
Nonlinear Control and Servo Systems

Laboratory Exercise 3

Optimal Control of Pendulum on Cart

Created: 2008 by Pontus Giselsson

Updated for Julia: 2018 by Mattias Fält

Latest update: December 10, 2018





1. Introduction

This laboratory exercise addresses optimal control applied to a free swinging

pendulum that is attached to a cart. The laboration consists of three parts.

The first part is on time optimal control of the cart. The second and third

parts deal with time optimal control of the pendulum and cart together. In all

three parts, the task will be to move the cart along the track in as short time

as possible. The system should start and stop at rest and we have limited

control actuation.

Important! There are 5 assignments in the lab. Number 1, 2, 4 and 5

have home assignment parts, which you will have to do before the lab.

The files you need for the lab can be downloaded from the course homepage.

Initialize the lab by running the script pend_init.m in Matlab.

2. Modeling of a Pendulum on a Cart

2.1 System description

The system consists of a cart that is driven by a DC-motor and a free swinging

pendulum that is attached to the cart. The system will be controlled by a

cascaded controller, see Figure 1. The outer controllers, C2 in Figure 1, that

will be designed during the lab with different control objectives in mind, will

use the acceleration reference to the inner loop as its control signal. We will

use both feedback and feedforward control during the lab.
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2.2 Nonlinear Model

The inner loop in Figure 1 consists of a cascade of a current loop and a

PI-controlled velocity/acceleration loop. Without going into details the result-

ing cart dynamics can be modeled as a double integrator from acceleration

reference aref to cart position p, that is

P =
1

s2
aref

We are intereseted in the velocity and the position of the cart. To create

a state space model of the cart we introduce position, p, as one state, and

velocity, ṗ, as the other state. If we introduce

x = (p ṗ)T
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the state equation becomes

ẋ = Acx+ Bcaref =
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A pendulum model is most easily obtained using Lagrange mechanics. The
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Figure 2 The pendulum

acceleration of the suspension point of the pendulum is equal to the accel-

eration of the cart, p̈. This creates an oppositely directed force, Fx = −mp̈,

at the suspension point of the pendulum. This force acts along the negative

x-axis, see Figure 2. The potential energy, V , and the kinetic energy, T, in

the x-y coordinates are

V = m�yp , T =
1

2
m(ẋ2

p + ẏ2
p)

where xp and yp are the pendulum end point coordinates, m is the pendulum

mass and � is the gravitational acceleration. We introduce the generalized

coordinate θ , which is the pendulum angle, see Figure 2. Note that we only

need one generalized coordinate since the radius is constant and equal to the

length of the pendulum1, l. The relationsship between the coordinate systems

is

xp = rx(θ) = −l sinθ

yp = ry(θ) = −l cosθ

In the generalized coordinate, θ , the potential and kinetic energy become

V = −m�l cosθ and T =
1

2
ml2θ̇ 2

The Lagrangian is L = T − V and the Lagrange equation is

d

dt

(

�L

�θ̇

)

−
�L

�θ
= (Fx 0) · (

�rx(θ)

�θ

�ry(θ)

�θ
)T

Calculation of the partial derivatives gives

d

dt
(ml2θ̇) +m�l sinθ = mp̈l cosθ

1For the cart-pendulum process in the lab exercise, the pendulum length, l, is 0.345 m.
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which results in the following pendulum equation

θ̈ = −
�

l
sinθ +

p̈

l
cosθ

The reaction forces from the pendulum to the cart is attenuated by the inner

controller. Thus an approximate model of the complete system dynamics is
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where p̈ in the second equation has been replaced by the control signal aref .

2.3 Linearized Model

The model of the cart dynamics is linear but the pendulum equation is non-

linear. When linearizing the pendulum equation in the downward position,

around θ = 0, we get sinθ ( θ and cosθ ( 1. We introduce the state vector

z = (p ṗ θ θ̇)T

Linearization of the full system dynamics, (2), results in the following state

space system

ż = Az+ Baref =
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3. Control of the Pendulum on Cart

The first part of this laboratory will be on time optimal control of the cart. The

second part will address time optimal control of the cart and the pendulum.

The third part uses dedicated optimization software to create time optimal

control trajectories. To make it more interesting we will have additional

constraints specified by areas where the end point of the pendulum must not

enter.

3.1 Time-optimal Control (general case)

The linearized models will be used when calculating the time-optimal control

problems. To avoid infinite control signals, we need control signal limitations,

which is a physically natural constraint on the control design. The problem

becomes

minimize t f = minimize
∫t f

0
1 dt

subject to: ẋ = Aox+ Bou

pup ≤ umax

x(0) = x0

x(t f ) = xt f
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where x is some arbitrary state vector and u is some control signal. The

Hamiltonian, H, becomes H = 1+ λT(Aox+ Bou). The Maximum Principle

states that if we have optimal trajectories u∗(t) and x∗(t) then

min
u

H(x(t), u(t), λ(t)) = H(x∗(t), u∗(t), λ(t))

where

λ̇ = −
�H

�x
= −AT

o λ

Since the only term that is dependent on u in H is λT(t)Bou(t) = σ(t)u(t),
with σ(t) " λT(t)Bo, H is minimized by choosing

u∗(t) =

{

−umax , σ(t) > 0

umax , σ(t) < 0

If σ is zero only a finite number of time points then the time optimal controller

is a bang-bang controller. This is the case if (A, Bi) is controllable for every

column Bi of B.

3.2 Time-optimal Control of the Cart

The model of the cart is found in (1) but is restated here for convenience.

ẋ = Acx+ Bcaref =
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where x = (p ṗ)T . The problem we are dealing with in this part of the lab is

to move the cart along the track in as short time as possible. The cart should

start at rest in one point, p0, and stop at rest in the origin. The magnitude of

the control signal is limited to amax m/s2. Mathematically this problem can

be formulated as the following minimum time optimization problem

minimize t f

subject to: ẋ = Acx+ Bcaref

paref p ≤ amax

x(0) = (p0 0)T

x(t f ) = (0 0)T
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Assignment 1

Home assignment:

• Use the theory in Section 3.1 to conclude that the time-optimal

controller is a bang-bang controller. Decide the number of switches

in the optimal control trajectory for the cart. That is, decide how

many times σ(t) changes sign. Assume that p0 ≤ 0 and determine

an expression for the optimal a∗ref (you do not yet have to find the

points in time when σ changes sign).

• The solution to state equation (4) is

x(t f ) = eAc t f x(0) +

∫ t f

0

eAc(t f−τ )Bcaref dτ (5)

where

eAc t =









1 t

0 1









Set your calculated a∗ref as control signal in (5) and calculate the

switching time, t1, and the final time, t f .

At the lab: Edit assignment1.m and run it to calculate the switching

times and the final time. Simulate the system using cart.mdl for differ-

ent values of p0 and aref . Note that the implemented model has been

discretized in time, so the switching times are now a multiple of the

sampling period. Is the control objective achieved?

Since we have two states it is interesting to regard the problem from a

geometric point of view. Set p1 = p and p2 = ṗ, for aref = amax we have

ṗ1 = p2, ṗ2 = amax

The time variable can be eliminated by forming dp2/dp1 =
dp2

dt
/dp1

dt
. This

gives

dp2

dp1

=
amax

p2

Rearranging the terms and integrating give

∫

dp1 =

∫

p2

amax

dp2

with the solution

p1 + C1 =
p2

2

2amax

(6)

When instead aref = −amax we get the solution

p1 + C2 = −
p2

2

2amax

(7)

Phase plane trajectories for some values of C1 and C2, when amax = 3 m/s2,

are plotted in Figure 3.
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Figure 3 Trajectories for aref = amax = 3 m/s2 and aref = −amax = −3 m/s2

Assignment 2

Home assignment:

• The system should be controlled to the origin. Decide graphically

from Figure 3 the regions of the state space where amax and −amax

should be used respectively to achieve this. Draw the switching

curve between the two regions.

• Determine an equation f (p1, p2) = 0 that describes how p1 and p2

relate to each other on the switching curve. (Hint: First determine

the constants, C1 and C2, in (6) and (7). Then put the equations

together. To do this you will need to use sign(p2).)

• f (p1, p2) takes negative values for points on one side of the switch-

ing curve, and positive values for points on the other side. Deter-

mine which side that gives positive and negative values respec-

tively. We want aref to be amax on one side of the switching curve

and −amax on the other. Derive an expression for aref . (Hint: Use

sign( f (p1, p2)).)
At the lab:

• Type your derived controller in the block for embedded matlab code

in cart.mdl (to avoid rapid switching when the system is close to the

origin, linear state feedback will be used instead in a neighborhood

of the origin). Switch controller and simulate the system to see if

the control objectives are achieved. Phase plane trajectories can be

plotted by the script plot_cart_pp.m. Set initPosError to see what

happens if there is an error in the assumed initial position. Which

controller performs best if the actual initial position is not p0?

• Try the two controllers on the real system. To do this you need to

change from “Simulation model” to “Real system” in cart.mdl. The

“Real system” is found in pend_lib.mdl. Choose an initial position

satisfying −0.8 ≤ p0 ≤ 0.

3.3 Time-optimal Control of the Pendulum on Cart

The linearized state space model for the full system is found in (3), but is
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restated here for convenience.

ż = Az+ Baref =
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where z = (p ṗ θ θ̇)T . The control objective is the same as in the previous

section, that is to move the cart from one position on the track, p0, to another

position as fast as possible with limited control actuation. The system should

be at rest both at the starting point and the final point. This is a time optimal

control problem and from the introductory section we know that the optimal

control trajectory is of bang-bang type, since the system is controllable. If the

matrix A would have had real eigenvalues, then we would also know that the

optimal control would have at most three switches, since it is a fourth-order

system. Unfortunately, A has two non-real eigenvalues. Nevertheless, we will

look for an optimal triple-switch bang-bang controller. That is

a∗ref (t) =


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The optimal switching times are calculated using (5) with appropriate system

matrices. We will need eAt to do this (Note:
√

�/l = ω).
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Insert this into (8) and we get


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+ amax(−F(0) + 2F(t1) − 2F(t2) + 2F(t3) − F(t f )) (9)

The script assignment3.m finds the smallest t1, t2, t3 and t f that satisfy (9) for

chosen amax and p0, thus giving us the time-optimal triple-switch controller.

The optimal state and control trajectories that result from applying the

optimal control trajectory are called zopt and a
opt
ref respectively.

Assignment 3

• Choose amax and p0 in assignment3.m, and run the script. Then sim-

ulate the system using cart_pend.mdl. Use the script plot_pend.m

to plot or animate the resulting pendulum movements.

• Simulate again, but change initial values for the pendulum. The

initial values are changed in assignment3.m. Why are the control

objectives not met?

Since the control objectives are not met we will introduce feedback. In As-

signment 2 we were able to analytically derive an optimal feedback law based

on the switching curve in the phase plane, but this approach is not feasible

when we are now considering a fourth-order system. We will instead use

model predictive control (MPC) to take care of when the state trajectories,

z, deviate from their optimal trajectories, zopt and also to penalize when the

control signal, aref , deviates from the optimal one, a
opt
ref , to get a smooth con-

troller. Since we have a maximum possible cart acceleration of 7 m/s2, our

control signal should stay within this limit, paref p ≤ 7. The track is a bit more

than 1 meter long. We want our controller to take care of this limitation as

well. If we define our starting position, p0, to be 0.1 m from the left end of

the track we get that p + p0 ≤ 0.9 m and p + p0 ≥ −0.1 m since p = 0 at

p0. To use linear MPC we linearize the system around the optimal trajectory

and discretize the result. The resulting models are

∆z(k + 1) = Φ(k)∆z(k) + Γ(k)∆aref (k)

Φ(k) =


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cosθ opt(k)

l
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where ∆z(k) = z(k) − zopt(k) and ∆aref (k) = aref (k) − a
opt
ref (k). It turns out

that the discretized model depends on the angle of the pendulum. Since we

know at which angle the pendulum should be at every time step, θ opt(k),
we use this angle in our linearized model. This is a good approximation, if

the actual pendulum angle, θ(k), is not too far away from the optimal, θ opt(k).

Before we can state the optimization problem that the MPC-controller should

solve at each time step, we need to define some matrices

Z(k) =




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

z(k+ 1)

...
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
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
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
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
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





zopt(k+ 1)

...

zopt(k+ N)


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
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

A
opt
ref (k) =


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
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





a
opt
ref (k)

...

a
opt
ref (k+ N − 1)


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



∆ Z(k) = Z(k) − Zopt(k) ∆ Aref (k) = Aref (k) − A
opt
ref (k)

In addition we also need a vector for the predicted positions, P(k) = block-

diag([1 0 0 0])Z(k). The block diagonal matrix picks every fourth element

of Z(k) since they contain the predicted positions of the cart. Equivalent

vectors are produced for the position deviations from the optimal positions,

∆ P(k) and for the optimal positions, Popt(k). At each time step, k, the MPC-

controller should solve the following optimization problem

min
∆ Aref (k)

∆ Z(k)T Q∆ Z(k) + ∆ Aref (k)
T R∆ Aref (k)

subject to: Aref (k) = ∆ Aref (k) + A
opt
ref (k) ≤ 7

Aref (k) = ∆ Aref (k) + A
opt
ref (k) ≥ −7

P(k) = ∆ P(k) + Popt(k) + p01 ≤ 0.1

P(k) = ∆ P(k) + Popt(k) + p01 ≥ −0.9

The Q- and the R-matrices are user chosen relative costs between the differ-

ent states and the control. The optimization problem is solved at every time

instant, k, and the control aref (k) = ∆aref (k) + a
opt
ref (k) is applied.
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Assignment 4

Home assignment: Try to understand how the Q and R-matrices

affects the control. Discuss how large and small values of R affect the

aggresiveness in the control signal. Also discuss how large and small

values of Q affect the corresponding state trajectory errors.

At the lab:

• Open assignment4.m and choose Q and R-matrices, for the MPC-

controller. Also choose sampling time, h, and cost horizon, N. The

prediction horizon of the MPC-controller is Nh. This should be

at least 0.7 s to get good predictions of the pendulum behaviour.

The computation time for the MPC-controller, found in the scope

execTime in the Simulink-model, must be less than h/2 s. Then

choose p0 and amax. Simulate the system with different initial con-

ditions on the pendulum. Recalibrate Q, R, h and N until you are

satisfied. Remember to examine the control signal as well as the

controlled signals, since we have limited actuation. Use the script

plot_pend.m to plot or animate the resulting pendulum movements.

Edit the file to specify animation speed.

• When you are satisfied with your design, try your controller on

the real process. Run the system with and without the MPC feed-

back. Also run the system with different initial conditions on the

pendulum.

3.4 Time-optimal control with obstacle avoidance

In the final part of the lab, we will try to reach the origin in a time-optimal

manner while avoiding a pendulum obstacle. Figure 4 shows how we want

the pendulum to move. The pendulum should start at rest at p = −0.8 m.

The goal is to reach p = 0 m with the constraint that the end point of

the pendulum must not enter the ellipse. When at p = 0 the pendulum

should be at rest, meaning that all states should be zero. This movement

should be performed in as short time as possible. The control signal, a_ref ,

is constrained to be between −5 and 5 m/s2, its derivative, a_ref_dot, is

constrained to be between −100 and 100 m/s3 in the optimization. Since the

track is limited we also need the cart position to satisfy −0.9 ≤ p ≤ 0.1.

This maneuver will require large pendulum movements, so the system will

no longer be described by the linearized model with sufficient accuracy. We

will thus base our control design on the nonlinear model (2). Deriving the

optimal open-loop control trajectory analytically when considering the non-

linear dynamics and nonconvex obstacle constraint is not feasible. There are

many tools that can solve such nonlinear optimization problems. The dedi-

cated optimization software JModelica.org2, is one such tool (and has been

used in the lab before), which can give us optimal open-loop trajectories.

However, its linux support is lacking, so in this lab we will be using the

package NLOptoControl.jl 3 in the open source programming language Ju-

lia4 instead. We will then use the same linear MPC framework as before to

2For more information about the open-source software JModelica.org, visit

http://www.jmodelica.org .
3The package can be found at https://github.com/JuliaMPC/NLOptControl.jl
4Julia is a new programming language, designed for scientific computing. The syntax is

similar to MATLAB, but the language is much more powerful, see https://julialang.org/.
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Figure 4 Constraints on the pendulum

follow these trajectories.

NLOptControl.jl allows us to specify the dynamics and constraints of the

system, it will then discretize the system, formulate an optimization problem

and call Ipopt5 to solve the problem.

The model of the nonlinear pendulum on cart, (2), and the optimization

problem are specified in the Julia file pendulum.jl. The states in the model

are the cart position, which is p, the cart velocity, pd, the pendulum angle,

theta, and the pendulum angle velocity, thetad. To be able to constrain the

derivative of the control signal aref , we let aref be another state, ar, and

consider its derivative, ard, to be the input.

5Ipopt is an open source software package for large-scale and nonlinear optimization, see

https://projects.coin-or.org/Ipopt
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Assignment 5

Home assignment: State the above specified optimization problem

mathematically.

At the lab:

• Open the directory which you downloaded from the course home-

page in the beginning of the lab by typing

> cd /path/to/lab-directory/

where you have to type your specific directory.

• Initialize the julia environment

> ./setupjulia

• In the julia terminal, add the nessesary packages by running

julia> include("setup.jl")

This will install all the necessary packages, precompile them

and open a Julia environment in the terminal, where Julia

commands and scripts can be executed. Then, open the Julia

file pendulum.jl with any text editor and specify the missing

constraints and model information from the home assignment.

The initial conditions are already given in this file. The file

example_problem.jl contains a simple example of a double inte-

gerator as reference, if the syntax for defining the model seems

confusing.

• In the Julia terminal, run

julia> include("pendulum.jl")

This runs the script you were editing and numerically solves

the optimization problem. This might take a bit longer the first

time you run it. The solver has to be provided with an initial

guess. This is needed because the optimization problem is rather

tough and some “guidance” is needed. The initial guess file,

initial_guess.csv, contains a feasible, but not optimal, solution to

the same problem. The initial guess file is created by dividing the

problem into two separate optimization problems. The first starts

from the beginning and ends when the pendulum is just above the

obstacle. The second starts where the first ends and ends at the

terminal constraints. (The code for generating the initial guess is

in calculate_initial_guess.jl, but this has already been run in

advance of the lab). The final optimization result is found in the

file pendulum_result.csv.

• There are three functions provided for inspecting the results

julia> plotAll(prob)

julia> plot_trajectory()

julia> create_animation()

The first plots all the states, the second plots the trajectory and

obstacle, and the third will generate an animation.

• Open assignment5.m and respecify your MPC parameters from As-

signment 4. Run assignment5.m, then simulate the system using

cart_pend.mdl. Simulate your system both in open and closed loop.

Redesign your MPC controller if you are not satisfied with the re-

sult. The script plot_optim plots the pendulum trajectory and the

elliptic constraint.

• Test your design on the real process.
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