv = 0.252
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Evaluate generalization score/performance

• Ridge regression example generalization, validation data ( )
• λ: regularization parameter, Jt train cost, Jv validation cost

variable x

re
sp
o
n
se
y

λ = 7.7 · 10−2, Jt = 0.109, Jv = 0.260
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Evaluate generalization score/performance

• Ridge regression example generalization, validation data ( )
• λ: regularization parameter, Jt train cost, Jv validation cost

variable x

re
sp
o
n
se
y

λ = 0.46, Jt = 0.15, Jv = 0.300
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Evaluate generalization score/performance

• Ridge regression example generalization, validation data ( )
• λ: regularization parameter, Jt train cost, Jv validation cost

variable x

re
sp
o
n
se
y

λ = 2.8, Jt = 0.29, Jv = 0.429
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Evaluate generalization score/performance

• Ridge regression example generalization, validation data ( )
• λ: regularization parameter, Jt train cost, Jv validation cost

variable x

re
sp
o
n
se
y

λ = 16.7, Jt = 0.68, Jv = 0.716
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Evaluate generalization score/performance

• Ridge regression example generalization, validation data ( )
• λ: regularization parameter, Jt train cost, Jv validation cost

variable x

re
sp
o
n
se
y

λ = 100, Jt = 0.92, Jv = 0.887
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Selecting model

• Average training and test error vs model complexity
• Average training error smaller than average test error
• Large λ (left) model not rich enough
• Small λ (right) model too rich (overfitting)

Increasing model complexity, λ↘

E
rr
or

Train error

Test error
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Feature selection

• Assume X ∈ Rm×n with m < n (fewer examples than features)

• Want to find a subset of features that explains data well

• Example: Which genes in genome control eyecolor
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Lasso

• Feature selection by regularizing least squares with 1-norm:

minimize
w

1
2‖Xw − Y ‖

2
2 + λ‖w‖1

• Problem can be written as

minimize 1
2

∥∥∥∥∥
n∑
i=1

wiXi − Y

∥∥∥∥∥
2

2

+ λ‖w‖1

if wi = 0, then feature Xi not important

• The 1-norm promotes sparsity (many 0 variables) in solution

• It also reduces size (shrinks) w (like ‖ · ‖22 regularization)

• Problem is called the Lasso problem
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Example – Lasso

• Data X ∈ R30×200, Lasso solution for different λ

so
lu

ti
on

λ
0 2 4 6 8 10 12 14

−0.25

−0.2

−0.15

−0.1

−5 · 10−2

0

5 · 10−2

0.1

0.15

0.2

0.25

• For large enough λ solution w = 0
• More nonzero elements in solution as λ decreases
• For small λ, 30 (nbr examples) nonzero wi (i.e., 170 wi = 0)
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Lasso and correlated features

• Assume two equal features exist, e.g., X1 = X2, lasso problem is

minimize 1
2

∥∥∥∥∥(w1 + w2)X1 +

n∑
i=3

wiXi − Y

∥∥∥∥∥
2

2

+ λ(|w1|+ |w2|+ ‖w3:n‖1)

• Assume w∗ solves the problem and let ∆ := w∗
1 + w∗

2 > 0 (wlog)
• Then all w1 ∈ [0,∆] with w2 = ∆− w1 solves problem:

• quadratic cost unchanged since sum w1 + w2 still ∆
• the remainder of the regularization part reduces to

min
w1

λ(|w1|+ |∆− w1|)

0 ∆

• For almost correlated features:
• often only w1 or w2 nonzero (the one with slightly better fit)
• however, features highly correlated, if X1 explains data so does X2
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Elastic net

• Add Tikhonov regularization to the Lasso

minimize 1
2‖Xw − Y ‖

2 + λ1‖w‖1 + λ2

2 ‖w‖
2
2

• This problem is called elastic net in statistics

• Can perform better with correlated features

39



Elastic net and correlated features

• Assume equal features X1 = X2 and that w∗ solves the elastic net

• Let ∆ := w∗
1 + w∗

2 > 0 (wlog), then w∗
1 = w∗

2 = ∆
2

• Data fit cost still unchanged for w2 = ∆− w1 with w1 ∈ [0,∆]
• Remaining (regularization) part is

min
w1

λ1(|w1|+ |∆− w1|) + λ2(w2
1 + (∆− w1)2)

0 ∆

which is minimized in the middle at w1 = w2 = ∆
2

• For highly correlated features, both (or none) probably selected

40



Group lasso

• Sometimes want groups of variables to be 0 or nonzero

• Introduce blocks w = (w1, . . . , wp) where wi ∈ Rni

• The group Lasso problem is

minimize 1
2‖Xw − Y ‖

2
2 + λ

p∑
i=1

‖wi‖2

(note ‖ · ‖2-norm without square)

• With all ni = 1, it reduces to the Lasso

• This promotes sparsity in the blocks
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Composite optimization

• Least squares problems are convex problems of the form

minimize
θ

f(Lθ) + g(θ),

where
• f = 1

2
‖ · −Y ‖22 is data misfit term

• L = X is training data matrix (potentially extended with features)
• g is regularization term (1-norm, squared 2-norm, group lasso)

• Function properties
• f is 1-strongly convex and 1-smooth and f ◦ L is ‖L‖2-smooth
• g is convex and possibly nondifferentiable

• Gradient ∇(f ◦ L)(θ) = XT (Xθ − Y )
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