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Outline

Thursday lecture

◮ Course introduction
◮ Models from physics (white boxes)

Friday lecture

◮ Models from data (black boxes)
◮ Singular Value Decomposition (SVD)
◮ Machine Learning
◮ System Identification / Time Series Analysis

◮ Mixed models (grey boxes)

Modelling in three phases:

1. Problem structure
◮ Formulate purpose, requirements for accuracy
◮ Break up into subsystems — What is important?

2. Basic equations
◮ Write down the relevant physical laws
◮ Collect experimental data
◮ Test hypotheses
◮ Validate the model against fresh data

3. Model with desired features is formed
◮ Put the model on suitable form.

(Computer simulation or pedagogical insight? )
◮ Document and illustrate the model
◮ Evaluate the model: Does it meet its purpose?

Implementation

Experiment Synthesis

Analysis

Matematical model

Idea/Purpose

specification
and requirement  

Lecture 2

◮ Statistical modeling from data (statistical black boxes)
◮ Singular Value Decomposition (SVD)
◮ Principal Component Analysis (Factor Analysis)

◮ Dynamic experiments (dynamik black boxes)
◮ Step response
◮ Frequency response
◮ Correlation analysis

◮ Gray boxes
◮ Prediction error methods
◮ Differential-Algebraic Equations revisited

Singular Value Decomposition (SVD)

A matrix M can always be factorized

M = U
[

Σ 0
0 0

]
V ∗

with Σ diagonal and invertible and U , V unitary:

Σ =




σ 1
. . .

σ n


 U∗U = I V ∗V = I

Diagonal elements of Σ are called singular values of M and
correspond to the square roots of the eigenvalues of M∗M .

Computation of SVD is very numerically stable.

Example of SVD

M = U
[

Σ 0
0 0

]
V ∗

[
1 1
1 1

]
= 1√

2

[
1 −1
1 1

]

︸ ︷︷ ︸
U

[
2 0
0 0

] [
1 1
−1 1

]
1√
2︸ ︷︷ ︸

V ∗

What does it mean if a singular value is zero?

What does it mean if it is near zero?

Good children can have many names

Collect all the data into a large matrix. Then compute the SVD:



y1(1) y1(2) . . . y1(N)
y2(1) y2(2) . . . y2(N)

...
yp(1) yp(2) . . . yp(N)


 = U




σ 0
. . .

0 σ p




︸ ︷︷ ︸
Σ

V ∗

Singular values σ i in decreasing order on the diagonal of Σ.
The first columns of U give the direction of the main data area.

Principal Component Analysis: By replacing the small
singular values σ i with zeros focuses on the essential.

The name ‘factor analysis’ is sometimes used as a
synonymous, since large singular values σ i highlight important
factors.
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Principal Component Analysis (PCA)
Data from a bi-dimensional Gaussian distribution centered in
(1, 3):

Principal component (0.878, 0.478) has standard deviation 3.

Next component has standard deviation 1.
[Källa: Wikipedia]

Example: Image processing

What does this picture represent?

M =

1 0 0 1 1 1 0 1 0 1
1 0 0 0 1 0 0 1 0 1
1 0 0 0 1 0 0 1 1 1
1 0 0 0 1 0 0 1 0 1
1 1 0 0 1 0 0 1 0 1

Example: Image processing with SVD

>> [U,S,V]=svd(M)

U =

-0.4747 0.8662 0.0000 -0.1559 0.0000
-0.4291 -0.1371 -0.0000 0.5450 -0.7071
-0.4508 -0.3256 -0.7071 -0.4368 -0.0000
-0.4291 -0.1371 -0.0000 0.5450 0.7071
-0.4508 -0.3256 0.7071 -0.4368 0.0000

S =

4.5638 0 0 0 0 0 0 0 0 0
0 1.3141 0 0 0 0 0 0 0 0
0 0 1.0000 0 0 0 0 0 0 0
0 0 0 0.6670 0 0 0 0 0 0
0 0 0 0 0.0000 0 0 0 0 0

Example: Image processing with SVD

round(U*S1*V’) =

1 0 0 0 1 0 0 1 0 1
1 0 0 0 1 0 0 1 0 1
1 0 0 0 1 0 0 1 0 1
1 0 0 0 1 0 0 1 0 1
1 0 0 0 1 0 0 1 0 1

round(U*S2*V’) =

1 0 0 1 1 1 0 1 0 1
1 0 0 0 1 0 0 1 0 1
1 0 0 0 1 0 0 1 0 1
1 0 0 0 1 0 0 1 0 1
1 0 0 0 1 0 0 1 0 1

Example: Image processing

The original image has 897-by-598 pixels. Tacking red, green
and blue vertically gives a 2691-by-598 matrix. Truncating all
but 12 singular values gives the left picture. 120 gives the right.

Example: Correlations genes-proteines

Cancer research: microarrays (glass) with human genes are
exposed to healthy cells, then to sick ones. Make a SVD of the
data to find out which genes are important!

Outline

Thursday lecture

◮ Course introduction
◮ Models from physics (white boxes)

Friday lecture

◮ Models from data (black boxes)
◮ Singular Value Decomposition (SVD)
◮ Machine Learning
◮ System Identification / Time Series Analysis

◮ Mixed models (grey boxes)
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Which one is Hemingway?

Before November 2016

Using language rule books:
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Outline

Thursday lecture

◮ Course introduction
◮ Models from physics (white boxes)

Friday lecture

◮ Models from data (black boxes)
◮ Singular Value Decomposition (SVD)
◮ Machine Learning
◮ System Identification / Time Series Analysis

◮ Mixed models (grey boxes)

Basic idea of system identification

S✲ ✲
u y

Measure U and y. Figure out a model of S, consistent with
measured data.

Important aspects:

◮ We can only measure the u and y in discrete time points
(sampling). Can be natural to use the discrete-time
models.

◮ The system is affected by interference and measurement
errors. We may need to signal models for dealing with this.

Example

A tank which attenuates flow variations in q1. Characterization
of the tank system:

q1

q2

h

◮ Input: q1
◮ Output: q2 and/or h
◮ Internal variables / conditions: h

Step response

Step response for the tank 0 50 100 150 200 250 300 350 400
−0.05

0

0.05

0.1

0.15

Can give idea of the dominant time constant, static
reinforcement, character (overshoot or not)

Frequency response

For good signal-to-noise ratio, an estimate of G(iω ) is obtained
directly from the amplitudes and phase positions of u, y

u(t) = A sinω t
y(t) = ApG(iω )p sin(ω t+ arg G(iω ))

How light affects pupil area

Bode-diagram for pupil Correlation analysis

Can we estimate the impulse response with other inputs?

◮ Impulse response formula in discrete time (T = 1, v =
noise):

y(t) =
∞∑

k=1

�ku(t− k) + v(t)

◮ If v white noise with Ev2 = 1, then

Ryu(k) = Ey(t)u(t− k) = �k

◮ Covariance Ryu estimated by N data points with

R̂N
yu(k) = 1

N

N∑

t=1

y(t)u(t− k)
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Example

Correlation analysis for 1
s2+2s+1 (in- and out-put data)

Estimated and actual impulse responses

Basic rules

Make experiments with conditions similar to the conditions in
which the model is to be used!

(Models from step response can be expected to work best on
the stage.)

Save some data for model validation, i.e. check the model with
data set different from the one that generated the model!

Outline

Thursday lecture

◮ Course introduction
◮ Models from physics (white boxes)

Friday lecture

◮ Models from data (black boxes)
◮ Singular Value Decomposition (SVD)
◮ Machine Learning
◮ System Identification / Time Series Analysis

◮ Mixed models (grey boxes)

Prediction Error Methods

Find the unknown parameters θ by optimization:

min
θ
qŷ(t,θ ) − y(t)q

Here y(t) is the measured output at time t and ŷ(t,θ ) is the
predicted output based on past measurements using a model
with parameter values θ .

Prediction Error Method with Repeated Simulation

For a nonlinear grey-box model

0 = F(ẋ, x, t,θ )
y(t) = h(x, t,θ )

the unknown parameters θ could be determined by the
prediction error method

min
θ
qŷ(t,θ ) − y(t)q

where the output prediction ŷ(t,θ ) is computed by simulation.

(Repeated simulation for different values of θ could however be
very time-consuming.)

Population dynamics / Ecology

Variations in the number of lynx (solid) and hares (dashed) in
Canada. Can you predict the periodic variations?

Population dynamics
N1 number of lynx, N2 number of hares

d
dt

N1(t) = (λ1 − γ 1)N1(t) +α 1 N1(t)N2(t)
d
dt

N2(t) = (λ2 − γ 2)N1(t) −α 2 N1(t)N2(t)

Simulation:
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Mixing tanks in Skärblacka paper factory

A

B

A linear transfer function of three series-connected mixing
tanks has the form 1

(sθ+1)3 .

To determine θ , radioactive lithium is added in A. Radioactivity
was then measured by B as a function of time.

Impulse response

In the lower picture, θ has been chosen to adapt to the impulse
response of 1

(sθ+1)3

Grey Models — the best of both worlds

◮ White boxes: Physical laws provide some insight

◮ Black boxes: Statistics estimates complex relationships

◮ Gray boxes: Combine simplicity with insight

Nonlinear differential-algebraic equations (DAE)

Differential-algebraic equations, DAE

F(ż, z, u) = 0, y= H(z, u)

u: input, y: output, z: "internal variable"

Special case: state model

ẋ = f (x, u), y= h(x, u)

u: input, y: output, x: state

Example: Pendulum
A pendulum with length L and position coordinates (x, y)
moves according to the equations

ẋ = u ẏ= v

u̇ = λ x v̇ = λ y L2 = x2 + y2

Differentiating the fifth equation gives

0 = ẋx + ẏy= ux + vy

Differentiating a second time gives

0 = u̇x + uẋ + v̇y+ vẏ

= λ(x2 + y2) − �y+ u2 + v2

= λ L2 − �y+ u2 + v2

and a third time

0 = L2λ̇ − 3�v

Finally, we have derivative expressions for all variables!

Mathematical modelling — Lectures

◮ Why modelling?
◮ Natural sciences: Models for analysis (understanding)
◮ Engineering sciences: Models for synthesis (design)
◮ Specification: Model of a good technical solution

◮ Physical modeling (white boxes, Tuesday’s lecture)
Model derived from fundamental physical laws

◮ Statistical methods (black boxes, today)
Model derived from measurement data

◮ Singular Value Decomposition (SVD)
◮ Machine Learning
◮ System Identification / Time Series Analysis

◮ Combination of the two (gray boxes today)
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