Institutionen for

REGLERTEKNIK

LUNDS

UNIVERSITET

Real Time Systems, FRTNO1

Exam 24 April 2020 kil 08-13

Points and Grades

All answers must include a clear motivation, including the derivation
of how the solution has been obtained, and a well-formulated answer.
Answers may be given in English or Swedish. The total number of points is 25.
The maximum number of points is specified for each subproblem.

The number of points needed to pass the exam will not exceed 12. The number
of points needed to get grade 4 will not exceed 17 and the number of points needed
to get grade 5 will not exceed 22.

Accepted Aids

On this distance exam all available material is allowed, such as books, old exams,
exercise manuals, Google, using Matlab, etc. You may of course not communicate
with or ask someone else for help. You will have contact with the teacher using zoom
during the exam.

Results

The result of the exam will become accessible through LADOK. The solutions will
be available on the course home page.

Real Time Systems 2020-04-24

1. A system is given by the following equation
by(k — 1)+ 0.5y(k) + y(k+1) = 2u(k — 1) — u(k)
where b is an unkown constant.

a. Determine the pulse transfer function of the system. (1p)

b. Is the system stable?” Hint: The asymptotic stability of a second order system
with characteristic polynomial form F(z) = 22+ a1z +az are given by (az < 1),
<a2 >—14 al), (CLQ > —1-— al) (1 p)

Solution

a. Advancing the time by 1

by(k) +0.5y(k +1) + y(k +2) = 2u(k) —u(k + 1)
(22 40524+ b)Y (2) = (2—2)U(2)

Gives the pulse transfer function

(2-2)

H = —_—
(2) 224+ 0.52+b

b. Using the 3 given conditions

b<1
b>-14+0.5
b>—-1-0.5

For asymptotic stability we get the condition (—0.5 < b < 1)

2. Consider the continuous system

x(t) = lz (Z] x(t) + [0] u(t)

y(t) =10 1]x(t)
a. Sample the system using zero-order-hold with a sample time of h. (2 p)
b. Instead consider the discrete-time system below where h is the sampling period.

y(k) = [0 1]xz(k)

Design a state-feedback controller such that the states go to 0 in a minimal
amount of steps. (1.5 p)

Real Time Systems 2020-04-24

c. In a general system, the control signal is saturated. Given the initial state
z(0) = [1,1]T what is the smallest sampling interval that we may use such that
the control is limited to |u(k)| < 2 (assume h > 0). You may assume that the
control signal takes it largest value at k = 0. (1p)

Solution

a. Deriving ® using the inverse laplace transform method gives us

_ 1 s—C 0 sia 0
(SI_A)lz(s—a)(s—c)[b s—a]:[b 1]

(s—a)(s—c) s—c
— Lt [e ;]

b eft—eat ect
c—a

And since ® = L71(sI — A)~! we have our ® matrix once we insert t = h.

We acquire I' by

P f e[

giving us our discrete time system

ol

eah 0 0
z(k+1)= lbech_eah eCh] (k) + | 4 (eCh _ 1)] u(k)

y(k) = [0 1]a(k)

u(k) = —Lx(k)

We want to match det (2 — (® —I'L)) (where L = [l1, l2]) to the polynomial
22 (deadbeat controller).

2hly 2Rl
I'L =
h2l; Rl
z—1+ 2hl1 thg

det (21 — ® +T'L) =

—h + h2l1 z—1+ h2l2
=22 + (h®ly — 2 + 2hly)z + (R%l2)

h2ly — 2+ 2hl4 =0
—
1+ h%ly — 2hl4 =0
I = 3/4h
—
Iy = 1/2h*

c. The control signal at k£ = 0 is given by w(0) = —l121(0) — la22(0) = —(I1 + l2)
The solution is given by the postive solution to the equation 8h? — 3h —2 = 0.
This second order equation can be solved in different ways, either by hand
or using Matlab. The positive solution is h = 0.7215, i.e., the answer is that
h > 0.7215.

Real Time Systems 2020-04-24

A newly graduated engineer has recently taken a course in real-time systems
and decided to incorporate his newly acquired knowledge into his control co-
de to make it thread-safe. However, due to an unexpected virus outbreak, the
engineer missed a few of the lectures and missed some essential concepts. The
code is supposed to execute a P-controller (one controller executing for two
different processes), actuate the control signal and print the given control sig-
nals to the console without having any contention for the screen. Note that
the controller will use the same K for both processes. However, this is not a
problem in this application (but a feature of the architecture).

The code can be seen below.

public class Controller {

private double K = 1.0;
private String id = "P-Controller";

public synchronized double calculate(double r, double y) {
return K*x(r-y);

}

public synchronized void setK(double K) {
this.K = K;
}

public synchronized String toString() {
return id + " with K = " + K;
}
}
public class Regulator extends Thread {

private Controller ctrl;
private int period;
private AnalogIn in;
private AnalogOut out;

public Regulator (Controller ctrl, int period, int processID) {
this.ctrl = ctrl;
this.period = period;
in = new AnalogIn(processID);
out = new AnalogOut(processID);

public void run() {
double u, y;
double r = 0.0;
long t = System.currentTimeMillis();
while (!interrupted()) {
y = in.get ();
synchronized (this) {

u = ctrl.calculate(r, y);

out.set (u);

System.out.println(ctrl.toString() + ": " + u);
}
try {

t += period;
long d = t - System.currentTimeMillis ();
if (@ > 0) {
Thread.sleep(d);
}
} catch (InterruptedException e) {
e.printStackTrace () ;

}

Real Time Systems 2020-04-24

public static void main(String[] args) {
Controller ctrl = new Controller();
Regulator rl = new Regulator(ctrl, 10, 1);
Regulator r2 = new Regulator(ctrl, 10, 2);
ri.start();
r2.start () ;

}
}
a. Can you find the real-time problems with the code? (2 p)
b. Fix the problems. (2 p)
Solution

. We synchronize on this instead of ctrl. This does not make us thread-

safe since multiple threads can access the mutually exclusive section si-
multaneously.

. We print things to the screen without treating the screen as a shared

resource. This will imply that text might be mixed on screen and weird
behavior will occur. I0-devices (such as the screen) is considered shared
variables. Therefore, the screen should be put into a monitor or similar.

. Quick fix is to synchronize on ctrl instead of this. This gives 1 p since the

explanation of why we need to synchronize on ctrl is important in a. If
synchronization has been performed using this.getClass() instead 0.5
points have been awarded. This is due to the fact that it is inefficient. For
instance, if someone were to add a synchronized method to the Regulator
class, the synchronized method in the run loop would have to be changed
as well (in order to prevent unnecessary blocking).

. Create a monitor, semaphore or similar, for the screen, or introduce a

semaphore that the regulators share.

Also seen in the code below.

public class ScreenMonitor {

}

public synchronized void print(String s) {
System.out.println(s);
}

public class Controller {

}

private double K = 1.0;
private String id = "P-Controller";

public synchronized double calculate(double r, double y) {
return K*(r-y);

}

public synchronized void setK(double K) {
this.K = K;
}

public synchronized String toString() {
return id + " with K = " + K;

}

public class Regulator extends Thread {

Real Time Systems 2020-04-24

private Controller ctrl;
private ScreenMonitor screen;
private int period;

private AnalogIn in;

private AnalogOut out;

public Regulator (Controller ctrl, ScreenMonitor screen,

int period, int processID) {
this.ctrl = ctrl;
this.screen = screen;
this.period = period;
in = new AnalogIn(processID);
out = new AnalogOut(processID);

public void run() {
double u, y;
double r = 0.0;
long t = System.currentTimeMillis();
while (!interrupted()) {
y = in.get();
synchronized (ctrl) {
u = ctrl.calculate(r, y);
out.set (u);
screen.print (ctrl.toString () +
+ processID + ": " + u);

try {
t += period;

from process

long d = t - System.currentTimeMillis();

if (d > 0) {
Thread.sleep(d);
}
} catch (InterruptedException e) {
e.printStackTrace () ;

}

}

}

public static void main(String[] args) {
Controller ctrl = new Controller ();
ScreenMonitor screen = new ScreenMonitor();
Regulator rl = new Regulator(ctrl, screen, 10,
Regulator r2 = new Regulator(ctrl, screen, 10,

ri.start();
r2.start ();

1)
2);

Three schedules (I-III) of the same schedulable task set can be seen in Figu-
re 1 for one hyper-period. All tasks are released simultaneously at the criti-
cal instant ¢ = 0. The schedules correspond to a rate-monotonic, a deadline-

monotonic, and an EDF scheduling strategy.

The schedules in Figure 1 corresponds to the following task set where some

values have gotten lost.

Taskname‘C‘D‘T‘
A 71516
B 713 |7
C 11?215

Real Time Systems 2020-04-24

A /1
I = [I] [I I [
e[1 1 1 1 1
A ~ ™ ™ ™ /1
IT = [[1] 1 I 1 1 [
o[1 1 1 1 1
A ~ ™ ™ ™ /1
IIT =1 [1 1 1 1 1 1 [[
el [1 1 1 1 1

Figur 1 The three schedules necessary to solve Problem 4

For each 7 it holds that D; and T; are unique, i.e., D4 # Dp # D¢ and
Ty #Tp # Tc.

a. What are the unknown task set parameters? Motivate. (2 p)

b. Pair the execution traces I-III with their corresponding scheduling algorithm
(rate-monotonic, deadline-monotonic, and EDF). For full points, a thorough
motivation is need. (2 p)

Solution

Tabell 1 Taskset for Problem 4

Task name ‘ C|D ‘ T ‘
A 21516
B 11313
C 11215

a. The correct task set can be seen in Table 1.

e Do = 2: This is easy to see that it has to be 2. Given every single schedule,
it executes within two time units of its release. It also starts execution in
two of the traces (the one for EDF and DM), meaning that Do < Dp.

e ("4 = 2: Given the parameters for task A we can easily see that the only
way to satisfy any of the schedules C'4 has to be 2.

e Tp = 3: Given from schedule I. Due to us having a hyperperiod of 30,

Tp € {2,3,5,6,10,15} we can quickly prune 2. The second thing we can
observe is that if Dg = 3 and we assume T > 5, we will miss deadlines
in schedule I. Therefore, the only combination of T and Cpg that could
work is T =3 and Cp = 1.
Another argument could be that since C' has the highest priority in two
of the traces and B has highest priority in one trace could mean that
C has an earlier deadline but B has a shorter period meaning that B
will preempt C' in the rate-monotonic priority assignment. This argument
together with the hyperperiod argument, once again gives us T = 3.

© 0 N O U e W N =

e e
w N = O

© 0 N O U e W NN

e e e e T e e i
© 0 N U W NN = O

Real Time Systems 2020-04-24

e (g = 1: See reasoning for 1.

Given the task set deduced in subproblem a, we can easily see that schedule
I is RM. schedule I1 and III can easily be assigned by either drawing the
beginning of the schedules or reasoning about the preemption in the early
execution times.

e | = EDF
e /I =DM
e /I =RM

You friend has discretized a standard PI controller

i]Q(T)dT
0

=

u(t) = Ke(t) +

S

and implemented it with the following pseudo-code:

while (1)1
t=getCurrentTime () ;
y=getMeasurement () ;
r=getReference ();
e=r-y;

P=Kxe;
I=I+(K*h/Ti)*e;
u=P+I;
applyControl (u);
sleepUntil (t+h);

. Which method had been used to discretize the continuous-time integral term?

(1p)

. He then noticed that in some experiments the control signal saturated and the

controller performed very poorly with large overshoots and undershoots. What
is the likely reason for this? (0.5 p)

. In order to fix this he implemented a periodic reset according to below:

int i=0;
while (1){
it++;
t=getCurrentTime () ;
y=getMeasurement () ;
r=getReference ();
e=r-y;
P=Kx*e;
I=I+(K*h/Ti)*e;
if (i==60){
i=0;
I=0;
}
u=P+I;
applyControl (u);
sleepUntil (t+h);

Real Time Systems 2020-04-24

Do you think this controller will work as intended? Explain why or why not.

(1p)

d. Correct the code to solve the encountered problem. (1.5 p)

Solution
a.
K ¢
I(t) = — / e(T)dr
=7 [e
0
dl K
— =_—e
dt T;
If one uses the common forward difference methods to discretize the I-part then
one obtains
I(tk+1) — I(tk) _ Ke(t)
h T, "
I(k+1) := I(k) + (K*h/Ti)*e(k)
Using this approach the integral part is updated in the UpdateStates part of
the code which is not the case here.
If one instead uses the backward difference method one instead obtains
h T,k
I(k) := I(k-1) + (K*h/Ti)*e(k)
which is what we have in the code above, i.e., the method that has been used
is the backward (Euler) approximation method.

b. A saturated control signal and bad control performance points at an integrator
windup problem. Since the controller code does not contain any anti-windup
protection this is probably the cause of the problem.

c. The new controller will not solve the problem. The reset of the integrator state
is likely to give large steps to the control action and actually decrease the
control performance. Assume, e.g., that the control loop is in stationarity with
zero error. In this case the entire control signal comes from the integral term.
To reset this would cause a very large bump.

d. Any form of any-wind-up will solve the problem. The tracking solution is shown
below

1 ...

2 while (1){

3 t=getCurrentTime () ;

4 y=getMeasurement () ;

5 r=getReference ();

6 e=r-y;

7 I=I+(K*h/Ti)*e + (h/Tr)*(u - v);

10
11
12
13

Real Time Systems 2020-04-24

v=K*xe+I;

u = sat(v,umin,umax) ;
applyControl (u);
sleepUntil (t+h) ;

In a shopping mall with two halls there are for safety regulations not supposed
to be more than a given number of people in each of the halls. Customers
can enter into one of the halls and leave from the other. There are security
guards at the entrance and exit that count the people entering or leaving. The
problem is knowing exactly how many people are in each of the halls. There
exist cameras that allow can count in real time how many people there are in
a room but unfortunately these are very expensive. The administrator of the
shopping mall believes that he needs one camera per hall. But you disagree
with this. You want to show him a way to avoid spending money on cameras.

You therefore use what could be a mathematical model of how people move in
the shopping mall. You want to show him how you can use it to estimate the
number of people in the halls without the use of cameras, but only using the
guards that count the people entering and exiting.

The following model can be used:

x1(k+1) = 0.5z1(k) + 0.2522(k) + u(k)
IL‘Q(k‘ + 1) = 0.5l‘1(k) + 0.5132(/€)

where z1(k) and z2(k) represent the number of people in each of the two halls.
The second equation can be interpreted in the following way: half of the people
in 1 will move to z9 and half of the people in x5 will stay there.

. What do u(k) and y(k) represent in this model? (1p)

. Design an observer on predictor form to compute the number of people in

the different rooms. Place the observer poles in 0 and 0.5. Write the observer
equations. (2 p)

. Write an algorithm for implementing the observer. Just write the pseudocode:

define the needed variables and constants, and the operations to implement
the observer.You can use the functions getY (), getU() to obtain y and u. You
may not assume that you have access to matrix algebra. (2 p)

Solution

a.

b.

u(k) represents the number of people entering the mall (they can only enter
directly the first hall) that we can measure and eventually control thanks to
the bumpers. y(k) represents the number of people leaving the shopping mall
that are counted by the security guards.

The system dynamics and output matrices are:

B l0.5 0.25

o 05],0:[0 0.25] (1)

10

Real Time Systems 2020-04-24

They dynamics of the error are driven by the equation: z(k + 1) = (® —
KC)Z(k). The characteristic polynomial of the error dynamics matrix is

z—0.5 —0.25 —0.25k
det(zI — (P — KC)) = det() =
—0.5 2—0.54 0.5k

= (2 —0.5)(z — 0.5+ 0.5k2) — (—0.125 — 0.125k;) =
22 4+ (=14 0.5k2)z + 0.125 — 0.25ky + 0.25k;
If we decide to place the observer poles in 0 and 0.5 the desired characteristic

polynomial is: pps(2) = 22 — 0.5z hence we obtain the set of equations:

—0.5 =—1+ 0.5k
0 =0.125 — 0.25k3 + 0.25k;

from which we obtain K = [0.5,1]7

The equations for the observer are

>

1(k + 1) = 05f1(k) + O.25fg(k) + ’U,(k) + kl(y(k) — 0.25f2(k))
(k +1) = 0.52 (k) + 0.522(k) + ka(y(k) — 02525 (k)

l\3>

. The observer shall contain the reading of the signals, the storage of the previous
estimated values and the implementation of the equations. Likely mistake is
that the old variables are not stored and therefore the x; is already update in
the second equation.

define k1 0.5;

define k2 1;

double x1_hat, x2_hat;

double x1_hat_new, x2_hat_new;

double u, y;
u = getUQ);
y = getY();

x1_hat_new = 0.5%x1_hat + 0.25%x2_hat + u + kl1x(y-0.25%x2_hat);
x2_hat_new = 0.5%x1_hat + 0.5%x2_hat + k2*(y-0.25%x2_hat);
x1_hat = x1_hat_new;

x2_hat = x2_hat_new; // x_2_hat_new could be skipped

Assume that you have a signed 16 bit word in the memory of a controller that
represents a real value using fixed point arithmetic. The sequence of bits is the
following:

0100 0011 0001 O111

Unfortunately you have forgotten how many fractional bits the fixed point
number had but you remember that the real number is greater than 9 and
smaller than 100. What are the possible number of fractional bits and the
corresponding real values based on this information? (1.5 p)

11

Real Time Systems 2020-04-24

Solution

The second most significant bit is nonzero. Since we know that the number is
not greater than 100 that bit cannot “weight” more than 2° (in fact 27 is already
128). This means that we cannot have more than 8 integer bits (including the
leftmost bit). We also know that the number is greater than 9. This means
that the most significant bit cannot “weight” less than 2°4 (in fact 23 = 8 and
the next three bits are zero). This leaves the three options: there are 8, 9, or
10 fractional bits.

The integer number corresponding to 0100 0011 0001 0111is 17175, i.e. hence
the variable can have one of the following values:

e 8 fractional bits: 17175 * 2~8 = 67.0898
e 9 fractional bits: 17175 % 279 = 33.5449
e 10 fractional bits: 17175 « 2710 = 16.7725

Alternative solution 1:

With 1 fractional bit the integer part is 100 0011 0001 011, i.e., larger than
213 — 8192 and hence too large.

With 2 fractional bits the integer part is 100 0011 0001 01, i.e., larger than
212 = 4096 and hence too large.

With 3 fractional bits the integer part is 100 0011 0001 O, i.e., larger than
211 = 2048 and hence too large.

With 4 fractional bits the integer part is 100 0011 0001, i.e., larger than 2! =
1024 and hence too large.

With 5 fractional bits the integer part is 100 0011 000, i.e., larger than 2% =
512 and hence too large.

With 6 fractional bits the integer part is 100 0011 00, i.e., larger than 28 = 256
and hence too large.

With 7 fractional bits the integer part is 100 0011 0, i.e., larger than 27 = 128
and hence too large.

With 8 fractional bits the integer part is 100 0011, i.e., larger than 26 = 64
and hence possible.

With 9 fractional bits the integer part is 100 001, i.e., larger than 2% = 32 and
hence possible.

With 10 fractional bits the integer part is 100 00, i.e., equal to 2* = 16 and
hence possible.

With 11 fractional bits the integer part is 100 0, i.e., equal to 23 = 8 which is
too small. The same holds for larger number of fractional bits. Hence, the only
possibilities are 8, 9, or 10 fractional bits and then the variable will have one
of the following values:

e 8 fractional bits: 17175 % 278 = 67.0898
e 9 fractional bits: 17175 * 272 = 33.5449
e 10 fractional bits: 17175 % 2710 = 16.7725

Alternative solution 2:

Exhaustive evaluation. Evaluate 17175 % 27" for all n in the range 1 to 14.
Easily done with a for loop in Matlab.

12

