
Lecture 6

Hilbert Spaces
Least squares problems - underdetermined

Measures of controllability

Least squares problems - overdetermined
Measures of observability

Example: Function approximation
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Motivation: Least Squares Minimization

x

y

x+ y

||x+ y||2 = ||x||2 + 2xT y + ||y||2

If x and y are orthogonal, i.e. xT y = 0, then

||x+ y||2 = ||x||2 + ||y||2

Minimization of this over y is trivial, giving y = 0 and

min
y
||x+ y||2 = ||x||2
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Hilbert Spaces

Want to generalize to a situation were we optimize over for example
"all possible control signals u([0, T ])".

How should we generalize orthogonality uT v = 0, and norm ‖u‖ ?

Hilbert space = ”Complete, normed vector space with scalar product”

Scalar product 〈u, v〉 satisfying some natural axioms

Norm ‖u‖2 = 〈u, u〉

Example: L2[0, t1], square-integrable functions, with scalar product

〈y, w〉 =
∫ t1

0
yT (t)w(t)dt
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Linear operators and Hilbert spaces

Useful theory: Linear operators in infinite-dimensional vector spaces,
scalar product 〈u, v〉, "orthogonal" means that 〈u, v〉 = 0.

This theory has many applications, not only in control and signal
processing.

Don’t have time here to present all mathematical details, only some
intuition and the resulting formulas for the optimal solution.

For more detail, see Lecture 6 in the PhD course Linear System theory
www.control.lth.se/Education/DoctorateProgram/linear-systems.html
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Least squares problem I

Lu =
v

û

0

Given linear operator L and vector v:
Minimize ‖u‖ under the constraint Lu = v.

The operator L is “short and fat”: More variables than equations.
Typically many solutions u, want the shortest one.
Notice the right angle in the picture
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Linear operators and Hilbert spaces

If L is a matrix and u and v are vectors this is an easy matrix problem:
The solution, if the columns of L span the full space, is

û = LT (LLT )−1v (1)

The matrix L† = LT (LLT )−1 is called the pseudo-inverse of L.

We want to generalize this problem and solution to a situation were we
optimize over for example "all possible control signals u([0, T ])".

A proof of (1) follows from the more general result below
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Linear operators and adjoints

Given a linear operator L from a Hilbert space H1 to another H2.
The adjoint L∗ is an operator from H2 to H1 defined by the relation

〈Lu1, u2〉 = 〈u1, L
∗u2〉 (2)

for all u1 ∈ H1, u2 ∈ H2.

This generalizes the matrix transpose in the finite dimensional case

Note that the scalar products in (2) are in different spaces
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Example

The operator
Lx0 = CeAtx0, t ∈ [0, t1]

maps x0 in H1 = Rn to the function CeAtx0 in H2 = L2[0, T ]

Claim: The adjoint L∗, mapping functions to vectors, is given by

L∗y =
∫ t1

0
eA

T tCT y(t)dt

Proof: We just need to verify that (2) holds:

〈Lx0, y〉 =
∫ t1

0
(CeAtx0)T y(t)dt = xT0

∫ t1

0
eA

T tCT y(t)dt = 〈x0, L
∗y〉.

The left is a scalar product in L2, the right inRn
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Another example

The operator (M = L∗ after some variable renaming)

Mu =
∫ t1

0
eAtBu(t)dt

maps the function u(t) in H1 = L2[0, T ] to a vector in H2 = Rn.

Claim: The adjoint M∗, mapping vectors to functions, is given by

M∗x = BT eA
T tx

Proof: We again just need to verify that (2) holds:

〈Mu, x〉 =
[∫ t1

0
eAtBu(t)dt

]T
x =

∫ t1

0
uTBT eA

T txdt = 〈u,M∗x〉.

The claim alternatively follows from the general rule (L∗)∗ = L
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Least squares problem I

Minimize ‖u‖ under the constraint Lu = v.

Claim 1: An optimal û must satisfy Lû = v and (”orthogonality”)

0 = 〈û, u− û〉 for all u with Lu = v (OC1)

Proof: Necessity of the orthogonality condition follows from derivating

f(t) = ‖û+ t(u− û)‖2 = ‖û‖2 + 2t〈û, u− û〉+ t2‖u− û‖2

and setting t = 0.

If Lû = v and (OC1) holds, then û is optimal and unique, since

‖u‖2 = ‖û‖2 + ‖u− û‖2.
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Solution to LS 1

Claim 2 If LL∗ is invertible then the solution to LS1 is

û = L∗(LL∗)−1v

Proof: Obvious that Lû = v. Furthermore

〈û, u− û〉 = 〈L∗(LL∗)−1v, u− L∗(LL∗)−1v〉 =
= 〈(LL∗)−1v, Lu− LL∗(LL∗)−1v〉
= 〈(LL∗)−1v, Lu− v〉 = 0

Lu =
v

û

0

So the orthogonality condition is satisfied.

Note also that ‖û‖2 = 〈v, (LL∗)−1v〉

Let’s apply LS1 to the problem of controllability
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The controllability problem

On the previous lecture we saw that finding a control u(t) which
moves x(0) = x0 to x(t1) = 0 gives the linear equation∫ t1

0
e−AtBu(t)dt = −x0

Introduce therefore v = −x0 and the operator

Lu =
∫ t1

0
e−AtBu(t)dt

which maps a function u(t) ∈ Lm2 [0, t1] toRn. Use scalar product

〈u, v〉 =
∫ t1

0
uT (t)v(t)dt
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Measure of controllability

Lu =
∫ t1

0
e−AtBu(t)dt = v

L∗w =
[
e−AtB

]T
w

W := LL∗ =
∫ t1

0
e−AtBBT e−A

T tdt

The problem to control ẋ = Ax+Bu from x(0) = −v to x(t1) = 0
with minimal cost ‖u‖2 =

∫ t1
0 ‖u(t)‖2dt hence has solution

û(t) = L∗(LL∗)−1v = −BT e−A
T tW−1x0

and the minimal squared cost equals

‖û‖2 = xT0 (LL∗)−1x0 = xT0 W
−1x0.
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Another Gramian

The slightly different matrix

Wr =
∫ t1

0
eAτBBT eA

T τdτ

is called the reachability Gramian.

It measures the cost of going from x(0) = 0 to x(t1) = x1

The squared cost is xT1 W
−1
r x1

The smallest eigenvalue of Wr is a measure of controllability, since
1/λmin(Wr) is the control signal (squared) norm that is needed to
reach all states having norm one.

For the case t1 =∞ and A asymptotically stable, one can calculate
Wr from the Lyapunov equation (Wr=lyap(A,B*B’) in matlab)

WrA
T +AWr +BBT = 0.
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Example: Gramian for trailer

A =
[
−1 0
1 −1

]
, B =

[
1
0

]
, eAt =

[
e−t 0
te−t e−t

]

Wr =
∫ t1

0

[
e−t

te−t

] [
e−t

te−t

]T
dt

= 1
4

[
2− 2e−2t1 1− (2t1 + 1)e−2t1

1− (2t1 + 1)e−2t1 1− (2t21 + 2t1 + 1)e−2t1

]

For t1 =∞ we get

Wr =
[
1/2 1/4
1/4 1/4

]

with eigenvalues 0.65 and 0.096.
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Least squares problem II

y

Lx̂

Lx

0

Given L and y, find x that minimizes the error ‖Lx− y‖

L is “tall and thin”: More equations than variables

Notice the right angle !
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Least squares problems II

Minimize ‖Lx− y‖ with respect to x.

Claim: An optimal x̂ must satisfy

0 = 〈Lw,Lx̂− y〉 for all w (OC2)

Proof: Derivate ‖L(x̂+ tw)− y‖2 with respect to t.
Note that (OC2) is equivalent to

L∗Lx̂ = L∗y

If L∗L is invertible, then the solution is unique and given by

x̂ = (L∗L)−1L∗y
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Observability


dx

dt
= Ax, x(0) = x0

y = Cx

The system is observable if x0 uniquely can be determined from y[0,t1].

y(t) = CeAtx0 = (Lx0)(t), y = Lx0

L : Rn → Lp2[0, t1]

The operator L now maps x0 to y, i.e. from an n-dimensional space to
a space of functions
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Measure of observability

If y(t) = Lx0 + e(t), i.e. if measurements are disturbed by noise e(t),
then typically no x0 can be found solving y = Lx0 perfectly
Least squares solution:

min
x0
||y − Lx0||

Wo = L∗L =
∫ t1

0
eA

T tCTCeAtdt

x̂0 = (L∗L)−1L∗y = W−1
o

∫ t1

0
eA

T tCT y(t)dt

Since Lx̂0 = Lx0 + e the estimation error x̃0 = x0 − x̂0 satisfies

x̃T0 L
∗Lx̃0 = ‖e‖2

The smallest eigenvalue to the observability gramian Wo = L∗L gives
a measure of observability. If it is close to zero, then small e can give
large x̃0 (bad).
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Other example: Function approximation

Choose the real numbers a0, a1, a2 to minimize
∫ 1

0 |e
t − a0 − a1t− a2t

2|2dt

Solution:

x =

a0
a1
a2

 , Lx =
[
1 t t2

] a0
a1
a2

 , y(t) = et

L∗y =
∫ 1

0

 1
t
t2

 etdt =

e− 1
1

e− 2


L∗L =

∫ 1

0

 1
t
t2

 [1 t t2
]
dt =

 1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5


x̂ = (L∗L)−1L∗v =

1.013
0.851
0.839


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Example: Function approximation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
exp(t) (blue), L2−approx (red), Taylor−approx (black)

Notice that the least squares approximation

et ≈ 1.013 + 0.851t+ 0.839t2

is much better than the Taylor approximation (dashed)

et ≈ 1 + t+ 0.5t2
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Lecture 6

Hilbert Spaces

Least squares problem, under-determined

Measures of controllability

Least squares problem, over-determined

Measures of observability

Example: Function approximation

End of the course
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