

Lecture 5

FRTN10 Multivariable Control

IN

 \geq

SIGI

RVMQL

Automatic Control LTH, 2019

Course Outline

L1–L5 Specifications, models and loop-shaping by hand

- Introduction
- Stability and robustness
- Specifications and disturbance models
- Control synthesis in frequency domain

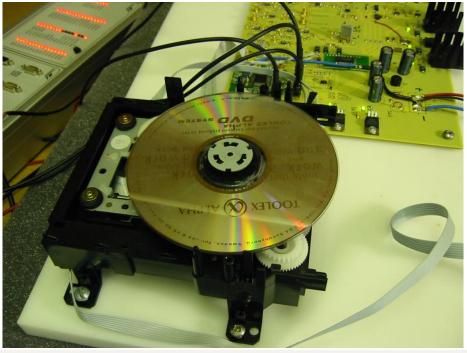
Case study: DVD player

- L6–L8 Limitations on achievable performance
- L9–L11 Controller optimization: analytic approach
- L12–L14 Controller optimization: numerical approach
 - L15 Course review

L5: Case Study: Control of a DVD player

Case study: Control of a DVD player

2 Review of cascade and midranging control



Case Study: Control of a DVD player

- The DVD player process
- Problem formulation
- Modeling
- Specifications
- Focus control loop shaping
- Radial control (track following)

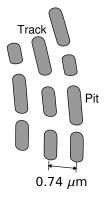
Based on work by Bo Lincoln

Imagine that you are traveling at half the speed of light,

 Imagine that you are traveling at half the speed of light, along a line from which you may only deviate 1 m

- Imagine that you are traveling at half the speed of light, along a line from which you may only deviate 1 m
- The line is not straight but oscillates up to 4.5 km sideways

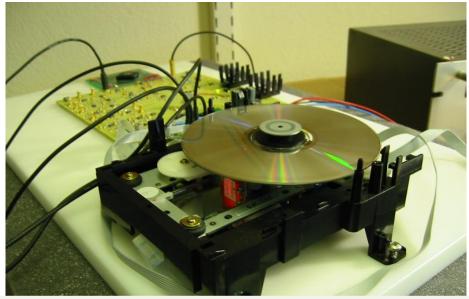
- Imagine that you are traveling at half the speed of light, along a line from which you may only deviate 1 m
- The line is not straight but oscillates up to 4.5 km sideways up to 25 times per second



- Imagine that you are traveling at half the speed of light, along a line from which you may only deviate 1 m
- The line is not straight but oscillates up to 4.5 km sideways up to 25 times per second

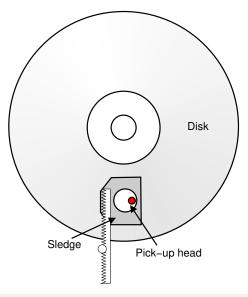
Good luck!

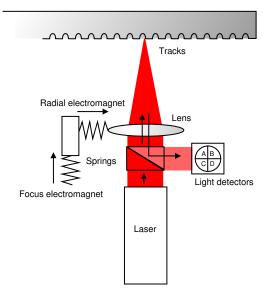
The DVD player tracking problem


- 3.5 m/s speed along track
- 0.022 μ m tracking tolerance
- 100 μm deviations at 10–25 Hz due to asymmetric discs

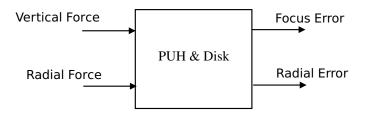
- DVD Digital Versatile Disc, 4.7–8.5 GB
 - CD Compact Disc, 650–800 MB

Blu-ray 25-400 GB


Can you see the laser spot?

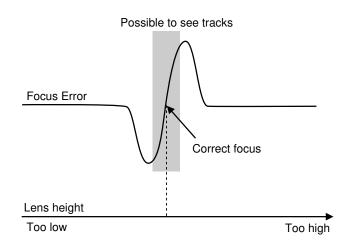


The DVD Pick-Up Head



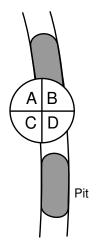
Input-output diagram for DVD control

The four photo detectors



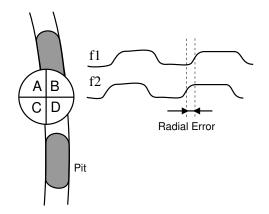
focus error = (A+D) - (B+C)

Note: *There are no other sensors in the pick-up head to help keep the laser in the track.*



Focus error signal

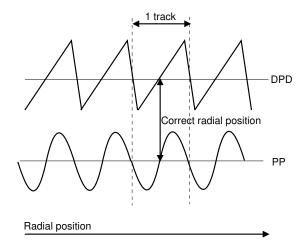
Radial error by push-pull


Look at

(A+C)-(B+D)

Automatic Control LTH, 2019 Lecture 5 FRTN10 Multivariable Control

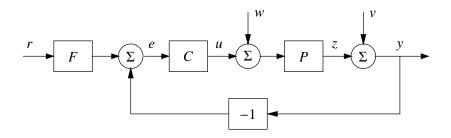
Radial error by phase difference



$$f_1 = A + D, \qquad f_2 = B + C$$

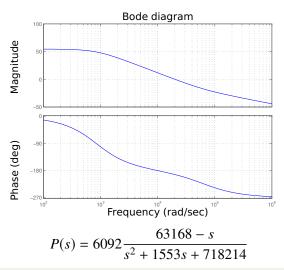
Error signal RE created by time difference

Radial error signals



Note: Larger linear error region if using phase difference.

Automatic Control LTH, 2019 Lecture 5 FRTN10 Multivariable Control


Focus control design

- What blocks and signals are relevant for focus control?
- What disturbances are there?

Model obtained using system identification:

From DVD standard ECMA-267

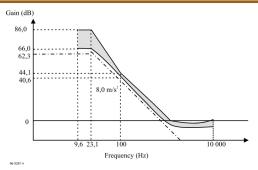


Figure 3 - Reference Servo for axial tracking

Bandwidth 100 Hz to 10 kHz

| 1 + H | shall be within 20 % of $| 1 + H_s |$.

The crossover frequency $f_0 = \omega_0 / 2\pi$ shall be specified by equation (II), where α_{max} shall be 1,5 times larger than the expected maximum axial acceleration of 8 m/s². The tracking error e_{max} shall not exceed 0,23 µm. Thus the crossover frequency f_0 shall be

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{3 \,\alpha_{\text{max}}}{e_{\text{max}}}} = \frac{1}{2\pi} \sqrt{\frac{8 \times 1.5 \times 3}{0.23 \times 10^{-6}}} = 2.0 \text{ kHz}$$
(II)

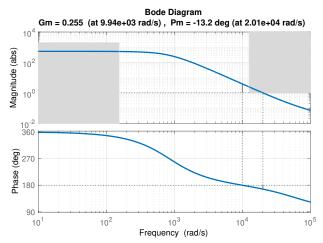
http://www.ecma-international.org/publications/standards/Ecma-267.htm

• Cancel disturbances due to disc asymmetry

 $|P(i\omega)C(i\omega)| \ge 2000$ for $f \le 23$ Hz

Robustness towards model errors, rejection of meas. noise

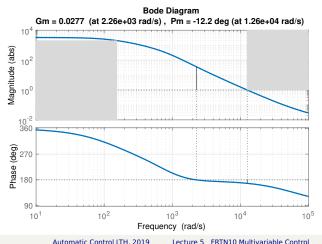
 $|P(i\omega)C(i\omega)| \le 1$ for f > 2 kHz


(Compare to the bit rate, which is in the order of 1 MHz)

• Good stability margins

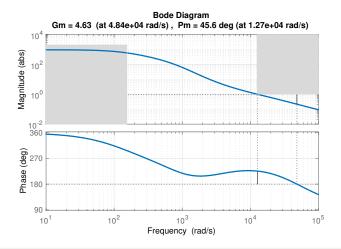
Open-loop system

Bode plot of P(s) with stability margins and specifications:

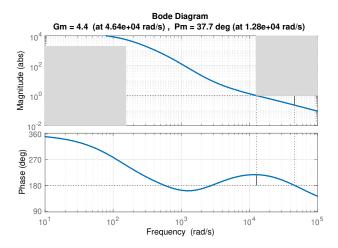


Q: Can a P-controller solve the problem?

Add lag compensator


Use lag filter with M = 15 to increase gain below 23 Hz. The break point needs to be well below 2 kHz in order to avoid excessive phase lag at the cross-over frequency: $C = KC_{lag} = \frac{0.4037(s+1885)}{s+125.7}$

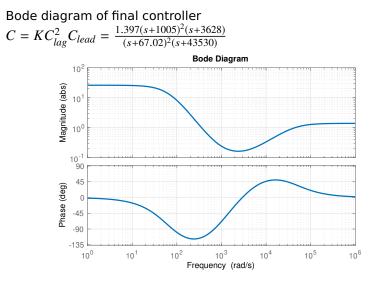
Add lead compensator


Use lead filter with N = 12 to increase phase by 57° at cross-over frequency. $C = KC_{lag}C_{lead} = \frac{1.398(s+1885)(s+3228)}{(s+125.7)(s+43530)}$

Add another lag compensator

Low-frequency gain too low. Add another lag compensator with same parameters: $C = KC_{lag}^2 C_{lead} = \frac{1.398(s+1885)^2(s+3628)}{(s+125.7)^2(s+43530)}$

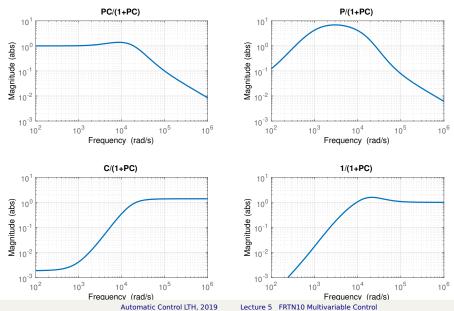
Final adjustments


Phase margin too small again. Lower the break frequency of the lag filters to recover some phase: $C = KC_{lag}^2 C_{lead} = \frac{1.397(s+1005)^2(s+3628)}{(s+67.02)^2(s+43530)}$ Bode Diagram Gm = 4.65 (at 4.82e+04 rad/s), Pm = 45.1 deg (at 1.26e+04 rad/s) 10^{4} Magnitude (abs) 10² 10⁰ 10⁻² 360 ^{-hase} (deg) 270 180 90 10^{3} 10⁵ 10^{1} 10^{2} 10^{4} Frequency (rad/s)

Automatic Control LTH, 2019

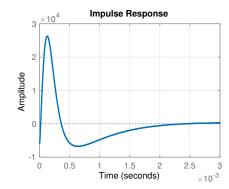
Lecture 5 FRTN10 Multivariable Control

Final controller


(Could add another pole to have high-frequency roll-off)

Automatic Control LTH, 2019

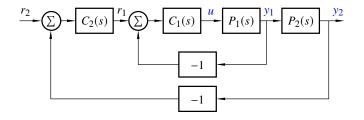
Lecture 5 FRTN10 Multivariable Control



Gang of Four

Response to impulse load disturbance

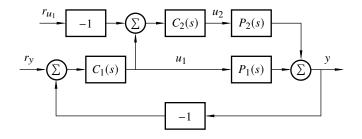
L5: Case Study: Control of a DVD player


Case study: Control of a DVD player

Review of cascade and midranging control

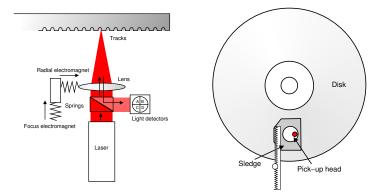
Cascade control

For systems with one control signal and two measurement signals:



- $C_1(s)$ controls the subsystem $P_1(s)$
 - Fast inner loop, $G_{y_1r_1}(s) \approx 1$
- $C_2(s)$ controls the subsystem $P_2(s)$
 - Slow outer loop

Midranging control


For systems with one measurement signal and two control signals (e.g. one large-range/slow and one small-range/fast actuator)

- $C_1(s)$ controls the process output y with fast actuator u_1
- C₂(s) controls u₁ to the middle of its operating range using slow actuator u₂ (note reverse gain!)

Radial control of pick-up-head of DVD player

The pick-up-head has two electromagnets for fast positioning of the lens (left). Larger radial movements are taken care of by the sledge (right).