
Department of

AUTOMATIC CONTROL

Nonlinear Control and Servo Systems (FRTN05)

Exam - April 24, 2019, 8 am – 13 pm

Points and grades
All answers must include a clear motivation. The total number of points is 25. The
maximum number of points is specified for each problem.

Preliminary grades:

3: 12− 16.5 points

4: 17− 21.5 points

5: 22− 25 points

Accepted aid
All course material, except for exercises, old exams, and solutions of these, may
be used as well as standard mathematical tables and authorized “Formelsamling i
reglerteknik”/”Collection of Formulae”. Pocket calculator.

Note!
In many cases the sub-problems can be solved independently of each other.

Good Luck!
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Solution
Solution:
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2. A simple model of a laser is given by

dP (t)
dt

= KN(t)P (t)− γcP (t) (2a)

dN(t)
dt

= J − 1
T1
N(t)−KN(t)P (t) (2b)

where P is the number of photons in the laser cavity, N is the number of
carriers, K is a gain constant, γc is the decay rate of cavity photons, J is the
carrier pump rate, and T1 is the carrier life time.

a. Lasers only lase when the pump rate J is larger than some threshold value
Jthr. Lasing corresponds to that the equations (2) have an equilibrium (P0, N0)
with P0 > 0, N0 > 0.
For which pump rates J does the laser lase? I.e., find the lasing threshold Jthr.
Note: The parameters γc, K and T1 are all positive. (1 p)

b. Consider the following, typical, normalized parameter values, γc = K = 1,
J = 0.002, T1 = 1000. For these values it holds that J > Jthr, so the equations
(2) have an equilibrium point P0 > 0, N0 > 0. How would you expect the
variable P (t) to evolve (as a function of t) for initial conditions close to the
equilibrium point? Make a rough sketch and motivate your answer. (1 p)

Solution

a. An equilibrium point N0, P0 satisfies

0 = KN0P0 − γcP0

0 = J −N0/T1 −KN0P0

From the first equation we get two solutions for P0. One possibility is P0 = 0
which we can discard since we are looking for an equilibrium point with P0 > 0,
N0 > 0. The other possibility is

N0 = γc/K > 0. (3)

By solving the second equation for P0 and using that N0 = γc/K, we get

P0 = J −N0/T1
KN0

= J − γc/(KT1)
γc

. (4)

Thus we have that P0 is positive if J > γc/(KT1) = Jthr.

b. Linearizing the system around the equilibrium point given by (3), (4) we get
the following system matrix

A =
[
KN − γc KP

−KN −KP − 1/T1

] ∣∣∣∣∣
P=P0,N=N0

For the given parameter values we have N0 = 1, P0 = 0.001, and the system
matrix for the linearized system becomes

A =
[

0 0.001
−1 −0.002

]
.
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Figure 3 Relaxation oscillations from initial conditions P (0) = 0.95P0, N(0) = 0.95N0
Remark: The normalization of the parameters correspond to a time scale of pico seconds.

The eigenvalues of A are λ1,2 = −0.001 ±
√

0.0012 − 0.001 ≈ −0.001 ± 0.032i
which corresponds to a stable focus.

c. Based on that the equilibrium point of the system is a stable focus, we expect
the transient response to oscillate and converge to P0, see Figure 3. These
oscillations are called relaxation oscillations in the laser literature.

3. The Euler equations for a rotating rigid spacecraft are given by

J1ω̇1 = (J2 − J3)ω2ω3 + u1

J2ω̇2 = (J3 − J1)ω3ω1 + u2

J3ω̇3 = (J1 − J2)ω1ω2 + u3

where ωi are the components of the angular velocity vector ω along the principal
axes, Ji are the corresponding moment of inertia, and ui are control torques
applied along the principal axes.

a. Assume u1 = u2 = u3 = 0, show that the origin ω1 = ω2 = ω3 = 0 is stable. Is
it asymptotically stable?
Hint: Use a quadratic Lyapunov Function candidate of the form aω2

1+bω2
2+cω2

3.
(2.5 p)

b. Suppose that toque feedback is applied according to ui = −kiωi, where all
ki > 0. Show that the origin is globally asymptotically stable. (1 p)

Solution

a. We get

V̇ = 2
(
aω1

J2 − J3
J1

ω2ω3 + bω2
J3 − J1
J2

ω1ω3 + cω3
J1 − J2
J3

ω1ω2

)

letting a = J1, b = J2, c = J3 gives

V̇ = 2ω1ω2ω3 ((J2 − J3) + (J3 − J1) + (J1 − J2)) = 0, ∀ω
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since V is a Lyapunov Function with V (0) = 0 and V (ω) > 0, ∀ω 6= 0, we get
that ω = 0 is stable.
Since dV/dt = 0 the trajectories will stay on whatever level surface of V that
they started on. Thus the trajectories will not go to zero for non-zero initial
conditions.

b. Using the same values for a, b, c we get

V̇ = 2
(
ω1(J2 − J3)ω2ω3 − k1ω

2
1 + ω2(J3 − J1)ω1ω3 − k2ω

2
2 + ω3(J1 − J2)ω1ω2 − ω2

3

)
= −2(k1ω

2
1 + k2ω

2
2 + k3ω

2
3) < 0, ∀ω 6= 0

so the origin is globally asymptotically stable since the requirements for a
Lyapunov function is satisfied and V (ω)→∞ when ‖ω‖ → ∞.
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C(s) Ψ(·) P (s)
∑ y

−

Figure 4 Feedback interconnection of a double-tank process with nonlinear pump dy-
namics, and a controller C(s).

Figure 5 Nyquist curve of a double water tank.

4. A double tank process, similar to the one from the laboratory exercises in the
basic course, can be modeled as

P (s) = 1
(s+ 1)2

This system has the Nyquist curve, P (iω), in Figure 5. The water level in the
lower tank is controlled by a proportional controller C(s) = Kp. The pump
which pumps water into the upper tank is nonlinear, and is described by the
static nonlinearity Ψ(·). The whole feedback connection is seen in Figure 4.

a. Is the feedback system, in Figure 4, BIBO stable if Kp = 1 and the pump
nonlinearity Ψ belongs to the sector (α, β) = (0.5, 5)? Motivate your answer!

(1 p)

b. Determine an upper bound on Kp , such that the feedback connection will be
BIBO stable when the nonlinearity belongs to a sector (α, β) = (−0.5, 0.5).
Calculations are needed in your motivation! (1 p)

c. Determine an upper bound onKp such that the feedback connection is be BIBO
stable when the nonlinearity belongs to a sector (α, β) = (0, 10). Calculations
are needed in your motivation! (1 p)

Solution
We can use the circle criterion to solve all three subproblems.
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Figure 6 Input-output characteristics of the nonlinear amplifier from Problem 5b (red,
dashed) and an ideal saturation (blue).

a. The Nyquist plot should not enter the disk D(α, β) = D(0.5, 5) and it should
not encircle it. This corresponds to the circle with a real value that is at most
−1/5 = −0.2. This means that the circle lies outside the Nyquist curve and
the feedback connection is BIBO stable.

b. The Nyquist curve of the system KpP (s) should stay in the interior of a disk
D(α, β) = D(−0.5, 0.5). This is a circle around the origin with radius 2. There-
fore, a proportional gain Kp < 2 results in a BIBO stable system.

c. The Nyquist curve should stay in the half-plane Re(z) > −1/β = −0.1. We
know that

KpP (iω) = Kp

(iω + 1)2 = Kp(1− ω2 + 2iω)
(ω2 + 1)2

We are interested in finding the minimum value of the real part of P (iω) since
it will determine for which β we can guarantee BIBO stability. The real part
can be plotted on a graphical calculator to determine that the minimum value
of P (iω) is −1/8. The minimum for KpP (iω) is then −Kp/8. Therefore, Kp has
to be less than 0.8 for us to conclude BIBO stability with the circle criterion.

5. In this problem we study two saturated nonlinearities, an ideal saturation

uout =


1 if uin ≥ 1

uin if ≤ uin ≤ 1

−1 if uin ≤ −1

(5)

and a saturated amplifier

uout =


1 if uin ≥ 1

(3uin − u3
in)/2 if − 1 ≤ uin ≤ 1

−1 if uin ≤ −1

. (6)

a. The saturations are shown in Figure 6 and the corresponding describing func-
tions are shown in Figure 7. Identify which describing function corresponds to
each nonlinearity and explain the differences and similarities of the describing
functions based on the models of the nonlinearities. (1 p)

b. Compute the describing function for the saturating amplifier in Equation (6).
Hint: sin2(θ) = (1− cos(2θ))/2 and sin4 θ = (3− 4 cos 2θ+ cos 4θ)/8, (1.5 p)
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Figure 7 Describing function for saturated amplifier an ideal saturation

f(·) P (s)
uout

−C(s)

∑r uin y

Figure 8 Interconnection of nonlinearity

c. A system P (s) = 1/(s(s+3)) is controlled with a controller C(s) = 38.5/(s+3)
according to Figure 8. What does the describing method theory predict for each
of the two nonlinearities?
Note: It is possible to solve part c. without having solved part b..

(2 p)

Solution

a. For low amplitudes (A<1) the output of ideal saturation is uout = uin, and the
describing function is therefore constant 1 here. The saturated amplifier has
a higher gain for low amplitudes and for A ≈ 0, we have uout ≈ 1.5uin. Thus
the orange dotted line corresponds to the saturating amplifier, and the green
dash-dotted line corresponds to the ideal saturation.

b. We have for φ ∈ [0, π/2], uout = f(uin)

f(A sinφ) =
{

(3A sinφ−A3 sin3 φ)/2 0 ≤ φ ≤ φ0

1 φ0 ≤ φ ≤ π/2
, where φ0 = sin−1(1/A)

Since f is odd we have that the imaginary part of the describing function is 0,
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so for A < 1 :

N(A) = 1
πA

2π∫
0

f(A sinφ) sinφdφ =

= 2
πA

φ0∫
0

(
(3A sinφ−A3 sin3 φ)

)
sinφdφ+ 4

πA

π/2∫
φ0

sinφdφ

Using that sin4(φ) = (3− 4 cos(2φ) + cos(4φ))/8 and sin2(φ) = (1− cos(2φ))/2
we get the primitive to the first part∫ (

(3A sin2 φ−A3 sin4 φ)/2
)

sinφdφ =

=
∫ (

(3A
2 (1− cos(2φ))− A3

8 (3− 4 cos(2φ) + cos(4φ)))
)

dφ =

=3A
2

(
φ− 1

2 sin(2φ)
)
− A3

8

(
3φ− 2 sin(2φ) + 1

4 sin(4φ)
)

the answer is thus for A > 1 :

N(A) = 2
πA

[
3A
2

(
φ− 1

2 sin(2φ)
)
− A3

8

(
3φ− 2 sin(2φ) + 1

4 sin(4φ)
)]φ0

0
+ 4
πA

[− cos(φ)]π/2
φ0

=

= 3
π

(
φ0 −

1
2 sin(2φ0)

)
− A2

4π

(
3φ0 − 2 sin(2φ0) + 1

4 sin(4φ0)
)

+ 4
Aπ

cos(φ0)

and for |A| ≤ 1

N(A) = 3
π

(
π/2− 1

2 sin(2π/2)
)
− A2

4π

(
3π/2− 2 sin(2π/2) + 1

4 sin(4π/2)
)

=

=3
8(4−A2)

c. Reordering the equations give thatG(s)C(s) = 38.5
s(s+3)2 can be seen as connected

in negative feedback with f(·). The describing function lies on the negative real
axis, so we find the intersection with that in the Nyquist diagram.

arg(G(iω)C(iω)) = −π/2− 2atan(w/3) = −π ⇔
atan(ω/3) = π/4 ⇔

w = 3

we get |G(s)C(s)| = | 38.5
w(w2+p2) | = 3/

√
18 ≈ 0.713. I.e. intersection with − 1

N(A)
occurs when N(A) ≈ 1/0.7 ≈ 1.40. For the ideal saturation, N(A) ≤ 1 so no
intersection occurs. − 1

N(A) is on the outside of the Nyquist curve in this case
so stability is predicted. For the saturaded amplifier, N(A) = 1.40 at A ≈ 0.5
(0.51 to be more exact). The curve − 1

N(A) is going from −2/3 towards −∞ so
in this case a stable oscilation of amplitude 0.5 with frequency 3 is predicted.

6. Consider the following system

ẋ1 = x2

ẋ2 = x2 + x2
1 + u
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a. Verify that the origin of the system is not globally asymptotically stable for
u = 0. (1 p)

b. Your goal is to design a sliding mode controller that makes the origin globally
asymptotically stable. Based on the functions

σ1(x) = x1 + x2

σ2(x) = x1 − x2,

which of the sliding sets, σ1(x) = 0, or σ2(x) = 0, guarantee(s) asymptotic
convergence of the states to the origin. Motivate your answer by analysis of
the dynamics on the set {x|σ(x) = 0}.

(1 p)

c. Design a control law that drives the states of the system to the sliding set you
chose above. (2 p)

Solution

a. Linearization around the origin yields:

ẋ =
(

0 1
0 1

)
x

The linearized system has an eigenvalue in 1, which shows that the origin is
unstable.

b. A sliding mode is an invariant set, i.e. σ̇ = 0. We have

0 = σ̇1 = ẋ1 + ẋ2 = x2 + ẋ2 ⇒ ẋ2 = −x2

which shows that x2(t)→ 0, t→∞ along σ1(x) = 0. Since x1(t) = −x2(t) on
the sliding set, also x1(t)→ 0, t→∞.
For σ2(x) we have:

0 = σ̇2 = ẋ1 − ẋ2 = x2 − ẋ2 ⇒ ẋ2 = x2

which means x2(t)→ ±∞, along σ2(x) = 0.
The answer is: σ1(x) = 0 guarantees asymptotic convergence to the origin.

c. Let
V (σ) = σ2

2
We have that:

V̇ = dV

dσ

dσ

dx

dx

dt
= σ(ẋ1 + ẋ2) = σ(2x2 + x2

1 + u)

By choosing

u = −2x2 − x2
1 − kσ = −(2 + k)x2 − x1(x1 + k)
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with k > 0 we have
V̇ = −kσ2

which means that σ → 0 as t→∞ Another choice is

u = −2x2 − x2
1 − sign(σ)

Solution
Solution:
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