
Lecture 12 — Dynamic programming

I Closed loop formulation of optimal control

I Intuitive methods of solution

I Guarantees global optimality

I Iteratively solves the problem starting at the end-time

’Life can only be understood backwards;
but it must be lived forwards’

Kierkegaard

Goal

To be able to

I to understand the idea of Dynamic programming

I to derive optimal feedback laws in simple cases

Example: Shortest path
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As an example we try to find the shortest path to “0” in the above
graph.

Example: Shortest path
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Example: Shortest path

2��
��

��
��

��
��

��
��

��
��

��
��

��
�����

�
�
�
��

�
�
�
�
�
�
��@

@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@

@
@
@
@
@
@
@

0

3

2

5

6

4

3
2

3

3

1

2

3

2��
��

Example: Shortest path
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Example: Shortest path
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Example: Shortest path
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Example: Shortest path
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Example: Shortest path
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Basic problem formulation

Discrete time system: xk+1 = fk(xk, uk)

Feedback law: uk = µk(xk)

Cost function: Jµ(x0) = gN (xN ) +
N−1∑
k=0

gk(xk, uk)

Continuous time system: ẋ(t) = f(x(t), u(t))

Feedback law: u(t) = µt(x(t))

Cost function: Jµ(x0) = φ(x(T )) +
∫ T

0 L(x(t), u(t))dt

Basic formulation: Minimal cost and optimal strategy

I An optimal policy µ∗ is one that minimizes Jµ(x0) (for all x0)

Jµ∗(x0) = min
µ∈Π

Jµ(x0)

optimization is performed over the set Π, of admissible control
policies

I For deterministic problems a control is admissible whenever

uk = µk(xk) ∈ U(xk)

The principle of optimality

Let µ∗ = {µ∗0, µ∗1, . . . , µ∗N−1} be an optimal policy for the basic
problem and assume that when applying µ∗, a given state xi occurs at
time i, when starting at x0.

Consider the subproblem whereby we are in state xi at time i and
wish to minimize the “cost-to-go” from time i to time N

gN (xN ) +
N−1∑

k=i
gk(xk, µk(xk)).

Principle of optimality
The truncated policy {µ∗i , µ∗i+1, . . . , µ

∗
N−1} is optimal for the

subproblem starting from xi at time i.

Principle of optimality

I Google maps fastest
route from LTH to KTH
passes through
Jönköping

I Subpath starting in
Jönköping is the
fastest route from
Jönköping to KTH

The dynamic programming algorithm

Let

Vk(xk) = gN (xN ) +
N−1∑

j=k
gj(xj , µ∗j (xj))

so that Vk(xk) is the optimal “cost-to-go” from time k to time N

The Bellman equation
For every initial state x0, the optimal cost J∗(x0) is given by the last
step in the following backward-recursion.

Vk(xk) = min
uk∈Uk(xk)

[gk(xk, uk) + Vk+1(fk(xk, uk))]

VN (xN ) = gN (xN )

We get the optimal control “for-free”

µ∗k(xk) = arg min
uk∈Uk(xk)

[gk(xk, uk, wk) + Vk+1(fk(xk, uk))]

Managing spending and saving

Example
An investor holds a capital sum in a building society, which gives an
interest rate of θ × 100% on the sum held at each time
k = 0, 1, . . . , N − 1. The investor can chose to reinvest a portion u of
the interest paid which then itself attracts interest. No amounts
invested can ever be withdrawn. How should the investor act so as to
maximize total reward by time N − 1?

I We take as the state xk the present income at time
k = 0, 1, . . . , N − 1 and let uk ∈ [0, 1] be the fraction of
reinvested interest, hence

xk+1 = xk + θukxk =: f(xk, uk)

I The reward is gk(x, u) = (1− u)x and gN (x, u) ≡ 0.
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Managing spending and saving

The optimality equation is VN (x) = 0,

Vk(x) = max
0≤u≤1

{(1− u)x+ Vk+1(x+ θux)}, k = 0, 1, . . . , N − 1

We get

VN−1(x) = max
0≤u≤1

{(1− u)x+ 0} = x

VN−2(x) = max
0≤u≤1

{(1− u)x+ (1 + θu)x}

= max
0≤u≤1

{2x+ (θ − 1)ux} = max{2, 1 + θ}x = ρ2x

If VN−s+1(x) = ρs−1x, then

VN−s(x) = max
0≤u≤1

{(1− u)x+ (1 + uθ)ρs−1x)}

= max{1 + ρs−1, (1 + θ)ρs−1}︸ ︷︷ ︸
ρs

x = ρsx

Managing spending and saving

I We have thus verified that VN−s(x) = ρsx, and found the
recursion

ρs = ρs−1 + max{1, θρs−1}
I Together with ρ1 = 1 this gives

ρs =
{
s for s ≤ s∗
s∗(1 + θ)s−s∗

otherwise.
s∗ = d1/θe

I The optimal policy is then

uk =
{

1 for k < N − s∗
0 for k ≥ N − s∗.

Continuous time optimal control: The HJB-equation

I So far we have only considered the discrete time case

I Dynamic programming can also be applied in continuous time,
this leads to the Hamilton-Jacobi-Bellman (HJB) equation:

I Benefits over PMP:
+ Gives closed-loop optimal control in continuous time
+ Sufficient condition of optimality

I Drawbacks:
– Requires solving a highly non-linear PDE
– Well-posedness of the PDE problem proved only in the ’80s

Continuous time problem formulation

I In continuous time the system is given by

ẋ(t) = f(x(t), u(t)), t ∈ [0, T ]

with x(0) = x0 and u(t) ∈ U(x(t)), for all t ∈ [0, T ].
I We define the cost as

J(x0) = φ(x(T )) +
∫ T

0
L(x(t), u(t))dt

I With optimal “cost-to-go” from (t, x)

V (t, x) = min
u

{
φ(x(T )) +

∫ T

t
L(x(t), u(t))dt

}

The HJB-equation

The Hamilton-Jacobi-Bellman equation
For every initial state x0, the optimal cost is given by
J∗(x0) = V (0, x0) where V (t, x) is the solution to the PDE

∂V

∂t
(t, x) = −min

u∈U

[
L(x, u) + ∂V

∂x
(t, x) · f(x, u)

]

V (T, x) = φ(x)

As before the optimal control is given in feedback form by

µ∗(t, x) = arg min
u∈U

[
L(x, u) + ∂V

∂x
(t, x) · f(x, u)

]

The HJB-equation: Informal derivation

I Divide [0, T ] into N subintervals of length δ = T/N

I Let xk = x(kδ) and uk = u(kδ), for k = 0, 1, . . . , N and
approximate the system by

xk+1 = xk + f(xk, uk)δ, k = 0, 1, . . . , N.

I The optimal “cost-to-go” is approximated by

V (kδ, x) = min
u0,...,uN−1

[φ(xN ) +
N−1∑

k=0
L(xk, uk)δ]

The HJB-equation: Informal derivation

Dynamic programming now yields

V (kδ, x) = min
u∈U

[L(x, u)δ + V ((k + 1)δ, x+ f(x, u)δ)],

V (Nδ, x) = φ(x).

For small δ we get (with t = kδ)

V (t+ δ, x+ f(x, u)δ) ≈ V (t, x) + ∂V

∂t
(t, x)δ + ∂V

∂x
(t, x) · f(x, u)δ

Inserting this in the DP equation gives

V (t, x) ≈min
u∈U

[
L(x, u)δ + V (t, x) + ∂V

∂t
(t, x)δ + ∂V

∂x
(t, x) · f(x, u)δ

]

Example: The HJB-equation

Example
Consider the simple example involving the scalar system

ẋ(t) = u(t),

with the constraint |u(t)| ≤ 1 for all t ∈ [0, T ] and the cost

J(x0) = 1
2(x(T ))2.

I The HJB equation for this problem is

∂V

∂t
(t, x) = − min

|u(t)|≤1

[
∂V

∂x
(t, x)u

]

with terminal condition V (T, x) = x2/2.
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Example: The HJB-equation

I An optimal control for this problem is

µ(t, x) =





1 for x < 0
0 for x = 0
−1 for x > 0

I The optimal “cost-to-go” with this control is

V (t, x) = 1
2(max{0, |x| − (T − t)})2

Example: The HJB-equation

For |x| > T − t we have V (t, x) = 1/2(|x| − (T − t))2, hence

∂V

∂t
= |x| − (T − t)

min
|u(t)|≤1

[
∂V

∂x
(t, x)u

]
= −sgn(x)∂V

∂x
(t, x) = −sgn(x)2(|x| − (T − t))

= −(|x| − (T − t))

For |x| ≤ T − t we have V (t, x) = 0 and the HJB equation holds.

Infinite horizon problem

Assume that the final cost is φ(x(T )) = 0 and the final time
T → +∞, and that there exists some control such that the total cost
remains bounded in the limit. Hence, we want to solve

min
u

∫ +∞

0
L(x(t), u(t))dt , x(0) = x0

It is intuitive that the cost-to-go from (x, t)

V (x, t) = min
u

∫ T

t
L(x(t), u(t))dt = V (x)

does not depend on the initial time but only on the initial state.

The HJB equation then becomes

0 = min
u

[
L(x, u) + ∂V

∂x
(x) · f(x, u)

]

(Observe that, for scalar problems, this is an ODE! )

Infinite horizon problem: example

min
u

∫ +∞

0
(x4(t) + u4(t))dt , x(0) = x0

From the stationary HJB eqn we get

0 = min
u

{
x4 + u4 + ∂V

∂x
(x) · u

}

and putting the derivative with respect to u equal to 0

x4 = 3
(1

4
∂V

∂x
(x)
)4/3

which gives ∂V
∂x (x) = ±4(1

3)3/4x3 and the + sign should be chosen
to have V positive definite )since L is. This gives the optimal feedback
control law

u∗(x) = −(1
4
∂V

∂x
(x))1/3 = −(1

3)1/4x

Dynamics Programming for LQ control

Consider the optimal feedback control problem for an LTI system
ẋ = Ax+Bu with cost

J =
∫ T

0

(
x′(t)Qx(t) + u′(t)Ru(t)

)
dt+ x(T )′Mx(T )

where Q,R,M are symmetric positive definite. The HJB eqn reads

0 = min
u

{
x′Qx+ u′Ru+ ∂V

∂t
+ ∂V

∂x
(Ax+Bu)

}

with final time condition V (T, x) = x′Mx.

Dynamics Programming for LQ control

With the ansatz V (x, t) = x′P (t)x with symmetric P (t), we get that
the optimal control is in the form

u∗ = −R−1B′Px

and P = P (t) satisfies the following differential eqn

Ṗ = −PA−A′P −Q+ PBR−1B′P P (T ) = M

which is called the differential Riccati equation (DRE).

For the infinite horizon problem this reduces to

0 = −PA−A′P −Q+ PBR−1B′P

which is called the algebraic Riccati equation (ARE).

Summary — Dynamic programming

I Closed loop formulation of optimal control

I Intuitive methods of solution

I Guarantees global optimality

I Iteratively solves the problem starting at the end-time
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