Lecture 12 — Dynamic programming

» Closed loop formulation of optimal control

> Intuitive methods of solution

» Guarantees global optimality

> lteratively solves the problem starting at the end-time

‘Life can only be understood backwards;
but it must be lived forwards’

Kierkegaard

Goal

To be able to

» to understand the idea of Dynamic programming
> to derive optimal feedback laws in simple cases

Example: Shortest path

As an example we try to find the shortest path to “0” in the above
graph.
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Basic problem formulation

Discrete time system: 11 = fi(Tk, uk)

Feedback law: up = pg(ek)

N-1
Cost function: Ju(zo) = gn(an) + X grlor, uk)

Continuous time system:  &(t) = f(x(t), u(t))
Feedback law: u(t) = pe(x(t))

Cost function: Ju(o) = ¢(x(T)) + f L(x(t), ult))dt

Basic formulation: Minimal cost and optimal strategy

> An optimal policy 1* is one that minimizes .J,,(xo) (for all o)
J =minJ,(z
e (w0) = min Ju (o)

optimization is performed over the set II, of admissible control
policies

» For deterministic problems a control is admissible whenever

ug = pr(zr) € U(xy)

The principle of optimality

Let p* = {u$, 3, . . ., Wy _1 } be an optimal policy for the basic
problem and assume that when applying 11*, a given state x; occurs at
time ¢, when starting at z.

Consider the subproblem whereby we are in state x; at time 7 and
wish to minimize the “cost-to-go” from time ¢ to time IV

N-1

gn(@N) + Y grlwn, ().
p

Principle of optimality

The truncated policy {4}, tt7 1, .., i _1} is optimal for the
subproblem starting from z; at time <.

Principle of optimality
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The dynamic programming algorithm

Let
N-1

Vilzr) = gn(zn) + D g5z, 15(x5))
=k

so that Vi () is the optimal “cost-to-go” from time k to time N
The Bellman equation

For every initial state x¢, the optimal cost .J*(z() is given by the last
step in the following backward-recursion.

Vi(wg) = min [gr(k, we) + Vi (fe(2r, ur))]
up €Uk (k)

Vn(zn) = gn(zn)

We get the optimal control “for-free”

wp(xy) = argmin [ge(2r, ug, wi) + Vigr (fr(2r, ur))]
u €Uk (1)

Managing spending and saving

Example

An investor holds a capital sum in a building society, which gives an
interest rate of & x 100% on the sum held at each time

k=0,1,..., N — 1. The investor can chose to reinvest a portion u of
the interest paid which then itself attracts interest. No amounts
invested can ever be withdrawn. How should the investor act so as to
maximize total reward by time N — 1?

> We take as the state z the present income at time
k=0,1,...,N —1and let uy € [0, 1] be the fraction of
reinvested interest, hence

1 = @ + Ougry = f(ag, up)

> The reward is gi(z,u) = (1 — u)z and gy (z,u) = 0.




Managing spending and saving

The optimality equation is Viy(z) = 0,

Vi(z) = Orilsécl{(l —w)x + Vipi(z + Oux)}, k=0,1,...,N—1

We get
Vn_1(z) = 0@52(1{(1 —u)r+0}=x
Vn_a(z) = Orélaicl{(l —u)z + (1 + Ou)z}

= 0213%(1{296 + (0 — 1uz} = max{2,1 + 6}z = paz

If V_st+1(z) = ps—1z, then
Viv-o(@) = g {(1 = w3 + (1 + u)pe-10)}

=max{1l+ ps—1, (1 +0)ps—1}z = psx

ps

Managing spending and saving

We have thus verified that Vy_s(z) = psz, and found the
recursion

pPs = Ps—1+ maX{L 9,03—1}
Together with p; = 1 this gives

s for s < s* -
Ps = {s*(l +6)*=%"  otherwise. s*=[1/0]

The optimal policy is then

w — 1 fork< N —s*
=30 fork >N — s

Continuous time optimal control: The HJB-equation

> So far we have only considered the discrete time case
» Dynamic programming can also be applied in continuous time,
this leads to the Hamilton-Jacobi-Bellman (HJB) equation:
> Benefits over PMP:
+ Gives closed-loop optimal control in continuous time
+ Sufficient condition of optimality
» Drawbacks:
— Requires solving a highly non-linear PDE
— Well-posedness of the PDE problem proved only in the '80s

Continuous time problem formulation

In continuous time the system is given by
i(t) = f(a(t),u(t), te€l0,T]

with z(0) = z¢ and u(t) € U(z(t)), forall t € [0, 7.
We define the cost as

T
Ta) = o(a(T) + [ Lia(0).u(®)it

With optimal “cost-to-go” from (¢, x)

V(t.2) = min {6(2(T)) + /tT L(a(t), u(t))dt}

The HJB-equation

The Hamilton-Jacobi-Bellman equation

For every initial state =, the optimal cost is given by
J*(z0) = V(0,x0) where V (¢, x) is the solution to the PDE

%(t7$) =- ngljl {L(.L,ﬂ) + g—‘;(t,m) . f(.L‘,U):|
V(T,z) = ¢(x)

As before the optimal control is given in feedback form by

*(t.2) = aremi LA
wr(t,x) = drger{]nn [L(x,u) + o (t,z) f(x,u)]

The HJB-equation: Informal derivation

Divide [0, 7] into N subintervals of length § = T'/N
Let zj, = x(kd) and uy, = u(kd), for k =0,1,..., N and
approximate the system by

xk+l:Ik+f($kvuk)6a k=0,1,...,N.

The optimal “cost-to-go” is approximated by

N-1
V(ké,z) = uomhr}v [6(zn) + > L(zk, ur)d]
s UN —1 o

The HJB-equation: Informal derivation

Dynamic programming now yields
V(kd,z) = min[L(z, u)d + V((k + 1),z + f(z,u)d)],
V(N z) = ¢(z).

For small § we get (with ¢ = k0)

V(t+d,z+ f(z,u)d) = V(t,z)+ %—‘:(t,x)é + Z—Z(tw) -z, u)d

Inserting this in the DP equation gives

. ov ov
V(LI) Ng‘g{} L(I7u)(5 + V(tvl‘) + E(tvx)é + %(t,l’) . f(IJ,L)(S

Example: The HJB-equation

Example
Consider the simple example involving the scalar system

#(t) = u(t),

with the constraint |u(t)| < 1 forall ¢ € [0, 7] and the cost

J(zo) = %(:L'(T))Q.

» The HJB equation for this problem is

a—v(f x) =— min [a—v(f T)u]
ot T st Loz T

with terminal condition V (T, z) = 22/2.




Example: The HJB-equation

» An optimal control for this problem is
1 forxz <0
ult,x) = 0 forz=0
—1 forz >0

» The optimal “cost-to-go” with this control is

Vi(t,2) = 3 (max{0, o] — (T~ 1)})?

Example: The HJB-equation

N/

—(T 1)

For |z| > T — t we have V (t,z) = 1/2(|z| — (T — t))?, hence

)%
o 2l = (Tgt)
. V V 2
min [0 = —san(a) (1. 2) = —san(e)(e] ~ (7 1)
=—(lz = (T -1))

For |x| < T — t we have V (¢, z) = 0 and the HJB equation holds.

Infinite horizon problem

Assume that the final cost is ¢(2(T")) = 0 and the final time
T — +00, and that there exists some control such that the total cost
remains bounded in the limit. Hence, we want to solve

“+o00
min/0 L(x(t),u(t))dt, z(0) = o

u

It is intuitive that the cost-to-go from (z, t)
T
V(e,t) = min / L), u(t))dt = V(2)
t

does not depend on the initial time but only on the initial state.

The HJB equation then becomes
ov
0= i [Le,0) + 5 (@) - o)

(Observe that, for scalar problems, this is an ODE!)

Infinite horizon problem: example

min /(]+Oo(1'4(t) +ut(t))dt, z(0) = 2o

From the stationary HJB egn we get
oV
— min d 3 4 ) .
0 = min {.L +u” + o (z) 71,}

and putting the derivative with respect to u equal to 0

a_g LoV, N\
x —3<4 8I(:ﬂ))

which gives 2Y (z) = £4(3)3/42® and the + sign should be chosen
to have V' positive definite )since L is. This gives the optimal feedback

control law LoV 1
* _ _(to9v 1/3 _ _(1y1/4
(@) = (55 @) = —(5)" '

Dynamics Programming for LQ control

Consider the optimal feedback control problem for an LTI system
& = Az + Bu with cost

J= /OT (a:’(t)QI(t) + ’U/(t)Ru(t)) dt + o(T) Mx(T)

where @), R, M are symmetric positive definite. The HJB egn reads

ov. oV
p— 3 / 0 // g
O—Inum{xQx—&-uRu—A— e + BI(Ax+Bu)}

with final time condition V (T, z) = 2/ M.

Dynamics Programming for LQ control

With the ansatz V (z,t) = a’ P(t)z with symmetric P(t), we get that
the optimal control is in the form

u*=—-R1B'Px
and P = P(t) satisfies the following differential eqn
P=-PA-AP-Q+PBR'BP PIT)=M

which is called the differential Riccati equation (DRE).

For the infinite horizon problem this reduces to
0=-PA—-AP-Q+PBR'B'P

which is called the algebraic Riccati equation (ARE).

Summary — Dynamic programming

> Closed loop formulation of optimal control

> Intuitive methods of solution

» Guarantees global optimality

> lteratively solves the problem starting at the end-time




