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The following exercises should be solved with help of computer programs and
simulation tools. Remember that computers can help to give insight, but you still
need to understand the underlying theory.

1. Consider a tank where liquid flows in trough a controlled pump, and exits
trough a hole in the bottom (those who read the basic control course at LTH
will recognize this as the “water tanks” from lab one and two). A simple first
order model describes the liquid level:

ḣ = ku− a
√
h for h ≥ 0 (1)

where k and a are constants. Use a = 1/3000 and k = 1/1500 for simulations.
Around the operating point h0 the linearized dynamics are given by

d∆h
dt

= ku− 1
2

1
√
h0
a∆h

The inflow is controlled by a PI controller, which in the Laplace domain is
given by:

Gc(s) = K 1+ sTi
Tis

(2)

The controller is designed by pole-placement. The denominator of the closed
loop close to the operating point should be s2 + 2ζω + ω2. Recall that ω
corresponds to the speed of the system and ζ to the damping. It is easy to
show that the desired closed loop is achieved by choosing

K =
1
k (

2ζω − 1/T)

Ti =
Kk
ω2

(3)

where T = 2
√
h0
a . Let h0 = 3 and use ω = 1/3000 and ζ = 0.9 for simulation,

corresponding to an open loop with reasonable speed and damping. Verify
that the system responds as desired when changing from normal operation
at h = 3m to 3.8m, and back. Notice which range the control operates within
under the changes.

2. The pump has limitations: First of all, it can not suck liquid out of the tank.
The lowest flow it can provide, is zero flow. Also, it has a maximum capacity,
in this case, use umax = 1. Insert the described saturation in the simulation.
Rerun the previous experience. Do you see any issues? Can you explain them?

3. Investigate what happens when the reference changes from normal operation
(h = 3m) to a higher value (h = 5m) and then back to h = 3m after, say
5 · 104 seconds. Run the simulation for 2 · 105 seconds.
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4. Assuming that you can measure the saturated flow, design an integrator
anti-windup scheme so that the observed problems do not occur.

5. Assuming that you are aware of the saturation, but that you can NOT mea-
sure the saturated flow, design an integrator anti-windup scheme to solve
the problem.

Hints and Answers

1. The control signal reaches values that are outside the restrictions specified
in subtask 2.

2. The initial input u is bigger than umax, leading to saturation. During the
saturation the integral term increases much more than is needed to reach
the set point. This leads to integrator wind up and the control signal will be
too large when y reaches the set point, resulting in a large overshoot. After
a while, the integrator term will decrease, and the set point will be reached.

3. The saturation in combination with the integral part of the controller, results
in windup. Thus, when changing the reference back to h = 3 m, the controller
still acts to keep a large height to compensate for the historical error. This
behavior is undesired. After a while, the integrated error approaches 0, and
the controller then acts to decrease the height.

4. See lecture slides on anti-windup.

5. See lecture slides on anti-windup.
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