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Learning goals

Understand least squares and its purpose

Understand that the training problem is convex

Understand the problem of overparameterization and overfitting
Understand the purpose and need for regularization

Familiar with the effect of common convex regularization choices
Understand the use and purpose of feature maps

Understand hyperparameters and how they can be chosen



Supervised Learning



Machine learning

® Machine learning can roughly be divided into:
® Supervised learning
® Unsupervised learning
® Semisupervised learning (between supervised and unsupervised)
® Reinforcement learning

® We will focus on supervised learning



Supervised learning

® Let (z,y) represent object and label pairs
® Object x € X CR"
® Label y € Y CRX

® Available: Labeled training data (training set) {(z:,v:)}Y,

® Data x; € R™ are called examples (often n large)
® Labels y; € R™ are called response variables (often K = 1)

Objective:
® Find data to label transformation ¢ : X — ) such that
Y(x) =y

for all data label pairs (z,y), called training problem

® Learn ¢ from training data, but should generalize to all (z,y)



Relation to optimization

Training the machine consists in solving optimization problem



Regression vs Classification

There are two main types of supervised learning tasks:

® Regression:

® Predicts quantities
® Real-valued labels y € ¥ = R¥ (will mainly consider K = 1)

e (Classification:

® Predicts class belonging
® Finite number of class labels, e.g., y € Y ={1,2,... k}



Examples of data and label pairs

Data Label R/C
text in email spam? C
dna blood cell concentration R
dna cancer? C
image cat or dog C
advertisement display click? C
image of handwritten digit  digit C
house address selling cost R
stock price R
sport analytics winner C
speech representation spoken word C

R/C is for regression or classification



In this course

Lectures will cover different supervised learning methods:

® (Classical methods with convex training problems

® Least squares (this lecture)
® |ogistic regression

® Support vector machines

® Multiclass classification

® Deep learning methods with nonconvex training problem
Highlight difference:

® Deep learning (specific) nonlinear model instead of linear



Notation

(Primal) Optimization variable notation:
® Optimization literature: x,y, z (as in first part of course)
® Statistics literature:
® Machine learning literature: 6, w,b

Reason: data, labels in statistics and machine learning are x,y
Will use machine learning notation in these lectures

We collect training data in matrices (one example per row)

o] yi
X=|": Y =
TN N
Columns X; of data matrix X = [Xy,...,X,,] are called features
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Least Squares
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Regression training problem

® Objective: Find data model m = ) such that for all (z,y):
m(x) —y=0
® et model output u = m(z); Examples of data misfit losses
L(u,y) = 3(u—y)*
L(u,y) = [u—yl
3(u—y)? if lu—v[<c

L(u7y) = {2

c(lu—y| —c/2) else

u—y u—y u—y

Square 1-norm Huber

® Training: find model m that minimizes sum of training set losses

N
minimize Z L(m(z;),y:) 12
m
i=1



Supervised learning — Least squares

® Parameterize model m and set a linear (affine) structure
m(x;0) =wlx +b
where 6 = (w, b) are parameters (also called weights)
® Training: find model parameters that minimize training cost

N

N
o _1
minimize 2 L(m(z0),y:) = 5 2 wla; +b—y,)?
i= i=

(note: optimization over model parameters 6)

® Once trained, predict response of new input = as § = w’ 'z + b
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Example — Least squares

® Find affine function parameters that fit data:

response y
*
*

Il
variable x



Example — Least squares

® Find affine function parameters that fit data:

response y

Il
variable x

e Data points (z,y) marked with (%), LS model wz + b (—)



Example — Least squares

® Find affine function parameters that fit data:

response y

Il
variable x

e Data points (z,y) marked with (%), LS model wz + b (—)

e Least squares finds affine function that minimizes squared distance 14



Solving for constant term

® Constant term b also called bias term or intercept
® What is optimal b7

N
mmlmlz % g wle; +b— yz)
=1

® Optimality condition w.r.t. b (gradient w.r.t. b is 0):

N
O:Nb+Z(mei—yi) = b:g—wTi
i=1

1 N — 1 N
where T = % > ;@i and § = « >, i are mean values
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Equivalent problem

T

Plugging in optimal b = § — w* T in least squares estimate gives

mlmmlze%Zw ;i +b—y;) :%Z ) = (yi — )
i=1 =1

Let ; = x; — = and y; = y; — ¥, then it is equivalent to solve

N
: =3[ Xw-Y]|3
mlnnmzc2 (w's; — ;) = 4| Xw - Y3
i=1
where X and Y now contain all z; and ¢; respectively
Obviously Z; and ¢; have zero averages (by construction)

Will often assume averages subtracted from data and responses
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Least squares — Solution

® Training problem
minimize 1| Xw — Y3
w

® Strongly convex if X full column rank

® Features linearly independent and more examples than features
® Consequences: X T X is invertible and solution exists and is unique

® Optimal w satisfies (set gradient to zero)
0=X"Xw-X"Y

if X full column rank, then unique solution w = (X7 X)"1XTY
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Scaling response variables

What happens if responses y scaled with a nonzero scalar v?
The problem becomes
. . . 2
minimize 3| Xw — 1Y |3 = 3lly(X% - V)| = F | X% - Y3
Solution is scaled with y~1

Scale Y to have, e.g., unit norm or norm /n
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Scaling features

Consider least squares problem
n 2
minimize 1| Xw — Y3 = % E w; X; =Y
i=1 2

where X = [X,..., X, ] and X, are features (columns of X)
“Select linear combination of features that best approximates Y
Large value of w; means feature ¢ important in describing Y
Scale feature X; by 2, what happens with solution w;?

19



Scaling features

Consider least squares problem
n 2
minimize 1| Xw — Y3 = % E w; X; =Y
i=1 2

where X = [X,..., X, ] and X, are features (columns of X)
“Select linear combination of features that best approximates Y
Large value of w; means feature ¢ important in describing Y
Scale feature X; by 2, what happens with solution w;?

Solution w; scaled by 1, (other w; not affected)

Scale all features to have unit norm to avoid confusion

(Diagonal elements of X7 X become 1 = Jacobi scaling)
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Nonaffine example

® What if data that cannot be well approximated by affine mapping?

response y
*

variable x



Nonaffine example

® What if data that cannot be well approximated by affine mapping?

response y

variable x



® What if data that cannot be well approximated by affine mapping?

response y

Nonaffine example

variable x
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Adding nonlinear features

A linear model is not rich enough to model relationship
Try, e.g., a quadratic model

m(x;0) —b+Zw,xL+Zquxlzj
=1 j=1

with parameters 6 = (b, w, q)
For x € R?, the model is

m(z;0) = b+ wix1 + wams + qu T + qovix; + QQ2$? = 0" (x)
where

0 = (b, w1, w2, q11, q12, §22)

¢($) = (17.T1,"E2, $%7x1x2a mg)

Add nonlinear features ¢(x), but model still linear in parameter 6
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Least squares with nonlinear features

Can, of course, use other nonlinear feature maps ¢
® Gives models m(z;6) = 07 ¢(x) with increased fitting capacity
Use least squares estimate with new model

mlmmlze 5 g m(x;; 0 = % E —)?

which is still convex since ¢ does not depend on 6!

® Build new data matrix (with one column per feature in ¢)
$(x1)"
X = 5
$lan)”

to arrive at least squares formulation

Ininiamize L1X0-Y|3

® The more features, the more parameters 6 to optimize (lifting)
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Nonaffine example

® Fit polynomial of degree k to data using LS (J is cost):

response y
*

variable x



Nonaffine example

® Fit polynomial of degree k to data using LS (J is cost):

k=1,J = 0.635, 0|2 = 0.60

response y

variable x
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Nonaffine example

® Fit polynomial of degree k to data using LS (J is cost):

k=2,J=0.113, 0|2 = 0.94

response y

variable x



Nonaffine example

® Fit polynomial of degree k to data using LS (J is cost):

k=3,J=0.112, 0|2 = 0.96

response y

variable x



Nonaffine example

® Fit polynomial of degree k to data using LS (J is cost):

k=4,J = 0.108, 0|2 = 0.83

response y

variable x



Nonaffine example

® Fit polynomial of degree k to data using LS (J is cost):

k=5,J = 0.105, 0|2 = 1.27

response y

variable x



Nonaffine example

® Fit polynomial of degree k to data using LS (J is cost):

k= 6,J = 0.075, |0||2 = 5.4

response y

Il
variable x
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Nonaffine example

® Fit polynomial of degree k to data using LS (J is cost):

k=17,J=0.028, 0]l = 22.5

response y

variable x



Nonaffine example

® Fit polynomial of degree k to data using LS (J is cost):

k= 8,J = 0.026, |0||2 = 26.6

response y

variable x



Nonaffine example

® Fit polynomial of degree k to data using LS (J is cost):

k=09,J = 0.001, 6] = 147.5

response y

variable x



Nonaffine example

® Fit polynomial of degree k to data using LS (J is cost):

k = 10,7 = 0.000, |0]|2 = 167.8

response y

variable x



Generalization and overfitting

Generalization: How well does model perform on unseen data
Overfitting: Model explains training data, but not unseen data
Which of the previous models would generalize best?

How to reduce overfitting/improve generalization?
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Regularization

Reducing ||0]|2 seems to reduce overfitting

Least squares with Tikhonov regularization:
minimize 3/ X0 — Y3 + 3[0]3

Regularization parameter A > 0 controls fit vs model expressivity
Optimization problem called ridge regression in statistics
(Could regularize with ||0]|2, but square easier to solve)

(Don't regularize b — constant data offset gives different solution)

25



Ridge Regression — Solution

® Recall ridge regression problem for given \:
e A
mlnlamlze%HXH - Y3+ 3103
® Objective A-strongly convex for all A > 0, hence unique solution
® Objective is differentiable, Fermat’s rule:

0=XT(X0-Y)+ N\ — (XTX 4+ N0 =XTY
— 0=(XT"X+)'XxTY
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Ridge Regression — Example

® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization
® ). regularization parameter, J LS cost, ||0]|2 norm of weights

response y
*

variable x



Ridge Regression — Example

® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization
® ). regularization parameter, J LS cost, ||0]|2 norm of weights

T T T T T
A=10"%,J =0.017, |02 = 20.2

response y

variable x
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Ridge Regression — Example

® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization
® ). regularization parameter, J LS cost, ||0]|2 norm of weights

T T T T T
A=6.0-1072,J = 0.023, ||0]|2 = 12.2

response y

variable x
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Ridge Regression — Example

® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization
® ). regularization parameter, J LS cost, ||0]|2 norm of weights

T T T T T
A=3.6-10"%J =0.04,]0|]2 = 6.21

response y

variable x



Ridge Regression — Example

® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization
® ). regularization parameter, J LS cost, ||0]|2 norm of weights

T T T T T
A=22-1073,J = 0.064, ||0]2 = 2.43

response y

variable x



Ridge Regression — Example

® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization
® ). regularization parameter, J LS cost, ||0]|2 norm of weights

T T T T T
A=13-10"2,J = 0.086,|0|]2 = 1.10

response y

variable x



Ridge Regression — Example

® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization
® ). regularization parameter, J LS cost, ||0]|2 norm of weights

T T T T T
A=7.7-10"2,J = 0.109, ||0]|2 = 0.63

response y
*

variable x
27



Ridge Regression — Example

® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization
® ). regularization parameter, J LS cost, ||0]|2 norm of weights

A = 0.46,J = 0.15, |0]|2 = 0.43

response y

variable x



Ridge Regression — Example

® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization
® ). regularization parameter, J LS cost, ||0]|2 norm of weights

A=2.8,J=0.29, 0|2 = 0.26

response y

variable x



Ridge Regression — Example

® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization
® ). regularization parameter, J LS cost, ||0]|2 norm of weights

A=16.7,J = 0.68,]|0]|2 = 0.091

response y

variable x
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Ridge Regression — Example

® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization
® ). regularization parameter, J LS cost, ||0]|2 norm of weights

A = 100, J = 0.92,[|§]|2 = 0.019

response y
*

variable x
27



Selecting model hyperparameters

Parameters in machine learning models are called hyperparameters
Ridge model has polynomial order and A as hyperparameters
How to select hyperparameters?

Divide data into train, validate, and test data sets

28



Data division

® Randomize data and assign to train, validate, or test set

Train Validate Test

Training set:
® Solve training problems with different hyperparameters
Validation set:

® Estimate generalization performance of all trained models
® Use this to select model that seems to generalize best

Test set:

® Final assessment on how chosen model generalizes to unseen data
® Not for model selection, then final assessment too optimistic



Data division — Comments

Typical division between sets 50/25/25

Sometimes no test set (then no assessment of final model)
If no test set, then validation set often called test set
Approach sometimes called holdout (often without test set)

Works well if lots of data, if less, use cross validation

30



k-fold cross validation

Similar to hold out — divide first into training/validate and test set
Divide/validate set into k data chunks

Train &k models with & — 1 chunks, use k:th chunk for validation
Loop

1. Set hyperparameters and train all k& models
2. Evaluate generalization score on its validation data
3. Sum scores to get model performance

Select final model hyperparameters based on best score
Simpler model with slightly worse score may generalize better

Estimate generalization performance via test set

31



4-fold cross validation — Graphics

Train/Validate Test

Test

Test

Test

Test
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Evaluate generalization score/performance

® Ridge regression example generalization, validation data (<)
® \: regularization parameter, J; train cost, J, validation cost

response y
*

variable =



Evaluate generalization score/performance

® Ridge regression example generalization, validation data (<)
® )\: regularization parameter, J; train cost, J, validation cost

T T T T T
A=10"% J; =0.017, J, = 0.422

response y

variable =
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Evaluate generalization score/performance

® Ridge regression example generalization, validation data (<)
® )\: regularization parameter, J; train cost, J, validation cost

T T T T T
A=6.0-10"° J; = 0.023, J, = 0.358

response y

variable =



Evaluate generalization score/performance

® Ridge regression example generalization, validation data (<)
® )\: regularization parameter, J; train cost, J, validation cost

T T T T T
A=3.6-10"% J = 0.04, J, = 0.293

response y

variable =



Evaluate generalization score/performance

® Ridge regression example generalization, validation data (<)
® )\: regularization parameter, J; train cost, J, validation cost

T T T T T
A =22-1073,J; = 0.064, J, = 0.260

response y

variable =



Evaluate generalization score/performance

® Ridge regression example generalization, validation data (<)
® )\: regularization parameter, J; train cost, J, validation cost

T T T T T
A=13-10"2,J; = 0.086, J, = 0.252

response y

variable =



Evaluate generalization score/performance

® Ridge regression example generalization, validation data (<)
® )\: regularization parameter, J; train cost, J, validation cost

T T T T T
A=7.7-10"2 J, = 0.109, J, = 0.260

response y
*

variable =



Evaluate generalization score/performance

® Ridge regression example generalization, validation data (<)
® )\: regularization parameter, J; train cost, J, validation cost

A =0.46, J; = 0.15, Jy, = 0.300

response y

variable =



Evaluate generalization score/performance

® Ridge regression example generalization, validation data (<)
® )\: regularization parameter, J; train cost, J, validation cost

A =28 J; =0.29, J, = 0.429

response y

variable =



Evaluate generalization score/performance

® Ridge regression example generalization, validation data (<)
® )\: regularization parameter, J; train cost, J, validation cost

A=16.7,J; = 0.68, J, = 0.716

response y

variable =
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Evaluate generalization score/performance

® Ridge regression example generalization, validation data (<)
® \: regularization parameter, J; train cost, J, validation cost

A = 100, J; = 0.92, J, = 0.887

*
&
L o A
| - <> -
>
o *
(7]
c | 4
9] *
oy
@ *
~ | -
kS o %
L < % i
*
- *  * <o 4
*
Il
variable =

33



Selecting model

Average training and test error vs model complexity
Average training error smaller than average test error
Large A (left) model not rich enough

Small A (right) model too rich (overfitting)

—— Train error

—— Test error

Error

Il
Increasing model complexity, A N\




Feature selection

® Assume X € R™*™ with m < n (fewer examples than features)
® Want to find a subset of features that explains data well

® Example: Which genes in genome control eyecolor
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Lasso

Feature selection by regularizing least squares with 1-norm:
minimize £ [| Xw — Y||3 + A|Jwl1
w

Problem can be written as
n 2
minimize% ZwiXi -Y| +Mw|:
i=1 2
if w; = 0, then feature X; not important
The 1-norm promotes sparsity (many 0 variables) in solution
It also reduces size (shrinks) w (like || - |3 regularization)

Problem is called the Lasso problem
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Example — Lasso

® Data X € R39%200 | 3550 solution for different A
0.25

02p B

solution

14

® For large enough A solution w =0
® More nonzero elements in solution as A\ decreases
® For small A, 30 (nbr examples) nonzero w; (i.e., 170 w; = 0)

37



Lasso and correlated features

® Assume two equal features exist, e.g., X1 = X5, lasso problem is
n 2
minimize 1 ||(wy + w2) X1 + > w; X; = Y|| 4+ A(jwi| + |wa] + |wsen 1)
=3 2
® Assume w* solves the problem and let A := w} 4+ wj > 0 (wlog)
® Then all wy € [0, A] with wy = A — wy solves problem:
® quadratic cost unchanged since sum wi + ws still A
® the remainder of the regularization part reduces to

min A\(|wy| + |A — wyq|)
w1

0 A

® For almost correlated features:
® often only w; or wa nonzero (the one with slightly better fit)

® however, features highly correlated, if X; explains data so does X2
38



Elastic net

® Add Tikhonov regularization to the Lasso
minimize 3 || Xw — Y2+ Mlwl|l; + %Hw”%

® This problem is called elastic net in statistics

® Can perform better with correlated features

39



Elastic net and correlated features

® Assume equal features X; = X5 and that w* solves the elastic net

® Let A :=w} + w} > 0 (wlog), then wi =wj = 5

® Data fit cost still unchanged for wa = A — w; with wy € [0, A]
® Remaining (regularization) part is

min A (Jwr] + |A — wi]) + Az (w? + (A — w1)?)
w1

! \
0 A

which is minimized in the middle at w1 = w2 = %

® For highly correlated features, both (or none) probably selected
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Group lasso

Sometimes want groups of variables to be 0 or nonzero
Introduce blocks w = (w1, ..., w,) where w; € R™

The group Lasso problem is

p
minimize 1| Xw — Y3 + )\Z l|lw; |2
i=1
(note || - ||2-norm without square)
With all n; =1, it reduces to the Lasso

This promotes sparsity in the blocks
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Composite optimization

® | east squares problems are convex problems of the form

miniamize f(LO) + ¢(0),

where
® f=1|| —Y|3 is data misfit term
® [ = X is training data matrix (potentially extended with features)
® g is regularization term (1-norm, squared 2-norm, group lasso)
® Function properties
® fis 1-strongly convex and 1-smooth and f o L is || L||*-smooth
® g is convex and possibly nondifferentiable

® Gradient V(foL)(#) = XT(X0-Y)

42



