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Modelling in three phases:

1. Problem structure
◮ Formulate purpose, requirements for accuracy
◮ Break up into subsystems — What is important?

2. Basic equations
◮ Write down the relevant physical laws
◮ Collect experimental data
◮ Test hypotheses
◮ Validate the model against fresh data

3. Model with desired features is formed
◮ Put the model on suitable form.

(Computer simulation or pedagogical insight? )
◮ Document and illustrate the model
◮ Evaluate the model: Does it meet its purpose?

Implementation

Experiment Synthesis

Analysis

Matematical model

Idea/Purpose

specification
and requirement  

Outline

Thursday lecture

◮ Course introduction
◮ Ethics of modelling
◮ Static models from data (black boxes)

Friday lecture

◮ Dynamic models from data (black boxes)
◮ Models from physics (white boxes)
◮ Mixed models (grey boxes)

Basic idea of system identification

S✲ ✲
u y

Measure U and y. Figure out a model of S, consistent with measured
data.

Important aspects:

◮ We can only measure the u and y in discrete time points (sampling).
Can be natural to use the discrete-time models.

◮ The system is affected by interference and measurement errors. We
may need to signal models for dealing with this.

Example

A tank which attenuates flow variations in q1. Characterization of the tank
system:

q1

q2

h

◮ Input: q1
◮ Output: q2 and/or h
◮ Internal variables / conditions: h

Step response

Step response for the tank 0 50 100 150 200 250 300 350 400
−0.05

0

0.05

0.1

0.15

Can give idea of the dominant time constant, static reinforcement,
character (overshoot or not)

Frequency response

For good signal-to-noise ratio, an estimate of G(iω) is obtained directly
from the amplitudes and phase positions of u, y

u(t) = A sinωt
y(t) = ApG(iω)p sin(ωt+ arg G(iω))
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How light affects pupil area Bode-diagram for pupil

Correlation analysis

Can we estimate the impulse response with other inputs?

◮ Impulse response formula in discrete time (T = 1, v = noise):

y(t) =
∞∑

k=1
�ku(t− k) + v(t)

◮ If v white noise with Ev2 = 1, then

Ryu(k) = Ey(t)u(t− k) = �k

◮ Covariance Ryu estimated by N data points with

R̂N
yu(k) = 1

N

N∑

t=1
y(t)u(t− k)

Example

Correlation analysis for 1
s2+2s+1 (in- and out-put data)

Estimated and actual impulse responses Basic rules

Make experiments with conditions similar to the conditions in which the
model is to be used!

(Models from step response can be expected to work best on the stage.)

Save some data for model validation, i.e. check the model with data set
different from the one that generated the model!

Outline

Thursday lecture

◮ Course introduction
◮ Ethics of modelling
◮ Static models from data (black boxes)

Friday lecture

◮ Dynamic models from data (black boxes)
◮ Models from physics (white boxes)
◮ Mixed models (grey boxes)

Principles and analogies: Hydraulics

Example 1. A hydraulic system:

pa p1 p2 pb

Q1 Q2

Q3 Q4 Q5

Incompressible fluid. Pressures: pa, p1, p2, and p3.
Volume flows: Q1, Q2, Q3, Q4, and Q5.
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Principles and analogies: Electrics

Example 2. An electrical system:

va v1 v2 vb

i1 i2

i3 i4 i5
R3 R4 R5

C1 C2

Potentials va , vb , v1, and v2
Currents i1 , i2, i3, i4, and i5

Principles and analogies: Heat

Example 3. A thermal system
(heat transfer through a wall):

Värmekap. Värmekap.

Ta

T1 T2

Tb
q3

q4 q5
C1 C2

Two elements with thermal capacities C1 and C2 separated by insulating
layers. Heat flows: q3 , q4 and q4
Temperatures: Ta , Tb , T1 and T2

Principles and analogies: Mechanics

Exempel 4. A mechanical system:

Fa

F1 F2

Fb

v1 v2 v3

k1
k2

d1 d2

m1 m2 m3

External forces: Fa and Fb
Velocities: v1, v2 and v3
Spring constants: k1 and k2
Damping constants: d1 and d2

Analogies

Analogies: hydraulic - electric - thermal - mechanical
Two types of variables:

A. Flow Variables
◮ volume flow
◮ power flow
◮ heat flow
◮ speed

B. Intensity variables
◮ pressure
◮ voltage
◮ temperature
◮ force

For both of them addition rules hold.

Analogies (cont’d)

Intensity variations

C · d
dt(intensity) = flow

C "capacitance":
hydraulic: A/(ρ�)
electrical: kapacitans
heat: thermal capacity
mechanical: inverse spring constant
Balance equations!

(More complicated if the capacitance is not constant.)

Analogies (cont’d)

Losses
flow = φ(intensity)
intensity = φ(flow)

Hydraulic: flow resistance
Electrics: resistance
Heat: thermal conductivity
Mechanics: friction

Often linear relationship in the electrical case - nonlinearly in the other
(may be approximated by linear for small changes of variables)

More phenomena

Intensity variations

L · d
dt(flow) = intensity

L "inductance"
hydraucs: ρl/A
electrics: inductans
heat: –
mechanics: mass
balance equations!

(more complicated if the inductance is not constant.)

Energy flows

Can you make a general modeling theory based on flow and intensity
variables? Note the following.

pressure · flow = power
voltage difference · current = power

force · velocity = power
torque · angular velocity = power
temperature · heat flow = power · temperature

3



Dimension analysis

Physical variables have dimensions. E.g.,

[density] = M L−3

[force] = M · L
T2 = M LT−2

where
M = [mass], T = [time], L = [length]

Physical connections must be dimensionally “correct”.

Example: Bernoulli’s law

In Bernoulli’s law v =
√

2�h you have

[v/
√
�h] = LT−1(LT−2 L)−0.5 = 1

v/
√
�h is an example of dimensionless quantity.

Dimensionless quantities and scaling

Some historical passanger ships:

◮ Kaiser Wilhelm the great, 1898, 22 knots, 200 m
◮ Lusitania, 1909, 25 knots, 240 m
◮ Rex, 1933, 27 knots, 269 m
◮ Queen Mary, 1938, 29 knots, 311 m

Note that the ratio (velocity)2/(length) is almost constant

Which physical phenomenon can be thought to be the cause?

2 min problem

Find the relationship (except for a scaling by a dimensionless constant)
between a pendulum period time and its mass, its length and the
acceleration of gravity �, i.e.,

t = f (m, l, �)

A Graphical Modelica Model A submodel can be opened

Simple system in text format

Documentation is important:

Initialize at equilibrium!
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A predator-prey model

{

ẋ = x(α − β y)
ẏ = y(δ x−γ )

Re-using old models

Inheritance:

Modfication:

Nonlinear differential-algebraic equations (DAE)

Differential-algebraic equations, DAE

F(ż, z, u) = 0, y = H(z, u)

u: input, y: output, z: "internal variable"

Special case: state model

ẋ = f (x, u), y = h(x, u)

u: input, y: output, x: state

Mathematics of general connection:

State models for two separate components:

φ̇1 = ω1 φ̇2 = ω2

J1ω̇1 = τ1 + τ2 J2ω̇2 = τ3 + τ4

Connection:

φ1 = φ2

τ2 = −τ3

The resulting model is not exactly a state model.

Linear differential-algebraic equations (DAE)

Eż = Fz+ Gu

If E were non-singular, one could write

ż = E−1 Fz+ E−1Gu

which is a valid state model. If E is singular, variables have to be
eliminated to get a state equation. Using a DAE solver is often better, since
elimination can destroy sparsity.

Example:
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Outline

Thursday lecture

◮ Course introduction
◮ Ethics of modelling
◮ Static models from data (black boxes)

Friday lecture

◮ Dynamic models from data (black boxes)
◮ Models from physics (white boxes)
◮ Mixed models (grey boxes)

Prediction Error Methods

Find the unknown parameters θ by optimization:

min
θ
qŷ(t,θ) − y(t)q

Here y(t) is the measured output at time t and ŷ(t,θ) is the predicted
output based on past measurements using a model with parameter values
θ .

Prediction Error Method with Repeated Simulation

For a nonlinear grey-box model

0 = F(ẋ, x, t,θ)
y(t) = h(x, t,θ)

the unknown parameters θ could be determined by the prediction error
method

min
θ
qŷ(t,θ) − y(t)q

where the output prediction ŷ(t,θ) is computed by simulation.

(Repeated simulation for different values of θ could however be very
time-consuming.)
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Population dynamics / Ecology

Variations in the number of lynx (solid) and hares (dashed) in Canada. Can
you predict the periodic variations?

Population dynamics
N1 number of lynx, N2 number of hares

d
dt N1(t) = (λ1 −γ1)N1(t) +α1 N1(t)N2(t)
d
dt N2(t) = (λ2 −γ2)N1(t) −α2 N1(t)N2(t)

Simulation:

Mixing tanks in Skärblacka paper factory

A

B

A linear transfer function of three series-connected mixing tanks has the
form 1

(sθ+1)3 .

To determine θ , radioactive lithium is added in A. Radioactivity was then
measured by B as a function of time.

Impulse response

In the lower picture, θ has been chosen to adapt to the impulse response
of 1
(sθ+1)3

Grey Models — the best of both worlds

◮ White boxes: Physical laws provide some insight

◮ Black boxes: Statistics estimates complex relationships

◮ Gray boxes: Combine simplicity with insight

My Own Research: Dynamic Buffer Networks

◮ Producers, consumers and storages
◮ Examples: water, power, traffic, data
◮ Discrete/continuous, stochastic/deterministic
◮ Multiple commodities, human interaction

Problem: Scalable and adaptive methods for control.

Example: Heating Networks

Grey box modelling!

Mathematical modelling — Lectures

Thursday lecture

◮ Course introduction
◮ Ethics of modelling
◮ Static models from data (black boxes)

Friday lecture

◮ Dynamic models from data (black boxes)
◮ Models from physics (white boxes)
◮ Mixed models (grey boxes)

Good luck with your projects!

I look forward to receiving your project plans.
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