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Course Outline

L1–L5 Specifications, models and loop-shaping by hand

L6–L8 Limitations on achievable performance

L9–L11 Controller optimization: analytic approach

L12–L14 Controller optimization: numerical approach

12 Youla parametrization, internal model control

13 Synthesis by convex optimization

14 Controller simplification, course review

L15 Course review
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L12: Youla parametrization, internal model control

1 The Youla (Q) parameterization

2 Internal model control (IMC)
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Basic idea of Youla and IMC

Assume stable SISO plant P . Model for design:

r y
Σ C (s) P (s)

−1

⇔
r y

Q(s) P (s)

PC

1+PC
= PQ

Q =

C

1+PC

Design Q to get desired closed-loop properties. Then C =

Q

1−QP
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General idea for Lectures 12–14

Plant

Controller

✛ ✛

✛

✲

controller outputs u

performance outputs z

controller inputs y

exogenous inputs w

The choice of controller corresponds to designing a transfer matrix

Q(s), to get desirable properties of the following map from w to z:

z w

Pzw (s)+Pzu (s)Q(s)Py w (s)

Once Q(s) has been designed, the corresponding controller can be found.
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The Youla (Q) parameterization

General feedback control system (assuming positive feedback!):

Pzw (s) Pzu(s)

Py w (s) Pyu(s)

C (s)

✛ ✛

✛

✲

u

z

y

w

Z (s)=Pzw (s)W (s)+Pzu (s)U (s)

Y (s) =Py w (s)W (s)+Pyu (s)U (s)

U (s) =C (s)Y (s)
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The Youla (Q) parameterization

Pzw (s) Pzu(s)

Py w (s) Pyu(s)

C (s)

✛ ✛

✛

✲

u

z

y

w

Closed-loop transfer function from w to z:

Gzw (s)= Pzw (s)+Pzu (s)C (s)
[

I −Pyu(s)C (s)
]
−1

︸ ︷︷ ︸
=Q(s)

Py w (s)

Given Q(s), the controller is C (s) =
[

I +Q(s)Pyu(s)
]
−1

Q(s)
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All stabilizing controllers

Suppose the plant P =

[
Pzw Pzu

Py w Pyu

]
is stable. Then

Stabilty of Q implies stability of Pzw +PzuQPy w

If Q =C
[

I −PyuC
]
−1

is unstable, then the closed loop is unstable.

Hence, if P is stable then all stabilizing controllers are given by

C (s)=
[

I +Q(s)Pyu(s)
]
−1

Q(s)

where Q(s) is an arbitrary stable transfer function.
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Dealing with unstable plants

ũ

w

y

z

P0(s)

C0(s)

C1(s)

Pzw Pzũ

Py w Pyũ

C1

✛ ✛

✛

✲

ũ

z

y

w

If P0(s) is unstable, let C0(s) be some stabilizing controller. Then the

previous argument can be applied with Pzw , Pzũ , Py w , and Pyũ

representing the stabilized system.
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Example – DC-motor

P (s)C (s)

z2w1

u

y

w2

z1

Assume we want to optimize the closed-loop transfer matrix from

(w1, w2)T to (z1, z2)T ,

Gzw (s) =

[ P
1−PC

PC
1−PC

1

1−PC
C

1−PC

]

when P(s) =
20

s(s+1)
.

Find the Youla parameterization of all stable closed-loop systems

Gw z (s) and the corresponding stabilizing controllers C (s).
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Stabilizing controller for DC-motor

Generalized plant model:

w1

w2

z1

z2

y u




P 0 P

1 0 1

P 1 P




C (s)

P(s) =
20

s(s+1)
is not stable, so introduce

C (s) =C0(s)+C1(s)

where C0(s)=−1 stabilizes the plant; Pc (s) =
P (s)

1+P (s)
=

20

s2
+s+20
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Redrawn diagram for DC-motor example

ũ

w1

w2

z1

z2

y




P 0 P

1 0 1

P 1 P




−1

C1(s)

z1 = P w1 +P(ũ − y)

z2 = w1 + ũ − y

y = P w1 +w2 +P(ũ − y) ⇒ y =
P

1+P
w1 +

1

1+P
w2 +

P
1+P

ũ
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Redrawn diagram for DC-motor example

y ũ




Pc −Pc Pc

1−Pc Pc −1 1−Pc

Pc 1−Pc Pc




C1(s)

All stable closed-loop systems are parameterized by

Gzw =

[
Pc −Pc

1−Pc Pc −1

]

︸ ︷︷ ︸
Pzw

+

[
Pc

1−Pc

]

︸ ︷︷ ︸
Pzũ

Q
[
Pc 1−Pc

]
︸ ︷︷ ︸

Pyw

where Q(s) is any stable transfer function.

The controllers are given by C (s) =C0(s)+C1(s) =−1+
Q(s)

1+Q(s)Pc (s)
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L12: Youla parametrization, internal model control

1 The Youla (Q) parameterization

2 Internal model control (IMC)
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Internal model control (IMC)

−1

Q(s) P (s)

Pm(s)

r

u

y

+

−

Plant

Controller

(Negative) Feedback is used only if the real plant P(s) deviates from

the model Pm(s). Q(s), P(s), Pm(s) must be stable.

If Pm(s)= P(s), the transfer function from r to y is P(s)Q(s).
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Two equivalent diagrams

−1

Q P

Pm

r

u

y

+

−

Q

1−QPm

−1

P
r u y
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IMC design rules

With P(s) = Pm(s), the transfer function from r to y is P(s)Q(s).

For perfect reference following, one would like to have Q(s) = P−1(s),

but that is is not possible

Design rules:

1 If P(s) is strictly proper, the inverse would have more zeros than

poles. Instead, one can choose

Q(s)=
1

(λs +1)n
P−1

(s)

where n is large enough to make Q proper. The parameter λ

determines the speed of the closed-loop system.

(cf. feedforward design in Lecture 4)
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IMC design rules

2 If P(s) has an unstable zero, the inverse would be unstable. Two

different options:

Remove the unstable factor (−βs +1) from the plant

numerator before inverting.

Replace the unstable factor (−βs +1) with (βs +1). With this

option, only the phase is modified, not the amplitude

function.

3 If P(s) includes a time delay, its inverse would be non-causal.

Instead, the time delay is removed before inverting.
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IMC design example 1 — first-order plant

P(s) =
1

Ts +1

Q(s)=
1

λs +1
P(s)

−1
=

Ts +1

λs +1

C (s) =
Q(s)

1−Q(s)P(s)
=

Ts+1

λs+1

1−
1

λs+1

=

T

λ

(
1+

1

sT

)

︸ ︷︷ ︸
PI controller

Note that Ti =T

This way of tuning a PI controller is known as lambda tuning
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IMC design example 2 — non-minimum phase plant

P(s) =
−βs +1

Ts +1
, β> 0

Q(s)=
(−βs +1)

(βs +1)
P(s)

−1
=

Ts +1

βs +1

C (s) =
Q(s)

1−Q(s)P(s)
=

Ts+1

βs+1

1−
(−βs+1)

(βs+1)

=

T

2β

(
1+

1

sT

)

︸ ︷︷ ︸
PI controller

Note that, again, Ti = T

The gain is adjusted in accordance with the fundamental limitation

imposed by the RHP zero in 1/β.
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IMC design for deadtime processes

Consider the deadtime process

P = P0e−sL

where the delay L is assumed known and constant.

Let C0 =Q/(1−QP0) be a controller designed for the delay-free plant

model P0. Solving for Q gives

Q =

C0

1+C0P0

The controller then becomes

C =

Q

1−QP0e−sL
=

C0

1+ (1−e−sL)C0P0

This modification of C0 to account for a time delay is known as a Smith

predictor.
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Smith predictor

−

−

C0 P

Pm

P0

ym

y

y0

+

+

r u

Plant
Controller

Ideally y and ym cancel each other and only feedback from y0 “without

delay” is used. If P = Pm then

Y =

C0P0

1+C0P0

e−sLR
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Smith predictor – example

Plant: P(s) =
1

s +1
e−s , nominal controller: C0(s) = K

(
1+

1

s

)

Simulation with K = 0.4, no Smith predictor (Ms = 1.4):
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Smith predictor – example

Simulation with K = 1, no Smith predictor (Ms = 3.1):
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Smith predictor – example

Simulation with K = 1 with Smith predictor (Pm(s) = P(s), Ms = 1.5):
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Looks perfect. But do not the forget the fundamental limitation

imposed by the time delay! Respect the rule of thumb ωc <
1.6

L
when

designing C0.
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Smith predictor – example

Simulation with K = 1 with Smith predictor as before and true process

P(s) =
1

s+0.8
e−1.2s
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Some performance degradation due to model and plant mismatch.
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Lecture 12 – summary

Idea: Parameterize the closed loop as

Gyr = PQ SISO case, for IMC design

or

Gzw = Pzw +PzuQPy w General MIMO case, suitable

for optimization

for some stable Q .

After designing Q , the controller is given by

C =

Q

1−QP
SISO case (assuming negative feedback)

or

C =

[
I +QPyu

]
−1

Q General MIMO case (positive feedback)
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