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1. Introduction

The purpose of this laboratory experiment is to determine the frequency
response of a linear process. The frequency response is determined to get
insight in the process dynamics and is to be used for controller design. The
process will finally be controlled.

Before you proceed, install the BallAndBeam.jl package using the instruc-
tions provided at gitlab.control.lth.se/processes/BallAndBeam.jl. This instal-
lation will take a few minutes if this is your first time using Julia.

It’s possible to perform this entire lab against a simulated version of the
beam. This can be done in order to be well prepared for the actual lab session.
See instructions in Section 4.2 or Algorithm 1.

1.1 Equipment
The process is a beam mounted on a motor shaft, see Figure 1.1. The process
input, u, is a reference signal to an internal velocity controller and the output,
y, is the beam angle. There are some mechanical resonances in the beam.
A PC running Julia1 will be used both for the initial Frequency Response
Analysis and for the latter design and control.

Figure 1 The beam dynamics from velocity reference to beam angle should be
identified in this laboratory exercise.

1.2 Preparations
Read Chapter 2 in [Johansson, 1993]. Solve exercises marked with Prepara-
tion in this guide. Study section 6.6 on compensation in [Åström, 1968] or
Sections 5.4–5.5 in [Glad and Ljung, 1989]. Solutions should be presented be-
fore the experiments start, and some questions concerning the theory should
be answered.

1Julia is an open-source, high-level, high-performance dynamic programming language for
numerical computing. The syntax of Julia is similar to Matlab but with a few noteworthy
differences listed at julialang.org/noteworthy-differences
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2. The Method

The system is forced by a sinusoidal input signal u(t) = u0 sin(ωt) where
the u0 and ω are to be chosen. When transients have decayed, the output
signal is described by y(t) = pG(iω)pu0 sin(ωt + arg G(iω)). The experiment
is repeated for a number of frequencies ω so that a Bode-diagram may be
drawn.
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Figure 2 Schema of the Frequency Response Analysis method.

Direct, accurate measurement of the amplitudes of u and y and their
phase lag is difficult. A better method is to integrate for a certain time T to
get

Ys(T) =
∫ T

0
y(t) sin(ωt)dt

Yc(T) =
∫ T

0
y(t) cos(ωt)dt

for each frequency ω . If the experiment time is chosen to be a multiple of the
period of u, i.e. T = n · 2π/ω we will have

Ys(T) =
T
2

u0Re G(iω) = T
2
pGpu0 cosφ

Yc(T) =
T
2

u0Im G(iω) = T
2
pGpu0 sinφ

From these quantities the magnitude and the phase shift of G(iω) is com-
puted.

pG(iω)p = 2
Tu0

√
Y 2

s (T) + Y 2
c (T)

arg G(iω) = arctan Yc(T)
Ys(T)

The correlation method can be viewed as filtering y(t) through a band-pass
filter with center frequency ω and bandwidth proportional to 1/T.

3. Experiment Setup

The frequency response analyzer described above is implemented in the Julia
package BallAndBeam.jl and performs the calculations automatically. First
some experiment conditions must be determined, the most important of which
are discussed here.
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3.1 Frequency Range
Determine the frequency interval where it is essential to know the process.
To do this some a priori knowledge is required, maybe from a previous
experiment. A reasonable range for the beam is the interval [0.5, 300] rad/s.

Questions: What does this range correspond to in the time domain? Why is
this range reasonable?

3.2 Amplitude and Bias
Determine the amplitude u0 of the input signal. Select the amplitude so that
the system remains linear, i.e. signals must in general be sufficiently small.
The frequency response analysis may be repeated for different amplitudes to
investigate linearity. For the beam let u0 ∈ [0.5, 1.0] V.

Since the process is not asymptotically stable (a constant input, u, gives a
constant angular velocity and increasing angle) you may need to add a bias
term to the input signal, u(t) = ub + u0 sin(ωt). This is necessary for the
beam to remain in approximately the same position during long experiments.

3.3 Measurement Time
The noise level determines the measurement time required to obtain desired
accuracy. A long measurement time implies low noise sensitivity. In these
experiments we chose the measurement time to be multiple of periods of the
forcing signal.

Preparation: How is accuracy related to measurement time if the measure-
ment of y is corrupted by almost white noise?

3.4 Delay
Determine how long to wait before starting measuring. It is the time from
forcing with a certain frequency until integration begins. This time depends
on how fast the transients decay in the system. Transients of the beam decay
in a few seconds. The time given is rounded up to the nearest integer periods.

4. Experiment

In a real situation little is initially known about the process. The identifica-
tion procedure will therefore be iterative. A new experiment is planned using
experience from previous ones. You were given some hints in the last section.

You should do identification experiments until you have such knowledge
of G(iω) that you are able to plot a Bode-diagram without strange disconti-
nuities. This requires high frequency resolution in some intervals.

Investigate also the linearity of the process, by comparing two identical
experiments, except for different signal amplitudes.

The experiments are performed in open loop despite the fact that the
process is not asymptotically stable. It is however stable. The frequency
response analysis will work since the drift is small.

4.1 Connections
The switch Man/Auto on the backside of the process should be in Auto and
the following connections should be made:
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PC Beam process
Analog Out 1 IN
Analog In 0 angle

ground ground

4.2 Julia Session

Frequency Response Analysis Install the BallAndBeam.jl package using
the instructions provided at gitlab.control.lth.se/processes/BallAndBeam.jl.
The instructions provides you with a script on which you can base your FRA
experiments, outlined below.

Algorithm 1 Example usage. If you want to perform simulations instead
of experiments on the real process, change P = LabProcesses.Beam(0.01,
bias) to P = LabProcesses.BeamSimulator(0.01)
using BallAndBeam, LabProcesses, ControlSystems, JLD
# @load "workspace.jld" # Run this command to restore a saved workspace

bias = 0 # Change this if your process drifts over time
P = LabProcesses.Beam(0.01, bias) # Change this line to

BeamSimulator(0.01) if you want to simulate_→

h = sampletime(P)

settling_time = 1

nbr_of_periods = 5

# Below we define some frequency vectors (using logarithmic spacing)
# and run three experiments. You may modify the freqency vectors
# any way you want and add/remove experiments as needed.

w1_100 = logspace(log10(1),log10(300),8)

G1 = fra(P, w1_100, amplitude=1, bias=bias,

nbr_of_periods=nbr_of_periods, settling_time=settling_time)_→

w1_200 = logspace(log10(5),log10(50),20)

G2 = fra(P, w1_200, amplitude=2, bias=bias,

nbr_of_periods=nbr_of_periods, settling_time=settling_time)_→

w1_300 = logspace(log10(10),log10(30),20)

G3 = fra(P, w1_300, amplitude=2, bias=bias,

nbr_of_periods=nbr_of_periods, settling_time=settling_time)_→

@save "workspace.jld"

# Concatenate (overlapping) estimates to be used and sort based on freq
G123 = sortfqs([G1; G2; G3])

bopl(G123)

nypl(G123)

The frequency response estimates are stored in matrices (G123 in Algo-
rithm 1) which have two columns, one with frequencies ω k (in radians/s) and
the other with complex numbers G(iω k).
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4.3 Discussion
Try to determine the characteristics of the process using the Bode-diagram.
What can you say about

• the order of the system?

• poles and zeros?

• static gain?

• linearity?

5. Control design

Here we assume that the main purpose for the identification is to achieve a
frequency response G(iω), that could be used to design a controller giving
desired closed-loop system properties.

We use Julia to design a controller on the form (see Fig. 3)

u(s) = S(s)
R(s)

(
B f f
A f f

r(s) − y(s)
)

This is a two-degree of freedom controller. First the feedback compensator,
GF B =

S
R , is designed to give the desired loop-transfer function. Then a feed-

forward filter, GF F =
B f f
A f f

, may be used to shape the response for command
signals. The closed loop system will then be

S
R+B f f

A f f + G

−1

r r f e u

v

y

Figure 3 Block diagram of the control loop with feedback compensator GF B =
S
R

and feedforward filter GF F =
B f f
A f f

Design goal: Make the closed-loop system as fast as possible and fulfill
that the rise time be less than 0.2 s and the maximum overshot less
than 10%.

5.1 Feedback Design
A feedback compensator is designed using classical frequency compensation.
The feedback is used mainly to get a reasonably fast and well damped closed-
loop system by changing the cross-over frequency and phase margin. This is
readily done with

sysFBc,L,T,C = fbdesign(G, polevect, zerovect, gain)
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where sysFBc is a StateSpace object describing the feedback controller, C =
S(iω)/R(iω), L = G · C and T = L/(1+ L). This function requires the user
to specify gain, poles and zeros of the compensator. Write ?fbdesign for help.
Plots of the uncompensated and the compensated system may be drawn using
bopl(G), bopl!(T). See Algorithm 2 for a complete example.

Preparation: Find the transfer functions in the block diagram that have
the frequency responses C, L and T.

5.2 Feed-forward Design
The feedback design specifies T. A feedforward filter may then be added to
reduce the high frequency content in the reference signal. This is done with

sysFFc,YR,FF = ffdesign(T, polevect, zerovect, gain)

where the feedforward filter sysFFc = B f f /A f f has frequency response F F
and the frequency response from r to y is Y R = T · F F. Gain, poles and
zeros are chosen as in fbdesign. Plots of T and Y R may be drawn using
bopl, nypl.

If you have time, go over the feedback and feedforward design several
times to create different control designs. Then you can compare a faster
design with a slower one, etc.

5.3 Real Time Control
The controller design is carried out in continuous time, but a discrete time
controller is needed since the controller is implemented in a computer. If the
sampling rate is sufficiently high the discrete controller will behave as the
continuous one. Discretization of the controllers is easy to perform using the
function c2d.

5.4 Control experiments
Save your workspace in Julia to have a backup of your design. To perform a
control experiment, call the function
run_control_2DOF(P, sysFB, sysFF, duration=10, reference =

t->sign(sin(2π*t)))_→

where reference(t) is a reference generating function, which defaults to a
square wave with frequency f = 1Hz. If you have time you can alter this
function, try for example a sinusoidal reference. A complete example of the
control design procedure is given in Algorithm 2. The controller function can
only accept discrete-time linear systems as inputs, hence the feedback and
feedforward controllers must be discretized with the correct sample time, use
sysFB = c2d(sysFBc, h)[1] for this.

Do the controllers and the system behave as expected?

6. Conclusions

The identification has been used for two purposes. Firstly an accurate fre-
quency response was determined to gain insight into the dynamics of the
beam. Secondly, the frequency response was used for design of a controller,
which was tested on the real process to validate the identified model.
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Algorithm 2 Example control design procedure.
polevect = [-10]

zerovect = []

gain = 1

sysFBc,L,T,C = fbdesign(G, polevect, zerovect, gain)

polevect = [-10]

zerovect = []

gain = 1

sysFFc,YR,FF = ffdesign(T, polevect, zerovect, gain)

bopl(C, lab="Controller")

bopl!(L, lab="Closed-loop system e->y")

bopl!(FF, lab="Feedforward compensator")

bopl!(YR, lab="Closed-loop system r->y")

sysFB,sysFF = c2d(sysFBc,h)[1],c2d(sysFFc,h)[1]

y,u,r = run_control_2DOF(P, sysFB, sysFF, duration=5, reference =

t->2sign(sin(2/3*t)))_→

plot([y u r], lab = ["y" "u" "r"])

6.1 Discussion
How would you obtain an estimate of the system transfer function G(s) given
the obtained measurements G(iω) for ω ∈ Ω?

7. Extra

If you have time left, estimate a transfer function model directly from data
using an ARX model. Input sequences to excite the process with are, e.g., a
PRBS signal or Gaussian noise. The script FRTN35_lab1.jl contains code to
get you started.

prbs = PRBSGenerator()

duration = 10

y = zeros(0:h:duration)

u = zeros(0:h:duration)

for (i,t) = enumerate(0:h:duration)
@periodically h begin
y[i] = measure(P)

u[i] = prbs()-0.5

control(P, u[i])

end
end
plot([u y])

With the code above, we excite the process and store the control signal and
measurement sequences in variables u and y. The code

na = 4 # Order of A polynomial
nb = 2 # Order of B polynomial
arxtf, = arx(h, y, u, na, nb) # Estimate transfer function with ARX

method_→
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bopl(G123, lab="Measured transfer function")

bodeconfidence!(arxtf, , = logspace(0,3,200))

will estimate a transfer function model and plot a Bode diagram of the result
as well as the data identified using FRA.

7.1 Discussion
Compare the result using ARX and FRA. Are the estimated Bode diagrams

similar?

Noise sensitivity How do the two estimation methods handle measurement
noise?

Ease of use Which method is faster to use? How easy is it to use the result
of the identification, i.e., using measurements of G(iω) for ω ∈ Ω or
using a transfer function G(s).

Validation How do you validate the results of the identification when using
the different estimation methods?
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