Lecture 3

» Phase-plane analysis
» Classification of singularities
> Stability of periodic solutions

Material

» Glad and Ljung: Chapter 13
» Khalil: Chapter 2.1-2.3
> Lecture notes

Today’s Goal

You should be able to

» sketch phase portraits for two-dimensional systems

» classify equilibria into nodes, focus, saddle points, and center
points.

» analyze limit cycles through Poincaré maps

First glipse of phase plane portraits: Consider the system

. 2
T = x] + T2

i’2 = —I1 — T2

Flow-interpretation: To each point (x1, x2) in the plane there is an
associated flow-direction % = f(x1,229)

First glipse of phase plane portraits: Consider the system

. 2
T = x] + T2

L9 = —x1 — T2

In the point (z1, x2) = (1, 2) the vector field is pointing in the
direction (1242, —1 —2) =(3, —3).

Linear Systems Revival

d xr1 T
el —A
dt {m} {m}

Analytic solution:  (t) = e*z(0).
If A is diagonalizable, then
At 1
At Aty —1 e 0
et =VetV T = [vl ’Ug} { 0 eAZ‘} [Ul 1)2]
where v1, v9 are the eigenvectors of A

(AU] = )\1’[11 etc).

Matlab:
>> [V,Lambdal=eig(A)

Example: Two real negative eigenvalues

Given the eigenvalues \; < Ao < 0, with corresponding
~ =~

) faster  slower
eigenvectors v; and v, respectively.

Solution: z(t) = c1eMtuy + cpe?tvy

Fast eigenvalue/vector: (t) = cie*tvy + cavy for small t.
Moves along the fast eigenvector for small ¢

Slow eigenvalue/vector: x(t) ~ coeM2ly, for large t.
Moves along the slow eigenvector towards = = 0 for large ¢

Example—Stable Node

-1
T = 0 9 x
()\1,)\2) = (—1, —2) and [1)1 'UQ] = |}) 711:|

v1 is the slow direction and v is the fast.
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Example—Unstable Focus

. o —w .
x:{ }x, o,w >0, A2 =0 Fiw

eOtpiwt 0 1 1] 1
0 eat e —iwt i .T(

In polar coordinates r = \/z} + 23, § = arctan o /24
(r1 = rcosf, zo = rsinb):

(=)
=




Example- unstable focus contd

Mo=14i Ao =03+i

Phase Plare

Phiase Flang 1

Equilibrium Points for Linear Systems

stable node unstable node saddle point
Im\; =0: A1, A2 <0 A, A2 >0 AL <0< A2
Im\; #0: Rel; <0 ReX; >0 ReX; =0
stable focus unstable focus center point
x2

4 minute exercise

What is the phase portrait if \1 = Ao ?

Star Node or Multi-Tangent Node

Case I: If

. |A 0 B
xf{o )\}x, rank (Al — A) =0

then the solution is

z1(t) = 21 (0)eM
2o(t) = x9(0)eM

One Tangent Node

Case II: If

PR B
xf{o )\}x, rank (Al — A) =1

then the solution is

z1(t) = 21(0)eM + taa(0)eM
zo(t) = w9(0)eM

T
There is only one eigenvector: v; = avy = [1 0] .

ey

@
H

Linear Time-Varying Systems (warning)

Warning: Pointwise “Left Half-Plane eigenvalues” of A(t)
(i.e., time-varying systems) do NOT impose stability!!!

B —1+acos?’t 1—asintcost
A<t>7(—1—asintcost —1+ asin’®t ) a>0

Pointwise eigenvalues are given by

a—2++vVaz—-4

At)=A= >

which are in the LHP for 0 < « < 2 (and here even constant). However,

(a—1)t —t g
e cost e ‘'sint
o(t) = < —el@Dtsint et cost >Z(0)’

which is an unbounded solution for cv > 1.

Phase-Plane Analysis for Nonlinear Systems

Close to equilibria “nonlinear system” ~ “linear system”.
Theorem Assume
i=f(x)

is linearized at x( so that
& = Az + g(x),

where g € C! andg(ﬁ”z):igff”")ﬁ()asxﬁxo.

If Z = Az has a focus, node, or saddle point, then & = f(x) has the
same type of equilibrium at the origin.

If the linearized system has a center, then the nonlinear system has
either a center or a focus.

How to Draw Phase Portraits

If done by hand then

. Find equilibria (also called singularities)

. Sketch local behavior around equilibria

. Sketch (&1, @2) for some other points. Use that g% = ;”—;
. Try to find possible limit cycles

o A~ W N =

. Guess solutions

Matlab: pptool7/pptool8, dfield7/dfield8, dee, ICTools,
etc.

PPTool and some other tools for Matlab is available on or via

http://www.control.lth.se/course/FRTNO5




Phase-Locked Loop

A PLL tracks phase 0in(t) of a signal sin(t) = Asin[wt + 0in(¢)].

Sin “Oout”
- Phase :
Detector Filter VCO
6in e . K éout 1 eout
®1 sin(’) 11sT s

Singularity Analysis of PLL

Let 1 (t) = Oou(t) and xo(t) = fou(2).
Assume K, T > 0 and 6iy(t) = 6 constant.

i‘l )
By = —T ey + KT sin(fyy — 21)

Singularities are (6in + nr,0), since

1 =0=>22=0
i9 =0 = sin(0y, —x1) =0 =1 = Oy + n7w

Singularity Classification of Linearized System

Linearization gives the following characteristic equations:

n even:
MN4T N+ KT =0
K > (4T)~! gives stable focus
0 < K < (4T)~! gives stable node
n odd:
MN+TIN-KT'=0
Saddle points for all K, T > 0

Phase-Plane for PLL

K =1/2,T = 1: Focus (2km,0), saddle points ((2k + 1), 0)

Fhase Flane

Summary

Phase-plane analysis limited to second-order systems (sometimes it is
possible for higher-order systems to fix some states)

Many dynamical systems of order three and higher not fully
understood (chaotic behaviors etc.)

Bonus — Discrete Time

Many results are parallel (observability, controllability,...)

Example: The difference equation

Tpp1 = f(ak)
is asymptotically stable at z* if the linearization

of

—=| has all eigenvalues in || < 1
o=

(that is, within the unit circle).

Example (cont'd): Numerical iteration

Tp1 = f(z)

to find fixed point

Periodic Solutions: z(t + 1T') = z(t)

Example of an asymptotically stable periodic solution:

By =ay — 22—z (27 + 23)

&y = 1 + 29 — xo(2? + 22)
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Periodic solution: Polar coordinates.

Let
x1 =rcosf = dxi; = cosfOdr — rsin Hdf
ry =rsinf = dxe = sinbdr + rcosdf
=
Py _ 1 rcosf rsinf T
9 ) r\ —sinf cosf o
Now
i =7(1—7r%)cosh —rsinf
iy = (1 —72)sinf + rcosf
which gives

r‘:r(lfrz)
=1

Only » = 1 is a stable equilibrium!

A system has a periodic solution if for some 7' > 0
z(t+T)==x(t), Vt>0

Note that a constant value for z(¢) by convention not is regarded as

periodic.

» When does a periodic solution exist?

» When is it locally (asymptotically) stable? When is it globally
asymptotically stable?

Poincaré map (“Stroboscopic map”)

= f(x), zeR"
©1(q) is the solution starting in g after time ¢.
¥ ¢ R" s a hyperplane transverse to ;.

The Poincaré map P : ¥ — Xis

P(q) = ¢r(g)(), 7(q) is the first return time

vi(q)

Limit Cycles

If a simple periodic orbit pass through ¢*, then P(¢*) = ¢*.

Such an orbit is called a limit cycle.
q* is called a fixed point of P.

P(g*) = ¢*

Does the iteration g1 = P(gy) converge to ¢*?

Locally Stable Limit Cycles

_ 0P

The linearization of P around ¢* gives a matrix W = B3| . S0

T

(Gk+1 —4") = Wk — %),
if gy is close to ¢*.

> Ifall |\;(W)| < 1, then the corresponding limit cycle is locally
asymptotically stable.

> If |\;(W)| > 1, then the limit cycle is unstable.

Linearization Around a Periodic Solution

The linearization of

#(t) = f(=(t))

around xo(t) = zo(t +T') is

Z(t) = A(t)z(t)
of

A = S (o) = A+ 1)

P is the map from the solution att = 0to ¢t = 7(q).

Example—Stable Unit Circle

Rewrite (1) in polar coordinates:

7 =r(l—1?

Choose ¥ = {(r,0) : r > 0,0 = 2nk}.

The solution is
i(ro, 0p) = ([1 + (r0_2 - l)e’zt]’lﬂ,t + 00)

First return time from any point (o, 6) € X is 7(rq, 6g) = 2.

Example—Stable Unit Circle

The Poincaré map is
Plro) = [L+(rg? = )e™>>7] /2

ro = lis a fixed point.

The limit cycle that corresponds to r(t) = 1 and 6(t) = ¢ is locally
asymptotically stable, because

W= ZTPO(” = [e=]

and
W=

P L
—(1)| = 4 1
] =l <




Example—The Hand Saw

Can we stabilize the inverted pendulum by vertical oscillations?

The Hand Saw—Poincaré Map

:bl =2

. 1 2. .

xgzz g+ aw”sinx3 | sinxy
Id(t) =w

Choose ¥ = {3 = 27k}.

The Hand Saw—Poincaré Map

¢* =0and T = 27 /w. No explicit expression for P. It is, however,
easy to determine W numerically. Do two (or preferably many more)
different simulations with different, small, initial conditions z(0) = y
and z(0) = z.

Solve W through (least squares solution of)

[m(T)‘z(O):y 2(T) z(O):z] =W [y Z]

This gives for a = 1cm, £ = 17cm, w = 180

137 0.035
W= [—3.86 O.63OJ

which has eigenvalues (1.047,0.955). Unstable.
W is stable for w > 183

The Hand Saw—Stability Condition

Make the assumptions that
>a and aw’ > g

Then some calculations show that the Poincaré map is stable at

q¢* = 0 when
V290
a

w >

a=1cmand ¢ =17 cm give w > 182.6 rad/s (29 Hz).

The Hand Saw—Simulation

Simulation results give good agreement

0.5 w =183
o
-05
o 10 20 80 40 50 60 70 80
1000
500 w =182
0

Next Lecture

» Lyapunov methods for stability analysis

Lyapunov generalized the idea of: If the total energy is dissipated
along the trajectories (i.e the solution curves), the system must be
stable.

Benefit: Might conclude that a system is stable or asymptotically stable
without solving the nonlinear differential equation.




