
Lecture 5 — Input–output stability

or

“How to make a circle out of the point −1 + 0i, and different ways to
stay away from it ...”
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Course Outline

Lecture 1-3 Modelling and basic phenomena
(linearization, phase plane, limit cycles)

Lecture 4-6 Analysis methods
(Lyapunov, circle criterion, describing functions)

Lecture 7-8 Common nonlinearities
(Saturation, friction, backlash, quantization)

Lecture 9-13 Design methods
(Lyapunov methods, Sliding mode & optimal control)

Lecture 14 Summary

Today’s Goal

To understand

◮ signal norms

◮ system gain

◮ bounded input bounded output (BIBO) stability

To be able to analyze stability using

◮ the Small Gain Theorem,

◮ the Circle Criterion,

◮ Passivity

Material

◮ [Glad & Ljung]: Ch 1.5-1.6, 12.3 [Khalil]: Ch 5–7.1

◮ lecture slides

History
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y
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For what G(s) and f(·) is the closed-loop system stable?

◮ Lur’e and Postnikov’s problem (1944)

◮ Aizerman’s conjecture (1949) (False!)

◮ Kalman’s conjecture (1957) (False!)

◮ Solution by Popov (1960) (Led to the Circle Criterion)

Gain

Idea: Generalize static gain to nonlinear dynamical systems

u y
S

The gain γ of S measures the largest amplification from u to y

Here S can be a constant, a matrix, a linear time-invariant system, a
nonlinear system, etc

Question: How should we measure the size of u and y?

Norms

A norm ‖ · ‖ measures size.

A norm is a function from a space Ω to R+, such that for all x, y ∈ Ω

◮ ‖x‖ ≥ 0 and ‖x‖ = 0 ⇔ x = 0
◮ ‖x + y‖ ≤ ‖x‖ + ‖y‖
◮ ‖αx‖ = |α| · ‖x‖, for all α ∈ R

Examples

Euclidean norm: ‖x‖ =
√

x2
1 + · · · + x2

n

Max norm: ‖x‖ = max{|x1|, . . . , |xn|}

Signal Norms

A signal x(t) is a function from R+ to Rd.
A signal norm is a way to measure the size of x(t).

Examples

2-norm (energy norm): ‖x‖2 =
√∫ ∞

0 |x(t)|2dt

sup-norm: ‖x‖∞ = supt∈R+ |x(t)|

The space of signals with ‖x‖2 < ∞ is denoted L2.

Parseval’s Theorem

Theorem If x, y ∈ L2 have the Fourier transforms

X(iω) =
∫ ∞

0
e−iωtx(t)dt, Y (iω) =

∫ ∞

0
e−iωty(t)dt,

then ∫ ∞

0
yT (t)x(t)dt = 1

2π

∫ ∞

−∞
Y ∗(iω)X(iω)dω.

In particular

‖x‖2
2 =

∫ ∞

0
|x(t)|2dt = 1

2π

∫ ∞

−∞
|X(iω)|2dω.

‖x‖2 < ∞ corresponds to bounded energy.
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System Gain

A system S is a map between two signal spaces: y = S(u).

u y
S

The gain of S is defined as γ(S) = sup
u∈L2

‖y‖2
‖u‖2

= sup
u∈L2

‖S(u)‖2
‖u‖2

Example The gain of a static relation y(t) = αu(t) is

γ(α) = sup
u∈L2

‖αu‖2
‖u‖2

= sup
u∈L2

|α|‖u‖2
‖u‖2

= |α|

Example—Gain of a Stable Linear System

γ
(
G

)
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u∈L2

‖Gu‖2
‖u‖2

= sup
ω∈(0,∞)
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Proof: Assume |G(iω)| ≤ K for ω ∈ (0, ∞). Parseval’s theorem gives

‖y‖2
2 = 1

2π

∫ ∞

−∞
|Y (iω)|2dω

= 1
2π

∫ ∞

−∞
|G(iω)|2|U(iω)|2dω ≤ K2‖u‖2

2

This proves that γ(G) ≤ K. See [Khalil, Appendix C.10] for a proof of
the equality.

2 minute exercise: Show that γ(S1S2) ≤ γ(S1)γ(S2).

u y
S2 S1

Example—Gain of a Static Nonlinearity

|f(x)| ≤ K|x|, f(x∗) = Kx∗

u(t) y(t)
f(·) x

x∗

Kx
f(x)

‖y‖2
2 =

∫ ∞

0
f2(

u(t)
)
dt ≤

∫ ∞

0
K2u2(t)dt = K2‖u‖2

2

for u(t) =
{

x∗ 0 ≤ t ≤ 1
0 t > 1 one has ||y||2 = ||Ku||2 = K||u||2

=⇒ γ(f) = sup
u∈L2

‖y‖2
‖u‖2

= K.

BIBO Stability

u y
S γ(S) = sup

u∈L2

‖y‖2
‖u‖2

Definition
S is bounded-input bounded-output (BIBO) stable if γ(S) < ∞.

Example: If ẋ = Ax is asymptotically stable then
G(s) = C(sI − A)−1B + D is BIBO stable.

The Small Gain Theorem

r1

r2

e1

e2

S1

S2

Theorem
Assume S1 and S2 are BIBO stable. If

γ(S1)γ(S2) < 1

then the closed-loop map from (r1, r2) to (e1, e2) is BIBO stable.

Proof

Define ‖y‖T =
√∫ T

0 |y(t)|2dt. Then ‖S(y)‖T ≤ ‖S‖ · ‖y‖T .

e1 = r1 + S2(r2 + S1(e1))

‖e1‖T ≤ ‖r1‖T + ‖S2‖
(
‖r2‖T + ‖S1‖ · ‖e1‖T

)

‖e1‖T ≤ ‖r1‖T + ‖S2‖ · ‖r2‖T

1 − ‖S1‖ · ‖S2‖

This shows bounded gain from (r1, r2) to e1.

The gain to e2 is bounded in the same way.

Linear System with Static Nonlinear Feedback (1)

−
r y

G(s)

f(·)

y

Ky
f(y)

G(s) = 2
(s + 1)2 and 0 ≤ f(y)

y
≤ K

γ(G) = 2 and γ(f) ≤ K.

The small gain theorem gives that K ∈ [0, 1/2) implies BIBO stability.
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Example

replacements
−

r y
G(s)

1
4 sin(·)

{
ẋ = −x + r − sin(y)/4
ẏ = −y + 2x

G(s) = 2
(s + 1)2

The closed loop system is stable by the small gain theorem.

The Nyquist Theorem

−
G(s)

Ω
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G(Ω)

Theorem
If G(s) is stable, then the closed loop system [1 + G(s)]−1 is stable if
and only if the Nyquist curve does not encircle −1

The difference between the number of unstable poles in [1 + G(s)]−1

and the number of unstable poles in G(s) is equal to the number of
times the point −1 is encircled by the Nyquist plot in the clockwise
direction.

The Small Gain Theorem can be Conservative

Let f(y) = Ky for the previous system.
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G(iω)

The Nyquist Theorem proves stability when K ∈ [0, ∞).
The Small Gain Theorem proves stability when K ∈ [0, 1/2).

The Circle Criterion

Case 1: 0 < k1 ≤ k2 < ∞

−
r y

G(s)

f(·)

replacements
y

k1y

k2yf(y)

− 1
k1

− 1
k2

G(iω)

Theorem Consider a feedback loop with y = Gu and
u = −f(y) + r. Assume G(s) is stable and that

0 < k1 ≤ f(y)
y

≤ k2.

If the Nyquist curve of G(s) does not intersect or encircle the circle
defined by the points −1/k1 and −1/k2, then the closed-loop system
is BIBO stable from r to y.

Other cases

G: stable system

◮ 0 < k1 < k2: Stay outside circle

◮ 0 = k1 < k2: Stay to the right of the line Re s = −1/k2
◮ k1 < 0 < k2: Stay inside the circle

Other cases: Multiply f and G with −1.

G: Unstable system
To be able to guarantee stability, k1 and k2 must have same sign
(otherwise unstable for k = 0)

◮ 0 < k1 < k2: Encircle the circle p times counter-clockwise (if ω
increasing)

◮ k1 < k2 < 0: Encircle the circle p times counter-clockwise (if ω
increasing)

where p=number of open loop unstable poles

Linear System with Static Nonlinear Feedback (2)

y

Ky
f(y)
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− 1
K

G(iω)

The “circle” is defined by −1/k1 = −∞ and −1/k2 = −1/K.

min Re G(iω) = −1/4

so the Circle Criterion gives that if K ∈ [0, 4) the system is BIBO
stable.

Example

−
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− 1
K

G(iω)

{
ẋ = −x + r − sat(y)
ẏ = −y + 2x

G(s) = 2
(s + 1)2

0 ≤ sat(x)
x

≤ 1 < K

The closed loop system is BIBO stable by the circle criterion.

Proof of the Circle Criterion

Let k = (k1 + k2)/2 and f̃(y) = f(y) − ky. Then

∣∣∣∣
f̃(y)

y

∣∣∣∣ ≤ k2 − k1
2 =: R

y1

y2

r1

r2

e1

e2

G(s)

−f(·)

r̃1

G̃

G

−k

y1

r2
−f̃(·)

r̃1 = r1 − kr2
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Proof of the Circle Criterion (cont’d)

r̃1

r2

G̃(s)

−f̃(·)

−k

R

1
G(iω)

SGT gives stability for |G̃(iω)|R < 1 with G̃ = G

1 + kG
.

R <
1

|G̃(iω)|
=

∣∣∣∣
1

G(iω) + k

∣∣∣∣

Transform this expression through z → 1/z.

Lyapunov revisited

Original idea: “Energy is decreasing”

ẋ = f(x), x(0) = x0

V (x(T )) − V (x(0)) ≤ 0
(+some other conditions on V )

New idea: “Increase in stored energy ≤ added energy”

ẋ = f(x, u), x(0) = x0

y = h(x)

V (x(T )) − V (x(0)) ≤
∫ T

0
ϕ(y, u)︸ ︷︷ ︸

external power

dt (1)

Motivation

Will assume the external power has the form φ(y, u) = y⊤u.

Only interested in BIBO behavior. Note that

∃V ≥ 0 with V (x(0)) = 0 and (1)

⇐⇒
∫ T

0
y⊤u dt ≥ 0

Motivated by this we make the following definition

Passive System

u y
S

Definition The system S is passive from u to y if

∫ T

0
y⊤u dt ≥ 0, for all u and all T > 0

and strictly passive from u to y if there ∃ǫ > 0 such that

∫ T

0
y⊤u dt ≥ ǫ

∫ T

0
(|y|2 + |u|2)dt, for all u and all T > 0

A Useful Notation

Define the scalar product

〈y, u〉T =
∫ T

0
y(t)⊤u(t) dt

u y
S

Cauchy-Schwarz inequality:

〈y, u〉2
T ≤ 〈y, y〉T · 〈u, u〉T .

2 minute exercise

Assume S1 and S2 are passive. Are then parallel connection and
series connection passive? How about inversion; S−1

1 ?

u y
S1

S2

u y
S1 S2

u y
S−1

1

Feedback of Passive Systems is Passive

−
r1

r2

y1

y2

e1

e2

S1

S2

If S1 and S2 are passive, then the closed-loop system from (r1, r2) to
(y1, y2) is also passive.

Proof: 〈y, r〉T = 〈y1, r1〉T + 〈y2, r2〉T

= 〈y1, r1 − y2〉T + 〈y2, r2 + y1〉T

= 〈y1, e1〉T + 〈y2, e2〉T ≥ 0
Hence, 〈y, r〉T ≥ 0 if 〈y1, e1〉T ≥ 0 and 〈y2, e2〉T ≥ 0

Passivity of Linear Systems

Theorem An asymptotically stable linear system G(s) is passive if
and only if

Re G(iω) ≥ 0, ∀ω > 0

It is strictly passive if and only if there exists ǫ > 0 such that

Re G(iω) ≥ ǫ(1 + |G(iω)|2), ∀ω > 0

Example

G(s) = s + 1
s + 2 is passive and

strictly passive,

G(s) = 1
s

is passive but not strictly

passive. 0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

0.2

0.4

0.6

 

 

G(iω)
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A Strictly Passive System Has Finite Gain

u y
S

If S is strictly passive, then γ(S) < ∞.

Proof: Note that

ǫ〈y, y〉T + ǫ〈u, u〉T ≤ 〈y, u〉T ≤
√

〈y, y〉T · 〈u, u〉T ≤ ‖y‖2 · ‖u‖2

Hence, ǫ〈y, y〉T ≤ ‖y‖2 · ‖u‖2, so letting T → ∞ gives

‖y‖2 ≤ 1
ǫ

‖u‖2

The Passivity Theorem

−

r1

r2

y1

y2

e1

e2

S1

S2

Theorem If S1 is strictly passive and S2 is passive, then the
closed-loop system is BIBO stable from r to y.

Proof of the Passivity Theorem

S1 strictly passive and S2 passive give

ǫ〈y1, y1〉T + ǫ〈e1, e1〉T ≤ 〈y1, e1〉T + 〈y2, e2〉T = 〈y, r〉T

Therefore

〈y1, y1〉T + 〈r1 − y2, r1 − y2〉T ≤ 1
ǫ

〈y, r〉T

or

〈y, y〉T − 2〈y2, r2〉T + 〈r1, r1〉T ≤ 1
ǫ

〈y, r〉T

Finally

〈y, y〉T ≤ 2〈y2, r2〉T + 1
ǫ

〈y, r〉T ≤
(

2 + 1
ǫ

)√
〈y, y〉T 〈r, r〉T

Letting T → ∞ gives ‖y‖2 ≤ C‖r‖2 and the result follows

Passivity Theorem is a “Small Phase Theorem”

−
r1

r2

y1

y2

e1

e2

S1

S2

φ2φ1

Example—Gain Adaptation

Applications in channel estimation in telecommunication, noise
cancelling etc.

replacements

Model

Process
u

θ∗

θ(t)

G(s)

G(s)

y

ym

Adaptation law:

dθ

dt
= −γu(t)[ym(t) − y(t)], γ > 0.

Gain Adaptation—Closed-Loop System

u

−
−γ

s

θ∗

θ(t)

G(s)

G(s)

y

ym

θ

Gain Adaptation is BIBO Stable

u S

θ∗

θ

(θ − θ∗)u ym − y

−
−γ

s

G(s)

S is passive (Exercise 4.12), so the closed-loop system is BIBO stable
if G(s) is strictly passive.

Simulation of Gain Adaptation

Let G(s) = 1
s + 1 + ǫ, γ = 1, u = sin t, θ(0) = 0 and γ∗ = 1

0 5 10 15 20
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0
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0

0.5

1
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Storage Function

Consider the nonlinear control system

ẋ = f(x, u), y = h(x)

A storage function is a C1 function V : Rn → R such that

◮ V (0) = 0 and V (x) ≥ 0, ∀x 6= 0
◮ V̇ (x) ≤ uT y, ∀x, u

Remark:

◮ V (T ) represents the stored energy in the system

◮ V (x(T ))︸ ︷︷ ︸
stored energy at t = T

≤
∫ T

0
y(t)u(t)dt

︸ ︷︷ ︸
absorbed energy

+ V (x(0))︸ ︷︷ ︸
stored energy at t = 0

, ∀T > 0

Storage Function and Passivity

Lemma: If there exists a storage function V for a system

ẋ = f(x, u), y = h(x)

with x(0) = 0, then the system is passive.

Proof: For all T > 0,

〈y, u〉T =
∫ T

0
y(t)u(t)dt ≥ V (x(T )) − V (x(0)) = V (x(T )) ≥ 0

Lyapunov vs. Passivity

Storage function is a generalization of Lyapunov function

Lyapunov idea: “Energy is decreasing”

V̇ ≤ 0

Passivity idea: “Increase in stored energy ≤ Added energy”

V̇ ≤ uT y

Example KYP Lemma

Consider an asymptotically stable linear system

ẋ = Ax + Bu, y = Cx

Assume there exists positive definite symmetric matrices P , Q such
that

AT P + PA = −Q, and BT P = C

Consider V = 0.5xT Px. Then

V̇ = 0.5(ẋT Px + xT Pẋ) = 0.5xT (AT P + PA)x + uT BT Px

= −0.5xT Qx + uT y < uT y, x 6= 0
(2)

and hence the system is strictly passive. This fact is part of the
Kalman-Yakubovich-Popov lemma.

Next Lecture

◮ Describing functions (analysis of oscillations)
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