Least Squares

Pontus Giselsson

Learning goals

- Understand least squares and its purpose
- Understand that the training problem is convex
- Understand the problem of overparameterization and overfitting
- Understand the purpose and need for regularization
- Familiar with the effect of common convex regularization choices
- Understand the use and purpose of feature maps
- Understand hyperparameters and how they can be chosen

Supervised Learning

Machine learning

- Machine learning can roughly be divided into:
 - Supervised learning
 - Unsupervised learning
 - Semisupervised learning (between supervised and unsupervised)
 - Reinforcement learning
- We will focus on supervised learning

Supervised learning

- Let $(\boldsymbol{x},\boldsymbol{y})$ represent object and label pairs
 - Object $x \in \mathcal{X} \subseteq \mathbb{R}^n$
 - Label $y \in \mathcal{Y} \subseteq \mathbb{R}^{K}$
- Available: Labeled training data (training set) $\{(x_i, y_i)\}_{i=1}^N$
 - Data $x_i \in \mathbb{R}^n$ are called *examples* (often *n* large)
 - Labels $y_i \in \mathbb{R}^K$ are called *response variables* (often K = 1)

Objective:

• Find data to label transformation $\psi:\mathcal{X}\rightarrow\mathcal{Y}$ such that

 $\psi(x) \approx y$

for all data label pairs (x, y), called training problem

• Learn ψ from training data, but should generalize to all (x, y)

Relation to optimization

Training the machine consists in solving optimization problem

Regression vs Classification

There are two main types of supervised learning tasks:

- Regression:
 - Predicts quantities
 - Real-valued labels $y \in \mathcal{Y} = \mathbb{R}^K$ (will mainly consider K = 1)
- Classification:
 - Predicts class belonging
 - Finite number of class labels, e.g., $y \in \mathcal{Y} = \{1, 2, \dots, k\}$

Examples of data and label pairs

Data	Label	R/C
text in email	spam?	С
dna	blood cell concentration	R
dna	cancer?	С
image	cat or dog	С
advertisement display	click?	С
image of handwritten digit	digit	С
house address	selling cost	R
stock	price	R
sport analytics	winner	С
speech representation	spoken word	С

 R/C is for regression or classification

In this course

Lectures will cover different supervised learning methods:

- · Classical methods with convex training problems
 - Least squares (this lecture)
 - Logistic regression
 - Support vector machines
 - Multiclass classification
- Deep learning methods with nonconvex training problem

Highlight difference:

• Deep learning (specific) nonlinear model instead of linear

Notation

- (Primal) Optimization variable notation:
 - Optimization literature: x, y, z (as in first part of course)
 - Statistics literature: β
 - Machine learning literature: θ, w, b
- Reason: data, labels in statistics and machine learning are $\boldsymbol{x}, \boldsymbol{y}$
- Will use machine learning notation in these lectures
- We collect training data in matrices (one example per row)

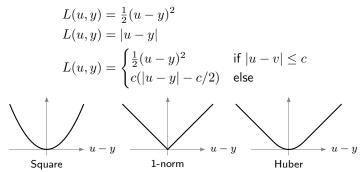
$$X = \begin{bmatrix} x_1^T \\ \vdots \\ x_N^T \end{bmatrix} \qquad \qquad Y = \begin{bmatrix} y_1^T \\ \vdots \\ y_N^T \end{bmatrix}$$

• Columns X_j of data matrix $X = [X_1, \dots, X_n]$ are called *features*

Least Squares

Regression training problem

- Objective: Find data model $m = \psi$ such that for all (x, y): $m(x) - y \approx 0$
- Let model output u = m(x); Examples of data misfit losses



• Training: find model m that minimizes sum of training set losses

$$\underset{m}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i), y_i)$$
12

Supervised learning – Least squares

• Parameterize model m and set a linear (affine) structure

$$m(x;\theta) = w^T x + b$$

where $\theta = (w, b)$ are *parameters* (also called *weights*)

• Training: find model parameters that minimize training cost

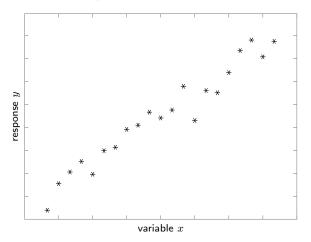
minimize
$$\sum_{i=1}^{N} L(m(x_i; \theta), y_i) = \frac{1}{2} \sum_{i=1}^{N} (w^T x_i + b - y_i)^2$$

(note: optimization over model parameters θ)

• Once trained, predict response of new input x as $\hat{y} = w^T x + b$

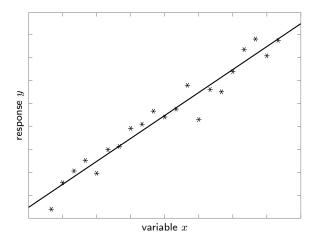
Example – Least squares

• Find affine function parameters that fit data:



Example – Least squares

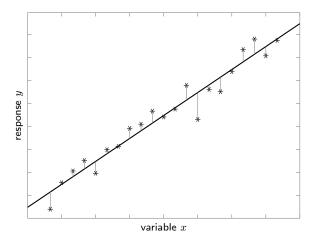
• Find affine function parameters that fit data:



• Data points (x, y) marked with (*), LS model wx + b (-----)

Example – Least squares

• Find affine function parameters that fit data:



- Data points (x, y) marked with (*), LS model wx + b (----)
- Least squares finds affine function that minimizes squared distance ¹⁴

Solving for constant term

- Constant term b also called bias term or intercept
- What is optimal b?

minimize
$$\frac{1}{2} \sum_{i=1}^{N} (w^T x_i + b - y_i)^2$$

• Optimality condition w.r.t. *b* (gradient w.r.t. *b* is 0):

$$0 = Nb + \sum_{i=1}^{N} (w^T x_i - y_i) \quad \Leftrightarrow \quad b = \bar{y} - w^T \bar{x}$$

where $\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$ and $\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$ are mean values

Equivalent problem

• Plugging in optimal $b=\bar{y}-w^T\bar{x}$ in least squares estimate gives

minimize
$$\frac{1}{2} \sum_{i=1}^{N} (w^T x_i + b - y_i)^2 = \frac{1}{2} \sum_{i=1}^{N} (w^T (x_i - \bar{x}) - (y_i - \bar{y}))^2$$

• Let $\tilde{x}_i = x_i - \bar{x}$ and $\tilde{y}_i = y_i - \bar{y}$, then it is equivalent to solve

minimize
$$\frac{1}{2} \sum_{i=1}^{N} (w^T \tilde{x}_i - \tilde{y}_i)^2 = \frac{1}{2} \|Xw - Y\|_2^2$$

where X and Y now contain all \tilde{x}_i and \tilde{y}_i respectively

- Obviously \tilde{x}_i and \tilde{y}_i have zero averages (by construction)
- Will often assume averages subtracted from data and responses

Least squares – Solution

• Training problem

$$\underset{w}{\text{minimize } \frac{1}{2} \|Xw - Y\|_2^2}$$

- Strongly convex if X full column rank
 - Features linearly independent and more examples than features
 - Consequences: $X^T X$ is invertible and solution exists and is unique
- Optimal w satisfies (set gradient to zero)

$$0 = X^T X w - X^T Y$$

if X full column rank, then unique solution $w = (X^T X)^{-1} X^T Y$

Scaling response variables

- What happens if responses y scaled with a nonzero scalar γ ?
- The problem becomes

$$\underset{w}{\text{minimize}} \frac{1}{2} \|Xw - \gamma Y\|_{2}^{2} = \frac{1}{2} \|\gamma (X\frac{w}{\gamma} - Y)\|_{2}^{2} = \frac{\gamma^{2}}{2} \|X\frac{w}{\gamma} - Y\|_{2}^{2}$$

- Solution is scaled with γ^{-1}
- Scale Y to have, e.g., unit norm or norm \sqrt{n}

Scaling features

• Consider least squares problem

minimize
$$\frac{1}{2} \|Xw - Y\|_2^2 = \frac{1}{2} \left\| \sum_{i=1}^n w_i X_i - Y \right\|_2^2$$

where $X = [X_1, \ldots, X_n]$ and X_i are features (columns of X)

- "Select linear combination of features that best approximates Y"
- Large value of w_i means feature i important in describing Y
- Scale feature X_i by 2, what happens with solution w_i ?

Scaling features

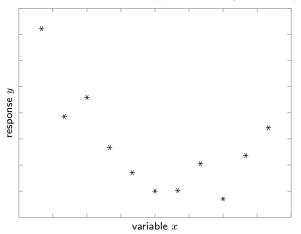
• Consider least squares problem

minimize
$$\frac{1}{2} \|Xw - Y\|_2^2 = \frac{1}{2} \left\| \sum_{i=1}^n w_i X_i - Y \right\|_2^2$$

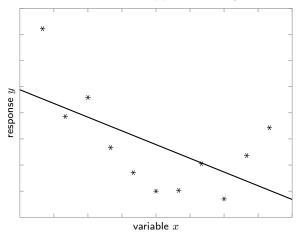
where $X = [X_1, \ldots, X_n]$ and X_i are features (columns of X)

- "Select linear combination of features that best approximates Y"
- Large value of w_i means feature i important in describing Y
- Scale feature X_i by 2, what happens with solution w_i ?
- Solution w_i scaled by $\frac{1}{2}$, (other w_j not affected)
- Scale all features to have unit norm to avoid confusion
- (Diagonal elements of $X^T X$ become $1 \Rightarrow$ Jacobi scaling)

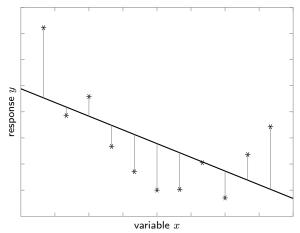
• What if data that cannot be well approximated by affine mapping?



• What if data that cannot be well approximated by affine mapping?



• What if data that cannot be well approximated by affine mapping?



Adding nonlinear features

- A linear model is not rich enough to model relationship
- Try, e.g., a quadratic model

$$m(x;\theta) = b + \sum_{i=1}^{n} w_i x_i + \sum_{i=1}^{n} \sum_{j=1}^{i} q_{ij} x_i x_j$$

with parameters $\theta = (b, w, q)$

• For $x \in \mathbb{R}^2$, the model is

$$m(x;\theta) = b + w_1 x_1 + w_2 x_2 + q_{11} x_i^2 + q_{12} x_i x_j + q_{22} x_j^2 = \theta^T \phi(x)$$

where

$$\theta = (b, w_1, w_2, q_{11}, q_{12}, q_{22})$$

$$\phi(x) = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2)$$

• Add nonlinear features $\phi(x)$, but model still linear in parameter θ

Least squares with nonlinear features

- Can, of course, use other nonlinear feature maps ϕ
- Gives models $m(x;\theta)=\theta^T\phi(x)$ with increased fitting capacity
- Use least squares estimate with new model

$$\underset{\theta}{\text{minimize}} \frac{1}{2} \sum_{i=1}^{N} (m(x_i; \theta) - y_i)^2 = \frac{1}{2} \sum_{i=1}^{N} (\theta^T \phi(x_i) - y_i)^2$$

which is still convex since ϕ does not depend on θ !

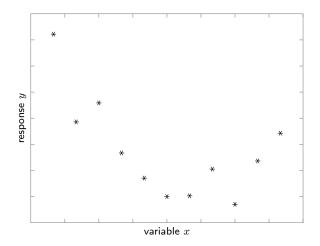
• Build new data matrix (with one column per feature in ϕ)

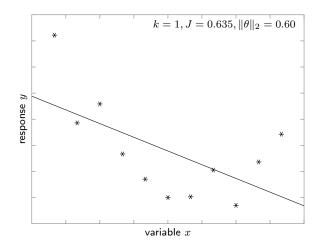
$$X = \begin{bmatrix} \phi(x_1)^T \\ \vdots \\ \phi(x_N)^T \end{bmatrix}$$

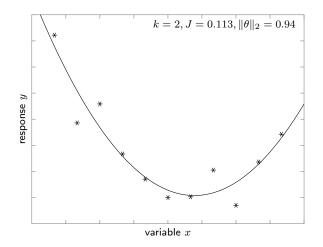
to arrive at least squares formulation

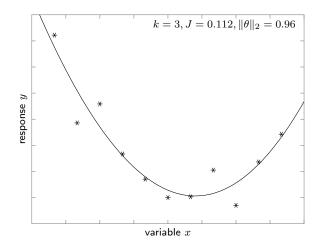
$$\underset{\theta}{\text{minimize } \frac{1}{2} \| X\theta - Y \|_2^2}$$

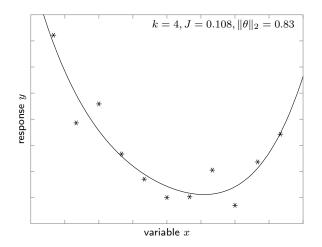
• The more features, the more parameters θ to optimize (lifting)

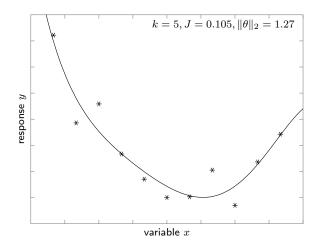


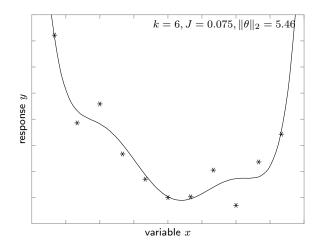


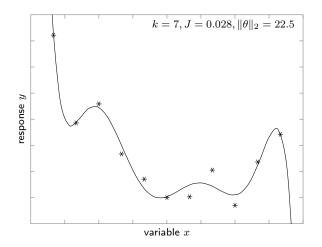


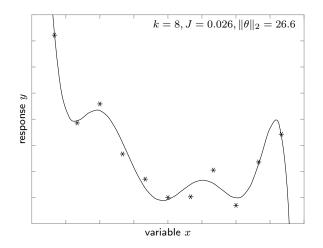






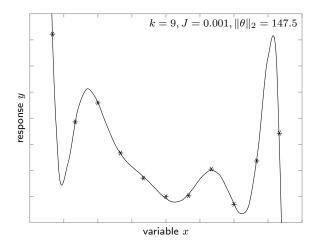






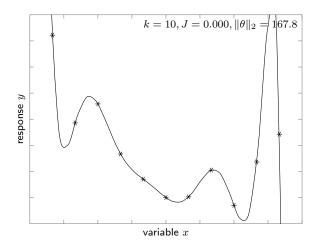
Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):



Nonaffine example

• Fit polynomial of degree k to data using LS (J is cost):



Generalization and overfitting

- Generalization: How well does model perform on unseen data
- Overfitting: Model explains training data, but not unseen data
- Which of the previous models would generalize best?
- How to reduce overfitting/improve generalization?

Regularization

- Reducing $\|\theta\|_2$ seems to reduce overfitting
- Least squares with *Tikhonov regularization*:

$$\underset{\theta}{\text{minimize } \frac{1}{2} \| X\theta - Y \|_2^2 + \frac{\lambda}{2} \| \theta \|_2^2}$$

- Regularization parameter $\lambda \geq 0$ controls fit vs model expressivity
- Optimization problem called ridge regression in statistics
- (Could regularize with $\|\theta\|_2$, but square easier to solve)
- (Don't regularize b constant data offset gives different solution)

Ridge Regression – Solution

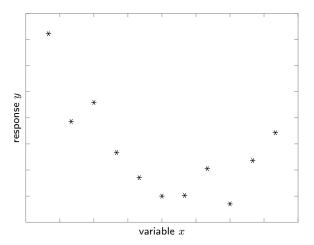
• Recall ridge regression problem for given λ :

$$\underset{\theta}{\text{minimize } \frac{1}{2} \|X\theta - Y\|_2^2 + \frac{\lambda}{2} \|\theta\|_2^2}$$

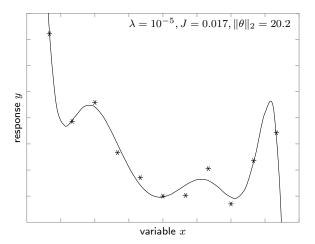
- Objective λ -strongly convex for all $\lambda > 0$, hence unique solution
- Objective is differentiable, Fermat's rule:

$$0 = X^{T}(X\theta - Y) + \lambda\theta \qquad \Longleftrightarrow \qquad (X^{T}X + \lambda I)\theta = X^{T}Y$$
$$\iff \qquad \theta = (X^{T}X + \lambda I)^{-1}X^{T}Y$$

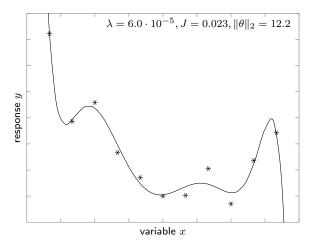
- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_2$ norm of weights



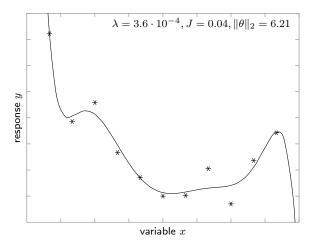
- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_2$ norm of weights



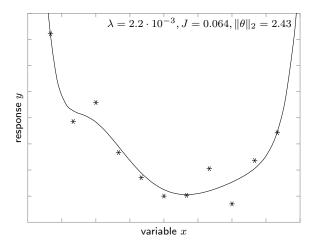
- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_2$ norm of weights



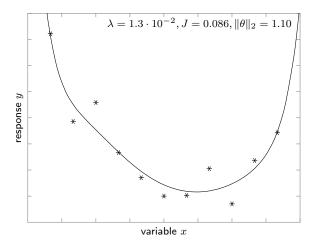
- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_2$ norm of weights



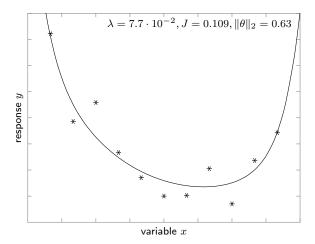
- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_2$ norm of weights



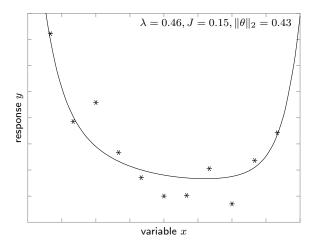
- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_2$ norm of weights



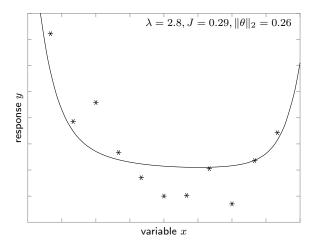
- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_2$ norm of weights



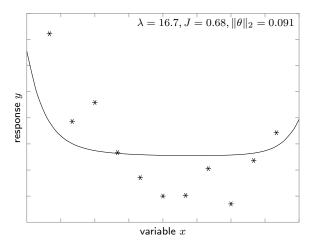
- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_2$ norm of weights



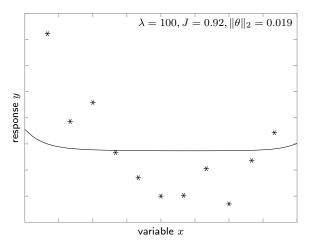
- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_2$ norm of weights



- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_2$ norm of weights



- Same problem data as before
- Fit 10-degree polynomial with Tikhonov regularization
- λ : regularization parameter, J LS cost, $\|\theta\|_2$ norm of weights

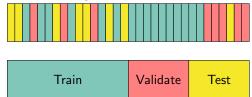


Selecting model hyperparameters

- Parameters in machine learning models are called hyperparameters
- Ridge model has polynomial order and λ as hyperparameters
- How to select hyperparameters?
- Divide data into train, validate, and test data sets

Data division

Randomize data and assign to train, validate, or test set



Training set:

• Solve training problems with different hyperparameters

Validation set:

- Estimate generalization performance of all trained models
- Use this to select model that seems to generalize best

Test set:

- Final assessment on how chosen model generalizes to unseen data
- Not for model selection, then final assessment too optimistic

Data division – Comments

- Typical division between sets 50/25/25
- Sometimes no test set (then no assessment of final model)
- If no test set, then validation set often called test set
- Approach sometimes called *holdout* (often without test set)
- Works well if lots of data, if less, use cross validation

k-fold cross validation

- Similar to hold out divide first into training/validate and test set
- Divide/validate set into k data chunks
- Train k models with k-1 chunks, use k:th chunk for validation
- Loop
 - 1. Set hyperparameters and train all \boldsymbol{k} models
 - 2. Evaluate generalization score on its validation data
 - 3. Sum scores to get model performance
- Select final model hyperparameters based on best score
- Simpler model with slightly worse score may generalize better
- Estimate generalization performance via test set

4-fold cross validation – Graphics

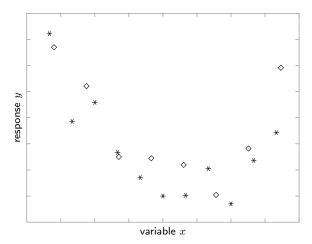
Train	Train	Train	Validate	Test
-------	-------	-------	----------	------

Train	Train	Validate	Train	Test
-------	-------	----------	-------	------

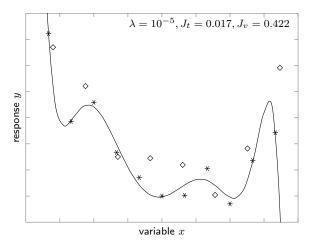
Train Validate	Train	Train	Test
----------------	-------	-------	------

Validate Train	Train	Train	Test
----------------	-------	-------	------

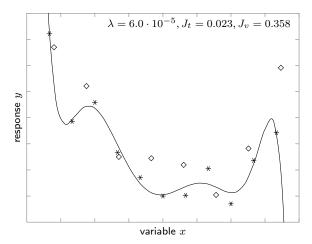
- Ridge regression example generalization, validation data (\diamond)
- λ : regularization parameter, J_t train cost, J_v validation cost



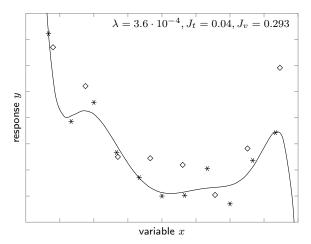
- Ridge regression example generalization, validation data (\diamond)
- λ : regularization parameter, J_t train cost, J_v validation cost



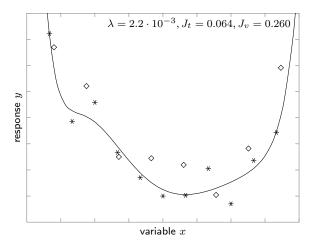
- Ridge regression example generalization, validation data (\diamond)
- λ : regularization parameter, J_t train cost, J_v validation cost



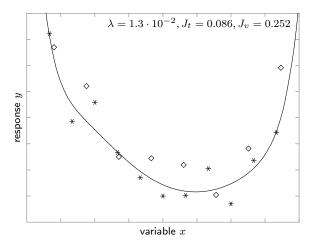
- Ridge regression example generalization, validation data (\diamond)
- λ : regularization parameter, J_t train cost, J_v validation cost



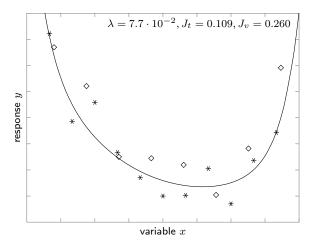
- Ridge regression example generalization, validation data (◊)
- λ : regularization parameter, J_t train cost, J_v validation cost



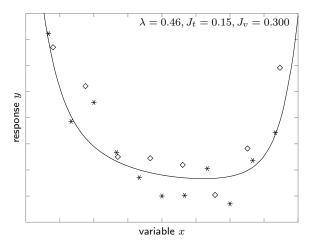
- Ridge regression example generalization, validation data (◊)
- λ : regularization parameter, J_t train cost, J_v validation cost



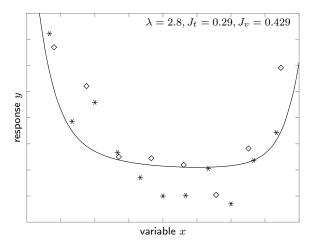
- Ridge regression example generalization, validation data (◊)
- λ : regularization parameter, J_t train cost, J_v validation cost



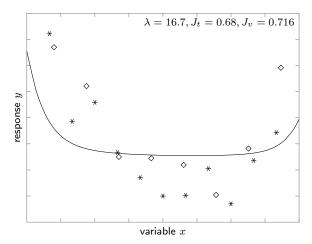
- Ridge regression example generalization, validation data (\diamond)
- λ : regularization parameter, J_t train cost, J_v validation cost



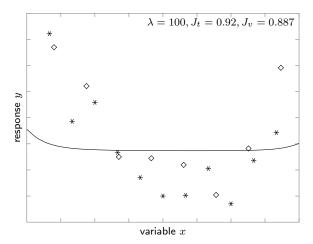
- Ridge regression example generalization, validation data (\diamond)
- λ : regularization parameter, J_t train cost, J_v validation cost



- Ridge regression example generalization, validation data (\diamond)
- λ : regularization parameter, J_t train cost, J_v validation cost

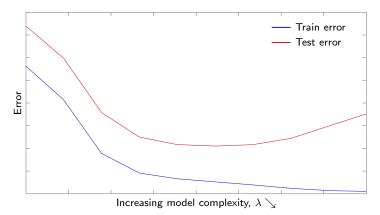


- Ridge regression example generalization, validation data (\diamond)
- λ : regularization parameter, J_t train cost, J_v validation cost



Selecting model

- Average training and test error vs model complexity
- Average training error smaller than average test error
- Large λ (left) model not rich enough
- Small λ (right) model too rich (overfitting)



Feature selection

- Assume $X \in \mathbb{R}^{m \times n}$ with m < n (fewer examples than features)
- Want to find a subset of features that explains data well
- Example: Which genes in genome control eyecolor

Lasso

• Feature selection by regularizing least squares with 1-norm:

$$\underset{w}{\text{minimize } \frac{1}{2} \|Xw - Y\|_{2}^{2} + \lambda \|w\|_{1}}$$

• Problem can be written as

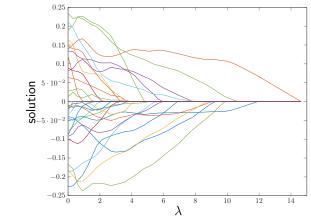
minimize
$$\frac{1}{2} \left\| \sum_{i=1}^{n} w_i X_i - Y \right\|_2^2 + \lambda \|w\|_1$$

if $w_i = 0$, then feature X_i not important

- The 1-norm promotes sparsity (many 0 variables) in solution
- It also reduces size (shrinks) w (like $\|\cdot\|_2^2$ regularization)
- Problem is called the Lasso problem

Example – Lasso





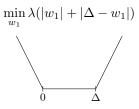
- For large enough λ solution w = 0
- More nonzero elements in solution as λ decreases
- For small λ , 30 (nbr examples) nonzero w_i (i.e., 170 $w_i = 0$)

Lasso and correlated features

• Assume two equal features exist, e.g., $X_1 = X_2$, lasso problem is

minimize
$$\frac{1}{2} \left\| (w_1 + w_2)X_1 + \sum_{i=3}^n w_i X_i - Y \right\|_2^2 + \lambda (|w_1| + |w_2| + ||w_{3:n}||_1)$$

- Assume w^* solves the problem and let $\Delta := w_1^* + w_2^* > 0$ (wlog)
- Then all $w_1 \in [0, \Delta]$ with $w_2 = \Delta w_1$ solves problem:
 - quadratic cost unchanged since sum $w_1 + w_2$ still Δ
 - the remainder of the regularization part reduces to



- For almost correlated features:
 - often only w_1 or w_2 nonzero (the one with slightly better fit)
 - however, features highly correlated, if X_1 explains data so does X_2

Elastic net

• Add Tikhonov regularization to the Lasso

minimize $\frac{1}{2} \|Xw - Y\|^2 + \lambda_1 \|w\|_1 + \frac{\lambda_2}{2} \|w\|_2^2$

- This problem is called *elastic net* in statistics
- Can perform better with correlated features

Elastic net and correlated features

- Assume equal features $X_1 = X_2$ and that w^* solves the elastic net
- Let $\Delta:=w_1^*+w_2^*>0$ (wlog), then $w_1^*=w_2^*=\frac{\Delta}{2}$
 - Data fit cost still unchanged for $w_2 = \Delta w_1$ with $w_1 \in [0, \Delta]$
 - Remaining (regularization) part is

$$\min_{w_1} \lambda_1(|w_1| + |\Delta - w_1|) + \lambda_2(w_1^2 + (\Delta - w_1)^2)$$

which is minimized in the middle at $w_1 = w_2 = \frac{\Delta}{2}$

• For highly correlated features, both (or none) probably selected

Group lasso

- Sometimes want groups of variables to be 0 or nonzero
- Introduce blocks $w = (w_1, \dots, w_p)$ where $w_i \in \mathbb{R}^{n_i}$
- The group Lasso problem is

minimize
$$\frac{1}{2} \|Xw - Y\|_2^2 + \lambda \sum_{i=1}^p \|w_i\|_2$$

(note $\|\cdot\|_2$ -norm without square)

- With all $n_i = 1$, it reduces to the Lasso
- This promotes sparsity in the blocks

Composite optimization

• Least squares problems are convex problems of the form

$$\min_{\theta} \operatorname{minimize} f(L\theta) + g(\theta),$$

where

- $f = \frac{1}{2} \| \cdot Y \|_2^2$ is data misfit term
- $L = \overline{X}$ is training data matrix (potentially extended with features)
- g is regularization term (1-norm, squared 2-norm, group lasso)
- Function properties
 - f is 1-strongly convex and 1-smooth and $f \circ L$ is $||L||^2$ -smooth
 - g is convex and possibly nondifferentiable
- Gradient $\nabla(f \circ L)(\theta) = X^T (X\theta Y)$