
Predictive Control - Computer Exercise 1

Marcus Greiff

January 22, 2018

This is a simulation exercise in FRTN15 Predictive Control. It should give
you an introduction to adaptive control, in particular Model Reference Adap-
tive Systems (MRAS). The systems are modeled and simulated in the Mat-
lab/Simulink environment. For those not familiar with Matlab/Simulink, this
exercise will also serve as an opportunity for you familiarise yourself with the
software. The more you experiment and ask, the more you learn.

1 Feed-forward adaption with MIT-rule

Let p = d/dt and consider a stable SISO process, y(t) = G(p)u(t), with

G(p) =
k

p+ 1
(1)

for some unknown k > 0, and a reference model, ym = Gm(p)uc, with

Gm(p) =
k0
p+ 1

, (2)

for some known parameter k0 > 0. The problem is to construct a feedback
u(t) for the process, which makes its output y(t) behave as the output ym(t)
does when controlled by uc(t). If such a feedback can be established, then the
unknown process may be controlled with an outer feedback law designed for the
reference model. Clearly, if k is known, the problem can be solved by a simple
proportional controller, letting

u(t) = θ(t)uc(t), (3)

with θ(t) = k0/k for all times, then

y(t) = Gm(p)u(t) = Gm(p)θ(t)uc(t) = Gm(p)uc(t) = ym(t) (4)

However, if the gain of the process is unknown, we must find a way of adaptively
choosing the parameter θ(t).
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1.1 Adapting feed-forward gain with the MIT-rule

The most intuitive way of accomplishing the model matching, with y(t)→ ym(t)
as t→∞, is to define an error between the process response and the reference
model response and attempt to minimise it. Let

e(t, θ) , y(t)− ym(t) = G(p)θ(t)uc(t)−Gm(p)uc(t). (5)

In order to minimise this metric, we define a a positive definite function E(t, θ) ,
e(t, θ)2 of the error, whose time-derivative takes the form

dE(θ, t)

dt
=
dE(θ, t)

dθ

dθ(t)

dt
= 2

(
e(θ, t)

de(θ, t)

dθ

)dθ(t)
dt

. (6)

Cleary, defining a feedback law with some constant α > 0 and

dθ(t)

dt
, −α

(
e(θ, t)

de(θ, t)

dt

)
⇒ dE(θ, t)

dt
= −2α

(de(θ, t)
dθ

)2

E(θ, t) ≤ 0, (7)

and the error metric E(θ, t) will decrease with time. Updating the parameter
estimate in this way is known as the MIT-rule. The question is then how to
choose the derivative of e(θ, t) with respect to θ. In this particular case,

de(θ, t)

dθ
=

d

dθ
(G(p)θ(t)uc(t)−Gm(p)uc(t)) (8)

= G(p)uc(t) =
k

k0
Gm(p)uc =

k

k0
ym(t) , βym(t) (9)

for some constant β > 0 since k, k0 > 0. The constant β is not known, but
positive and constant. Therefore, by defining γ , αβ > 0, we end up with

dθ(t)

dt
= −α

(
e(θ, t)

de(θ, t)

dt

)
= −αβe(θ, t)ym(t) = −γe(θ, t)ym(t) (10)

As ym(t), y(t) and θ(t) are known at all times, the feedback defined in (10) may
be implemented as shown in the block diagram below (see Figure 1).

Figure 1: Block diagram (left) and functional Simulink implementation (right)
of the MRAS feedforward gain adaption using the MIT-rule synthesis.
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Exercise 1.1

In order to perform the simulations to verify and experiment with the theory,
you will need to build a model of the system. Extract the .zip file and open the
model ex11.mdl, which contains a reference generator, a set of blocks describing
first order process and reference models, as well as functionality for plotting. It
may be beneficial to connect the provided “goto”-ports to their corresponding
signals - this uses the neat signal routing functionality Simulink for plotting.

1. Implement the feedback control in Figure 1 in the ex11.mdl model.

2. Run the system with γ = 1, k = 1, k0 = 2 to verify the implementation.

3. How does the rate of the adaption change with γ?

4. Does the parameter γ change the value to which θ converges?

5. Can you find the feedback with another error metric, e.g. |e(t)| or e(t)4?

The method defining the parameter derivative is called the “MIT-rule”, with

dθ(t)

dt
= −γe(θ, t)ym(t), (11)

but many other methods can be imagined. A common approach is the “Lyapunov-
rule”, a method properly defined and presented in Section (2.2), whereby

dθ(t)

dt
= −γe(θ, t)uc(t). (12)

6. Change the model so as to use the Lyapunov rule instead of the MIT-rule,
do you see any difference?

Further reading and useful notes

The MIT-rule MRAS is derived in similar fashion in the highly recommended
book of Karl-Johan Åström [1] (see Example 5.1 Page 187). In addition, some
nice and illustrative slides can be found here [2], presenting a similar deriva-
tion to that of the book for the MIT-rule (available online for free). Note that
the Lyapunov rule, which was only mentioned in brevity, may be done in many
ways. However, special caution must be taken when using the state-space meth-
ods (see e.g. Page 212 in [1]). Such methods typically invoke the KYP-lemma,
only applying to strictly positive real (SPR) transfer functions (see Section 3),
which is a very restrictive condition that only a handful of systems meet. In
addition, the conditions for SPR systems vary in the literature with many not
holding. For instance, the conditions for SPR in Theorem 5.7 in [1] are not
satisfactory. Counterexamples can be given which satisfy this theorem but vio-
late the definition of SPR, see e.g. [3]. A more valid check for SPR is found in
Lemma 6.1 on page 238 of [4].
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2 MRAS for a first order system

Again, let p = d/dt and consider a SISO process, y(t) = G(p)u(t), now with

G(p) =
b

p+ a
(13)

for some unknown a, b > 0, and a reference model, ym = Gm(p)uc, with

Gm(p) =
bm

p+ am
, (14)

for some known parameter am, bm > 0 and again consider the problem of model
matching. Clearly, we now need to find two parameters, θ1 and θ2, to adapt
both the gain and the pole location. For this purpose, consider a feedback law

u(t) = θ1(t)uc(t)− θ2(t)y(t), (15)

yielding a closed loop system

y(t) =
bθ1

p+ a+ bθ2
uc(t) (16)

Clearly, if we know the parameters {a, b}, then choosing

θ1(t) =
bm
b

, θ01, θ2(t) =
am − a

b
, θ02, (17)

yields y = ym(t), also known as perfect model following. However, in the case
of unknown parameters {a, b}, the adaptive gains θ(t) = [θ1(t), θ2(t)]T need to
be inferred just as in the feed-forward adaption in Section 1.1

2.1 Adaption by the MIT-rule

Just as in Section 1.1, consider an error e(t) = y(t)−ym(t) and define a positive
definite error metic, in this case E(t) = e(t)2, which is to me minimised with
respect to the adaptive gains. Again using the chain rule,

dE(t)

dt
= 2e

( ∂e

∂θ1

dθ1
dt

+
∂e

∂θ2

dθ2
dt

)
. (18)

The is very similar to the previous exercise, and choosing α1, α2 > 0,

dθ1
dt

, −α1e
∂e

∂θ1
,

dθ2
dt

, −α2e
∂e

∂θ2
, (19)

clearly yields a monotonically decreasing E(t) with time. With (16), the partial
derivatives of the error needed to compute the parameter time-derivatives are

∂e

∂θ1
=

b

p+ a+ bθ2
uc(t), (20)

∂e

∂θ2
= − b2θ1

(p+ a+ bθ2)2
uc(t) = − b

p+ a+ bθ2
y(t). (21)
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However, this presents a crucial problem, as the feedback requires knowledge
of both a and b in order to be realised, which are unknown by the problem
definition. The way around this issue is to assume that the adaptive gains are
close to their optimal values in (17) at all times. If this assumption is granted,

θ2(t) ≈ am − a
b

⇔ a+ bθ2(t) ≈ am, (22)

implying that

∂e

∂θ1
≈ b

p+ am
uc(t),

∂e

∂θ2
≈ − b

p+ am
y(t). (23)

As b is unknown but positive and constant, we simply define the adaptive gains
as γi , αiam/b. The complete MRAS is then given by the feedback law in (15),
where the parameters are updated by (19) using the approximation (23), written

∂e(t)

∂θ1
= −γ1

am
p+ am

e(t)uc(t),
∂e(t)

∂θ2
= γ2

am
p+ am

e(t)y(t). (24)

Note especially the difference in sign, and that the approximation may be crude
if starting far away from the true θ0i parameters.

Exercise 1.2

Similar to the previous exercise, we need to build a model of the system in
Simulink. Extract and the open the model ex12.mdl, containing a reference
generator, a set of blocks describing first order (SISO) process and reference
models, as well as functionality for plotting.

1. Sketch the feedback on paper and then implement it in the ex12.mdl model.

2. Run with γ = 1, a = 1, b = 0.5, am = bm = 2 to verify the implementation.

3. How does the rate of the adaption change with γ?

4. Do the parameters a and b affect the rate of adaption?

5. What happens when you alter the reference model?

6. Examine the parameter plane plot, with θ2 as a function of θ1. To which
values do the parameters converge? Is this expected in theory?

Further reading and notes

The MIT-rule MRAS is derived in similar fashion in the book of Karl-Johan
Åström [1] (see Example 5.2 Page 190). In addition, some nice and illustrative
slides can be found here [5], which presents a similar derivation based on the
same book (available online).
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2.2 Adaption by the Lyapunov-rule

Another method which may be employed is to use conventional Lyapunov the-
ory. To see this, write the error dynamics resulting from substituting p = d/dt,

de(t)

dt
= −ame(t)− (bθ2(t) + a− am)y(t) + (bθ1(t)− bm)uc(t). (25)

Clearly, the objective is to drive the error to zero, but also to make the adap-
tive parameters approach the values corresponding to perfect model following.
Consequently, a Lyapunov function is defined as

V(θ, e) =
1

2

(
e2 +

1

bγ
(bθ2 + a− am)2 +

1

bγ
(bθ1 − bm)2

)
. (26)

Applying the chain rule, simple developments yield

V̇(θ, e) = −ame2+
1

γ
(bθ2+a−am)

(dθ2
dt
−γye

)
+

1

γ
(bθ1−bm)

(dθ1
dt

+γyuc

)
. (27)

Note that choosing

dθ1
dt

, −γuc(t)e(t),
dθ2
dt

, γy(t)e(t), (28)

yields a Lyapunov derivative V̇(θ, t) = −ame(t)2 ≤ 0. Indeed, one may show
that V̈(θ, t) is bounded implying that V̇(θ, t) is uniformly continuous, allowing a
proof of global uniform asymptotic convergence of the error e(t)→ 0 as t→∞
by Theorem 4.8 in [4]. However, it should be noted that the adaptive gains θi
need not converge to their true values if the input signal to the system is not
sufficiently exciting.

Exercise 1.3

Similarly to the previous exercise, we investigate the system in Simulink.

1. Sketch the feedback on paper and then implement it in the ex13.mdl model.

2. Run with γ = 1, a = 1, b = 0.5, am = bm = 2 to verify the implementation.

3. How does this feedback differ from that of the MIT-rule?

4. Which would you implement in practice? Which guarantees stability?

Further reading and notes

The Lyapunov-rule MRAS is derived in similar fashion but more extensively in
the book of Karl-Johan Åström [1] (see Example 5.7 Page 206). In addition,
some nice and illustrative slides can be found here [5] which, which presents a
similar derivation (available online).
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3 Notes on SPR transfer functions

The notion of a positive real (PR) transfer function, G(s), is an intuitive but
not too inclusive concept. By definition (see page 238 [4]), a PR system satisfies

1. All poles of G(s) are in <{s} ≤ 0,

2. for all real ω 6= 0 for which iω is not a pole of G(s), G(iω) +G(−iω) > 0,

3. any purely imaginary pole iω of G(iω) is simple (of multiplicity 1), and
the residue lims→iω(s− iω)G(s) is positive semidefinite hermitian.

This is clearly a very small subset of the set of stable transfer functions. Nonethe-
less, such systems exist, with many examples in circuit theory (see page 22. [6]).
An even smaller set of systems are strictly positive real (SPR), satisfying

4. G(s+ ε) is positive real (PR) for some ε > 0.

whereby the following relationship holds,

SPR G(s) ⊂ PR G(s) ⊂ Stable G(s).

The conditions for SPR (along with conditions on observability and controllabil-
ity) are necessary for the KYP-lemma to apply in the Lyapunov-rule synthesis
by the state-space method used in (see e.g. Page 212 in [1]). However, it
may be possible to find suitable Lyapunov function candidates even for systems
which are not SPR, but then there exist no standard method of synthesising
the Lyapunov function. A curious fact which is of great use in design of many
interconnected SPR systems is that the conditions of SPR imply strict passivity,
see e.g. Chapter 2 in [6].
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