
Department of
AUTOMATIC CONTROL

FRTN35 System Identification
Final Exam October 30, 2019, 8am - 13pm

General Instructions
This is an open book exam. You may use any book you want, including the slides from the
lecture, but no exercises, exams, or solution manuals are allowed. Solutions and answers to
the problems should be well motivated. The exam consists of 7 problems. The credit for each
problem is indicated in the problem. The total number of credits is 25 points. Preliminary
grade limits:

Grade 3: 12 – 16 points
Grade 4: 17 – 21 points
Grade 5: 22 – 25 points

Results
The result of the exam will become accessible through LADOK.
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1. From measured input and output data you are given the test to estimate a model that
describes the dynamics of the system of the form:

A(z) · yk = B(z) ·uk−τ +wk.

You have estimated three candidate models and evaluated the performance criteria
shown in Table 1 below.

a. Describe the criteria in the table and explain how they can be used for model evalua-
tion. (2 p)

b. Which of the three models in the table would you choose and why? (1 p)

c. Suggest an additional model evaluation method and describe how it would comple-
ment the three criteria in Table 1. (1 p)

Table 1 The performance criteria in Problem 1.

Model 1 Model 2 Model 3

Fit 90.94 % 28.08 % 79.81 %

AIC -9.92 -2.53 -6.45

FPE 4.92e-05 0.08 0.0016

Solution

a. Fit: Gives the percentage of the measured output that was explained by the model.
AIC: This index includes both the estimated variance and the model order complex-
ity. The AIC decreases as the variance of the residual decreases and increases as the
number of parameters in a model increases.
FPE: This criterion simulates the situation where the model is tested on a different
data set. The criterion decreases as the residual variance decreses, it increases as the
number of parameters in the model increases and decreases as the number of observa-
tions in the data increases. It tends to underestimate the correct model order.

b. For model 1, the Fit is best and the FPE lowest. Hence, with this evaluation, model 1
should be chosen.

c. For instance, residual analysis could be considered.

2. Consider the least-squares (LS) estimation problem:

YN = ΦNθ + ε,

with

YN :=

 y(0)
...

y(N−1))

 , ΦN :=

 ϕ>(0)
...

ϕ>(N−1)

 , θ :=



a1
...

an

b1
...

bm


.
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Assume that the noise ε , is a zero-mean Gaussian with a given variance matrix E
{

εε>
}
=

R. The matrix R is positive definite.
Our goal is to derive an unbiased linear estimator θ̂ of the form

θ̂ = Z>YN , (1)

which minimizes its variance.
For a given regressor Φ, prove the following statements in a-c:

a. If a linear estimator of the form (1) is unbiased, then Z>Φ = I. (1 p)

b. The covariance matrix of any linear unbiased estimator of the form (1) is given by
Cov

{
θ̂
}
= Z>RZ. (1 p)

c. For Z =R−1Φ, the estimator θ̂Z =
(
Φ>R−1Φ

)−1
Φ>R−1YN with Cov

{
θ̂Z
}
=
(
Φ>R−1Φ

)−1,
exhibits the smallest variance in the class of all unbiased estimators:

Cov
{

θ̂Z
}
≤ Cov

{
θ̂
}
.

(2 p)
θ̂Z is called the Best Linear Unbiased Estimator (BLUE).
Hint: All covariance matrices are positive semi-definite. The inverse of a positive
definite matrix is also positive definite.

d. Name one disadvantage of θ̂Z , the BLUE estimator in c. (1 p)

Solution

a. For a linear estimator of the form (1) to be unbiased we require that

θ = E
{

θ̂
}
.

Hence, for zero-mean Gaussian noise, ε , and fixed Φ we get

θ = E
{

Z>YN

}
= E

{
Z> (Φθ + ε)

}
= Z>Φθ ,

which implies that

Z>Φ = I.

b. The covariance matrix of any linear unbiased estimator of the form (1) is

cov
{

θ̂
}
= E

{(
θ̂ −θ

)(
θ̂ −θ

)>} [
θ̂ = Z>YN

]
= E

{(
Z>YN−θ

)(
Z>YN−θ

)>}
[YN = (Φθ + ε)]

= E
{(

Z> (Φθ + ε)−θ

)(
Z> (Φθ + ε)−θ

)>} [
Z>Φ = I

]
= Z>E

{
εε
>
}

Z
[
E
{

εε
>
}
= R

]
= Z>RZ.
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c. For θ̂Z to be the BLUE in the class of all unbiased estimators, we want to show that
cov
{

θ̂
}
− cov

{
θ̂Z
}
≥ 0,

cov
{

θ̂
}
− cov

{
θ̂Z
}
= Z>RZ−

(
Φ
>R−1

Φ

)−1 [
Z>Φ = I

]
= Z>RZ−Z>Φ

(
Φ
>R−1

Φ

)−1
Φ
>Z

= Z>
[

R−Φ

(
Φ
>R−1

Φ

)−1
Φ
>
]

Z

= Z>FZ,

where we define F = R−Φ
(
Φ>R−1Φ

)−1
Φ>. We need to show that F is positive

definite such that Z>FZ is positive. We can show that

F>R−1F =

(
R−Φ

(
Φ
>R−1

Φ

)−1
Φ
>
)>

R−1
(

R−Φ

(
Φ
>R−1

Φ

)−1
Φ
>
)

=

(
R−Φ

(
Φ
>R−1

Φ

)−1
Φ
>
)(

I−R−1
Φ

(
Φ
>R−1

Φ

)−1
Φ
>
)

=R−Φ

(
Φ
>R−1

Φ

)−1
Φ
>−Φ

(
Φ
>R−1

Φ

)−1
Φ
>+

Φ

(
Φ
>R−1

Φ

)−1
Φ
>R−1

Φ

(
Φ
>R−1

Φ

)−1
Φ
>

=R−Φ

(
Φ
>R−1

Φ

)−1
Φ
>

=F.

Since R is positive definite, R−1 is positive definite, we can conclude that F =F>R−1F
has to be positive and therefore cov

{
θ̂Z
}
≤ cov

{
θ̂
}

. Hence, θ̂Z is the estimator with
the smallest variance.

d. Notice that BLUE is a function of the assembly of Z which require knowledge of the
error variance R. Since noise measurements are generally unavailable, this represents
a major restriction for this estimation approach.

3. Consider the transfer function

H(z) =
0.5

z2− z+0.5

a. The following is a state-space realization of H:

xk+1 =

0.718 −0.546
0.546 0.282

xk +

 0.572
−0.572

uk

yk =
0.572 0.572

xk

Actually, the state-space realization is a balanced realization. Determine the asymp-
totic reachability Gramian P and the asymptotic observability Gramian Q. (2 p)

b. Given the Gramians in a, determine whether it is suitable or not to do a model reduc-
tion. (1 p)
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c. Relate your answer in b to the poles and zeros of H(z), i.e., give an intuitive expla-
nation to why it is advisable (or not advisable) to perform model reduction on this
system. (1 p)

Solution

a. For a balanced realization, the asymptotic reachability Gramian P is equal to the
asymptotic observability Gramian Q. The diagonal matrix Σ = P = Q fulfills the
discrete-time Lyapunov equations

ΦΣΦ
T −Σ+ΓΓ

T = 0
Φ

T
ΣΦ−Σ+CTC = 0

Solving the first equation gives

Σ = P = Q =

1.12 0
0 0.72


A check gives that also the second Lyapunov equation is fulfilled.

b. Since the elements in the Gramians do not vary with a factor of magnitude, it is not
suitable to perform a state reduction.

c. H has complex poles, i.e., it is very difficult to reduce this to a system with one (real)
pole that gives similar behavior.

4. Assume that you and your friend want to identify a two-tank process, consisting of
two tanks in series and with the input to the upper tank. From a basic control course,
you know that it may be described by following nonlinear state-space system:

ẋ1(t) =−γ1
√

x1(t)+δu(t)

ẋ2(t) = γ1
√

x1(t)− γ2
√

x2(t)

y(t) = x2(t)

a. Your friend wants to try to identify a nonlinear model of the two-tank by using a grey-
box model. Is it a suitable approach? Motivate your answer! (1 p)

b. Now assume that you know nothing about the process. Usually one then tries to iden-
tify a linear model. What do you have to think about to get a good model when the
process is nonlinear? (1 p)

c. You decide to identify a discrete-time model of the process. What can be said about
the choice of sampling frequency for the experiment? Discuss the potential risks of
choosing to high respectively to low sampling frequency when doing system identifi-
cation! (2 p)

Solution

a. Yes, as we have a model that has a known structure and parametrization but with
unknown parameters, a grey-box model would be a good approach.
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b. When the process is nonlinear one can not expect to get a good linear approximation
for all states of the process, instead one has to consider an approximation around some
state, which hopefully is linear. This can be achieved by using a small enough input
amplitude, such that one stays in a region of the process that can be described by a
linear model. (At the same time the amplitude should be chosen to a large value, to
get a good signal to noise ratio)

c. As a rule of thumb, a reasonable way of choosing the sampling interval, h, is to let

ωh = 0.2−0.6

where ω represents important frequencies of the system, such as the cross over fre-
quency or the natural frequency. To choose the sampling interval properly we must
therefore have knowledge about the significant frequencies of the system.
In general, if the sampling interval is chosen very short relative to the significant
frequencies of the system, this could lead to numerical precision problems. On the
other hand, by choosing a too long sampling interval, there is a risk that important
dynamics above the Nyquist frequency is not described by the resulting model.

G +

F F

n

u y

uf yf

Figure 1 The identification experiment in Problem 5.

5. Suppose we are going to identify the system G in Figure 1. Assume that u and y are
two measured signals which are possibly interrelated by

Y (s) = G(s)U(s)+N(s)

where N is a noise term and uncorrelated to U . The coherence function γ(ω) between
signals u and y is defined as

γ(ω) =
|Suy(iω)|√

Suu(iω)Syy(iω)
.

a. Determine how γ(ω) is affected by prefiltering of the data sequences u and y.
Hint: Introduce u f = Fu and y f = Fy. (2 p)

b. Express γ(ω) such that it can be used to judge if the excitation signal is good enough
for identification. What conclusions can you draw? (1 p)
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Solution

a. The cross spectra of the filtered data sequences u f = Fu and y f = Fy is

Su f u f = |F |2Suu Sy f y f = |F |2Syy

and the cross spectrum

Su f y f = Su f u f G
∗ = |F |2SuuG∗ = |F |2Suy

where the asterisk denotes complex conjugate. Then, the coherence function for the
filtered sequences

γ f (ω) =
|Su f y f (iω)|√

Su f u f (iω)Sy f y f (iω)
=

|F |2|Suy|√
|F |2Suu|F |2Syy

= γ(ω)

Hence, γ is not affected by the prefiltering.

b. According to Equation (a)

γ
2(ω) =

|Suy(iω)|2
Suu(iω)Syy(iω)

that is

γ
2(ω) =

|G(iω)|2S2
uu(iω)

Suu(iω)(|G(iω)|2Suu(iω)+Snn(iω))

=
1

1+ Snn(iω)
|G(iω)|2Suu(iω)

.

Consequently, γ(ω) is close to 1 when the noise is small compared to the input signal
and close to 0 when the noise is large compared to the input signal.

6. Consider N independent samples, each with associated density

p(yi|µ,σ2) =
1√

2πσ2
exp(

−1
2σ2 (yi−µ)2)

a. Evaluate the Fisher Information Matrix IN(µ,σ
2) for parameters µ and σ2.

(2 p)
Hint: The Fisher Information Matrix is defined as

IN(µ,σ
2) =−E

 ∂ 2 log(L)
∂ 2µ

∂ 2 log(L)
∂ µ∂σ2

∂ 2 log(L)
∂σ2∂ µ

∂ 2 log(L)
∂ 2σ2

 ,

where L is the Maximum Likelihood function.
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b. Show that the estimator for µ

θ̄(y1 . . .yN) =
1
N

N

∑
i=1

yi

achieves the Cramer-Rao lower bound in terms of its variance. (1 p)
Hint: The Cramer-Rao lower bound is defined by Cov[θ̄(y)] ≥ I −1

N (µ,σ2) where
IN(µ,σ

2) is the Fisher Information Matrix.

Solution

a. Let y = (y1, . . . ,yN) be a random sample from N (µ,σ2) and let fN(y | µ,σ2) denote
the probability density function of the data. Then the Fisher information matrix for
parameters µ and σ2 is given by

IN(µ,σ
2) := −E

 ∂ 2 log( fN(y|µ,σ2))
∂ 2µ

∂ 2 log( fN(y|µ,σ2))
∂ µ∂σ2

∂ 2 log( fN(y|µ,σ2))
∂σ2∂ µ

∂ 2 log( fN(y|µ,σ2))
∂ 2σ2


= N×I1(µ,σ

2).

The last equality holds as yi’s are independent and identically distributed. For N = 1
the log-likelihood function is

log( f1(y | µ,σ2)) = l(y | µ,σ2) =−1
2

log(2πσ
2)− (y−µ)2

2σ2 .

Therefore, (
∂ l
∂ µ

,
∂ l

∂σ2

)
=

(
(y−µ)

σ2 ,
(y−µ)2

2σ4 − 1
2σ2

)
.

Hence the Fisher information matrix becomes

IN(µ,σ
2) = −N×E

(
− 1

σ2 − (y−µ)
σ4

− (y−µ)
σ4

1
2σ4 − (y−µ)2

σ6

)

=

(
N
σ2 0
0 N

2σ4

)
. (2)

b. Recall that, if θ̄(y) is an unbiased estimator of a parameter θ , then the Cramer-Rao
inequality assures that

Cov[θ̄(y)]≥I −1
N (µ,σ2).

Clearly,
E[θ̄(y)] = µ ,

and

Cov[θ̄(y)](1,1) = Var(θ̄(y))) = 1
N2

N

∑
i=1

Var(yi) =
Nσ2

N2 =
σ2

N
= I −1

N (µ,σ2)(1,1).

Thus, it can be seen from equation (2) that the variance of θ̄(y) achieves the Cramer-
Rao lower bound.
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Figure 2 The impulse response Hk in Problem 7.

7. A linear, discrete-time, single-input single-output, first order system S is to be iden-
tified. Its impulse response {Hk}∞

k=0 is shown in Figure 2 for k = 0 to 10. Using Ho-
Kalman-Kung’s algorithm, find a state-space representation of S.
Hint: Choose the Hankel matrices as scalars.

(2 p)

Solution

a. Using Ho-Kalman-Kung’s algoritm with (from the impulse response figure):
H0 = 1, H(0)

1,1 = 2, H(1)
1,1 =−2, we get

H(0)
1,1 = 2 =UΣV T

A possible solution is U =V = 1, Σ = 2. We thus get with Eu = Ey = 1:

A = Σ−1/2UT H(1)
1,1V Σ−1/2 = 1√

2
·1 ·−2 ·1 · 1√

2
= −1

B = Σ1/2V T Eu =
√

2 ·1 ·1 =
√

2
C = ET

y UΣ1/2 = 1 ·1 ·
√

2 =
√

2
D = H0 = 1

One possible state-space realization of S is thus:

xk+1 = −xk +
√

2uk

yk =
√

2xk +uk

9


