Controller structures

- Cascade control
- Mid-range control
- Ratio control
- Feedforward
- Delay compensation

Reading: *Systems Engineering and Process Control*: 10.1–10.6
Cascade control can be used for systems that can be split:

\[u \rightarrow (G_{p2} \rightarrow y_2 \rightarrow G_{p1} \rightarrow y_1) \]

where

- both \(y_2 \) and \(y_1 \) can be measured
- \(G_{p2} \) is (or can be made) at least 10 times faster than \(G_{p1} \)

Example: \(G_{p1} = \frac{K_1}{1 + T_1s} \) and \(G_{p2} = \frac{K_2}{1 + T_2s} \) with \(T_2 < 0.1T_1 \)
Cascade control – block diagram

- Secondary controller G_{c2} controls y_2
 - Inner loop is fast compared to outer loop
 - Often P-controller with high gain
 - For outer loop we have $y_2 \approx u_1$
- Primary controller G_{c1} controls y_1
 - Often PI or PID controller
Example: Heat exchanger

Control may work poorly if, e.g.,:

- valve in nonlinear
- steam pressure varies (load disturbance)
Example: Heat exchanger with cascade control

- The inner loop controls the steam flow
- Setpoint to flow controller given by temperature controller
Example: Heat exchanger – simulation

With cascade control (solid) and without (dashed); disturbance at $t = 5$:
Mid ranging

Useful for processes with two inputs and one measurement, e.g.:

\[\sum \]

- \(u_1 \) high precision but little working range
- \(u_2 \) low precision but big working range
Flow control with two controlled valves:

- Valve v_1 is small and has high accuracy
 - big risk of saturation
- Valve v_2 is big but has worse accuracy
- How can they cooperate?
Mid ranging – Example

Mid ranging:

- Fast controller G_{R1} controls flow with little valve v_1
- Slow controller G_{R2} adjusts big valve v_2 such that v_1 is in the middle of its working range
Mid ranging – simulation

Big valve (dashed) keeps little valve (solid) at 50%
- G_{c1} and G_{p1} forms a fast and accurate loop
- Input from G_{c1} is measurement for G_{c2}
 - r_{u1} chosen to middle of u_1's working range
- G_{c2} has low gain, maybe only I part
 - Rule of thumb: at least 10 times bigger time constant than fast loop
Ratio control

Example: Keep constant air/fuel ratio

Suppose we want $y_l/y_b = a$. Naive solution (control ratio a directly):

Nonlinear, gain in second loop varies with y_b
Better solution:

- Setpoint for flow to first loop that is assumed slow
- Second loop is made fast and maintains desired ratio
Feedforward – Example

Concentration control

- Feedforward can compensate for sudden changes in acid concentration
Feedforward – Simulation of example

With feedforward (solid) and without (dashed); disturbance at $t = 5$:

![Concentration and Valve position graphs](image-url)
How to choose compensator $G_{ff}(s)$? Depends on where disturbance l enters the system.
Control of lower tank
Feedforward – Tank example

Feedforward from l_1:

Choose $G_{ff}(s) = -1$ to eliminate effect of disturbance
Feedforward from l_2:

Choose $G_{ff}(s) = -\frac{1}{G_{P1}}$ to eliminate effect of disturbance
Implementation of feedforward

The inverse $\frac{1}{G_{p1}(s)}$ can be problematic to implement.

Example:

$$G_{p1}(s) = \frac{1}{1 + sT} e^{-sL}$$

$$\frac{1}{G_{p1}(s)} = (1 + sT)e^{sL} \quad \text{(derivation and neg. time delay)}$$

Common solutions:

- Introduce lowpass filter (compare D part in PID-controller)
- Approximate negative time delays with 0
- Implement the static gain only
Dead time compensation

Example of dead time process:

\[G_p(s) = \frac{K_p}{1 + sT} e^{-sL} \]

Hard to control if \(L > T \) (dead time dominated)

Frequency analysis:

\[G_p(s) = G_{p0}(s)e^{-sL} \]
\[|G_p(i\omega_c)| = |G_{p0}(i\omega_c)| \]
\[\arg G_p(i\omega_c) = \arg G_{p0}(i\omega_c) - \omega_c L \]

The larger \(L \), the smaller the phase margin
Example: Control of paper machine

\[G_p(s) = \frac{2}{1 + 2s} e^{-4s} \]

Simulation with cautious PI controller \((K = 0.2, T_i = 2.6)\); disturbance at \(t = 25\):
Example: Control of paper machine

Simulation with more aggressive PI controller ($K = 1, T_i = 1$):
Controller designed after model without delay. Model must be:

- asymptotically stable
- accurate enough
Analysis of Smith predictor

\[G_p = G_{p0}e^{-sL} \] – real process

\[\hat{G}_p = \hat{G}_{p0}e^{-s\hat{L}} \] – model of process

\[\hat{G}_{p0} \] – model of process without dead time

\[G_c \] – controller designed for \(\hat{G}_{p0} \)
Analysis of Smith predictor

Control signal:

\[U = \frac{G_c}{1 - G_c(\hat{G}_p - \hat{G}_{p0})} E \]

Closed loop system:

\[Y = \frac{G_p G_c}{1 - G_c(\hat{G}_p - \hat{G}_{p0}) + G_p G_c} R \]

Suppose \(G_p = \hat{G}_p \) (perfect model):

\[Y = \frac{G_p 0 e^{-sL} G_c}{1 - G_c(G_p 0 e^{-sL} - G_p 0) + G_p 0 e^{-sL} G_c} R \]

\[= \frac{G_p 0 G_c}{1 + G_p 0 G_c} e^{-sL} R \]

Like control of process without delay, but with delayed response
Example: Control of paper machine

Model without delay: \(G_{p0}(s) = \frac{2}{1 + 2s} \)

Simulation with aggressive PI controller \((K = 1, T_i = 1)\) and Smith predictor with perfect process model:
Example: Control of paper machine

Simulation with aggressive PI controller and Smith predictor with not perfect process model ($\hat{L} = 0.9L, \hat{T} = 0.9T$):

![Diagram showing control system response with aggressive PI controller and Smith predictor with imperfect model](image-url)
The Smith predictor – conclusions

- Works only for asymptotically stable systems
- Works only if process model is accurate
- Controller should be designed such that closed-loop time constant larger than process dead time

(Better variations for dead time compensation exist, but all rely on prediction using a process model)