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The following exercises should be solved with the optimization tool NLOptcontrol.jl1

in the programming language Julia. Julia is a new programming language, de-

signed for scientific computing. The syntax is similar to MATLAB, but the language

is much more powerful, see https://julialang.org/. There are multiple examples

on how to formulate and solve optimal control problems on the documentaion page

for NLOptcontrol.jl here https://juliampc.github.io/NLOptControl.jl/stable/

This software will also be used during Laboratory Exercise 3 in order to do

optimal control of a pendulum attached on a cart. Therefore, this computer exercise

will let you get acquainted with the software and get feedback from the teaching

assistants on the preparations for Laboratory Exercise 3. You are obviously not

required to know the Julia language to do the lab, you will only do minor edits in

the Julia files during the lab, and the assistant can help you with any questions.

Initialization and starting the software

Before you start to solve the problems, you must do the following steps:

1. Download the file ce5.zip from the course homepage and unzip it.

2. Open a new terminal and open the directory ce5 that you downloaded in step

1.

3. Initialize the julia environment and packages by opening a terminal and type

> ./setupjulia

4. In the Julia terminal, run

julia> include("setup.jl")

This will install all the necessary packages, precompile them, and wait for

Julia commands or scripts to be executed. When you want to run a script,

you can either copy it into the Julia terminal, or run

julia> include("my/path/to/script.jl").

You can now start to solve the problems.

Computer exercises to solve

1. 2D Double Integrator Consider the following model of a two dimensional

double integrator:

ẍ(t) = ux(t)

ÿ(t) = uy(t)

We would like to find trajectories that transfer the state of the system from

(−1.5, 0) to (1.5, 0) in 4.5 s with the control constraint u2
x + u2

y ≤ 1. This

constraint ensures that the resulting force has a magnitude equal to or less

than 1. As a second step we would like to see how the solution changes if

we impose the condition y ≥ cos x − 0.2, i.e., avoiding a certain area in the

1The package can be found at https://github.com/JuliaMPC/NLOptControl.jl
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XY-plane. Finally, the control energy needed to transfer the state should be

minimized. This gives us the following optimal control formulation

min
u

∫4.5

0

ux(t)
2 + uy(t)

2dt

subject to

ẍ(t) = ux(t)

ÿ(t) = uy(t)

x(0) = −1.5, x(4.5) = 1.5

y(0) = 0, y(4.5) = 0

ẋ(0) = 0, ẋ(4.5) = 0

ẏ(0) = 0, ẏ(4.5) = 0

1 ≥ ux(t)
2 + uy(t)

2

y(t) ≥ cos x(t) − 0.2 (Try both with and without)

The dynamics of the double integrator and system constraints can be written

in julia, when defining the states as (x, ẋ, y, ẏ), as:

✞ ☎

using NLOptControl

# =========== PROBLEM DEFINITION ==============================

# Constraints on states

XL = [-Inf,-Inf,-Inf,-Inf]

XU = [Inf,Inf,Inf,Inf]

# Constraints on control, we will add ux^2+uy^2 <= 1, so these won't be active

CL = [-1.0, -1.0]

CU = [1.0, 1.0]

# Initial and final constraints on states

X0 = [-1.5, 0, 0, 0]

XF = [1.5, 0, 0, 0]

# Create problem ===============================================================

prob = define(numStates = 4, numControls=2,

X0=X0, XF=XF, CL=CL, CU=CU, XL=XL, XU=XU)

# Give name to states and controls

states!(prob, [:x, :vx, :y, :vy],

descriptions=["x(t)", "vx(t)", "y(t)", "vy(t))"])

controls!(prob, [:ux, :uy], descriptions=["ux", "uy"])

# Setup model equations as julia **expressions** ===============================

dx = Array{Expr}(4)

dx[1] = :( vx[j] )

dx[2] = :( ux[j] )

dx[3] = :( vy[j] )

dx[4] = :( uy[j] )

## Add dynamics to model =======================================================

dynamics!(prob, dx)
✝ ✆
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and the description of the optimization problem, and the code for solving it

using the following code

✞ ☎

# Obstracle constraints

expr1 = :( ux[j]ˆ2 + uy[j]ˆ2 <= 1 )

expr2 = :( y[j] >= cos(x[j]) - 0.2 )

# Try with both [expr1] and [expr1, expr2]

constraints!(prob, [expr1])

# Number of grid points in discretization

N = 700

# Final time fixed, backward Euler discretization

configure!(prob; finalTimeDV=false, tf=4.5, integrationScheme=:bkwEuler, N=N)

# Set objective

obj = integrate!(prob, :( ux[j]ˆ2 + uy[j]ˆ2) )

# Set to minimize obj

@NLobjective(prob.ocp.mdl, Min, obj)

@time optimize!(prob)
✝ ✆

(a) Read and understand the model in the file DoubleIntegrator2D.jl and

the optimization problem description and solver in exercise1.jl. The

second file also includes code for displaying the results. Make sure you

get the gist of all steps. Then, solve the optimization problem by typing

julia> include("exercise1.jl")

in the Julia environment. This solve the problem and then plot the

results.

(b) Examine the result. Is it consistent with the specification of the opti-

mization problem? Interpret the solution from the optimization problem

and compare with your intuition.

(c) Add the path constraint y(t) ≥ cos x(t)−0.2 in the optimization problem

and solve the new problem by typing

julia> include("exercise1.jl")

again. Plot the path constraint and check that the solution avoids the

specified area in the XY-plane.

2. Van der Pol oscillator Consider the Van der Pol oscillator

ẋ1 = (1− x2
2)x1 − x2 + pu

ẋ2 = x1

where p is a parameter with the nominal value 1;

(a) In the file Vanderpol.jl a start of a model describing the dynamics of

the system is found. Complete the model and add the starting conditions

on the states according to (x1(0), x2(0)) = (0, 1).

(b) Assuming the Lagrange cost function

J =

∫ t f

0

10x2
1 + 10x2

2 + u2 dt ,

with t f = 10, edit the file exercise2.jl, similar to that one used in

Exercise 1 for the 2D double integrator.
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(c) Solve the optimization problem by typing

julia> include("exercise2.jl")

in the Julia environment and examine the solution.

(d) Add the constraint

0 ≤ u ≤ 1

to the optimization problem and solve the problem assuming the same

cost function and initial conditions as in (b). Also check what happens

if you decrease the upper bound on u.

(e) Compute the minimum-time optimal solution assuming the terminal

constraints (x1(t f ), x2(t f )) = (0, 0). To specify that the final time t f is

free, use finalTimeDV=true in the configure! command, and remove the

tf=... specification.

3. Preparations for Laboratory Exercise 3 As part of the preparation

for Laboratory Exercise 3, four home-assignments need to be done prior the

lab occasion. During this computer exercise session you can discuss your

solutions with the TA if you have any questions.
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