
Systems Engineering/Process control L9

The PID controller

◮ The algorithm

◮ Frequency analysis

◮ Practical modifications

◮ Tuning methods

Reading: Systems Engineering and Process Control: 9.1–9.6
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The PID controller

“Based on a survey of over eleven thousand controllers in

the refining, chemicals and pulp and paper industries, 97%
of regulatory controllers utilize PID feedback.”

[Desborough and Miller, 2002]

“School-book form”:

u(t) = K
(

e(t) + 1
Ti

∫ t

0

e(τ )dτ + Td
de(t)
dt

)

Transfer function:

Gc(s) = K
(

1+ 1

sTi
+ sTd

)
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The P part

◮ P controller:

u = K (r − y) + u0 = K e+ u0

umax

umin

u

e

0
e– e

0

u
0

Proportionalband

◮ u0 can be chosen to eliminate stationary error at setpoint
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Example: P control of Gp(s) = (s+ 1)−3
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The I part

◮ Introduce automatic/online/dynamic selection of u0:

replacements

K e

u0

u∑

1

1+ sTi

U (s) = K E(s) + 1

1+ sTi
U (s)

U (s) = K
(

1+ 1

sTi

)

E(s)

◮ Assume stationarity: How does u and u0 relate? What is e?
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Example: PI control of Gp(s) = (s+ 1)−3 (K = 1)
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The D part

◮ A P controller gives the same control in both these cases:

B

A
replacements

Control error

Time

e

ep

ep

t t+ Td
◮ Predicted error:

ep(t+ Td) ( e(t) + Td
de(t)
dt

◮ PD controller:

u(t) = K
(

e(t) + Td
de(t)
dt

)
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Example: PD control of Gp(s) = (s+ 1)−3 (K = 5)
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Parallel and serial form

◮ PID controller on standard form (parallel form):

Gc(s) = K +
K

sTi
+ sKTd

e u

K

K
Tis

KTds

Σ

◮ PID controller on serial form (common in industry):

G′c(s) = K ′
(
1+ 1

sT ′
i

)
(1+ sT ′d)

e u
K ′ 1+ 1

T ′
i
s 1+ T ′ds
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Parallel and serial form

Transformation parallel form Q serial form:

K = K ′ T
′
i
+T ′
d

T ′
i

K ′ = K
2

(

1+
√

1− 4Td
Ti

)

Ti = T ′i + T ′d T ′i = Ti
2

(

1+
√

1− 4Td
Ti

)

Td = T ′iT
′
d

T ′
i
+T ′
d

T ′d = Ti
2

(

1−
√

1− 4Td
Ti

)

◮ Identical parameters for PI and PD controller

◮ Parallel → serial only possible if Ti ≥ 4Td
◮ Parallel form more general
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Frequency analysis of PID controller

Frequency function for PID controller on serial form:

G′c(iω ) =
K ′

iωT ′i
(1+ iωT ′i )(1+ iωT ′d)

◮ For low frequencies (small ω ):

pG′c(iω )p (
K ′

ωT ′i
argG′c(iω ) ( −90○

◮ Zero at s = −1/T ′i bends amplitude curve up and increases

phase with 90○ around ω = 1/T ′i
◮ The same holds for the zero at s = −1/T ′d
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Frequency analysis of PID controller
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Repetition: Amplitude and phase margin
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Frequency analysis of PID controller

The P part:

◮ Affects gain at all frequencies

◮ Higher gain [ faster system but worse margins

The I part:

◮ Increases gain and reduces phase for low frequencies

◮ Eliminates low frequency (constant) control errors but gives

worse phase margin

The D part:

◮ Increases gain and phase at high frequencies

◮ Gives better phase margin (to a limit) but amplifies noise
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Practical modifications of PID controllers

School-book form:

e(t) = r(t) − y(t)

u(t) = K e(t)
︸ ︷︷ ︸

P(t)

+ K
Ti

∫ t

0

e(τ )dτ
︸ ︷︷ ︸

I(t)

+ KTd
de(t)
dt

︸ ︷︷ ︸

D(t)

Modifications:

◮ The P part: reference weighting

◮ The I part: anti-windup

◮ The D part: reference weighting and limited gain
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Modification of P part

◮ Introduce reference weighting β :

P(t) = K
(
β r(t) − y(t)

)
, 0 ≤ β ≤ 1

◮ Can be used to limit overshoot after reference changes

(moves a zero in closed-loop system)

◮ Note! Works only if also I part used
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Example: Reference weighting with PI control

(reference change at t = 0, load disturbance at t = 25):
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Modification of I part

Input is always limited in practice (umin ≤ u ≤ umax)

◮ Let v be the input the controller wants to use

◮ Let u be the input the controller can use

umax

umin

u

v

Integrator windup: I part keeps growing when signal saturated
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Example: PI control with integrator windup

Gp(s) = 1/s, K = Ti = 1, −0.3 ≤ u ≤ 0.3:
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Anti-windup

I(t) =
∫ t

0

(
K

Ti
e(τ ) + 1

Tt

(
u(τ ) − v(τ )

)
)

dτ

PI controller with anti-windup:

K

K

Ti

1

s

1

Tt

∑ ∑

∑e v u

I − +

Actuator
(or model)

Rule of thumb for constant Tt:

◮ PI controller: Tt = 0.5Ti
◮ PID controller: Tt =

√
TiTd
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Example: PI control with anti-windup

Same example as before, but with anti-windup (Tt = 0.5):
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Modification of D part

◮ Reference weighting: derivate only measurement, not

reference

D(t) = −KTd
dy(t)
dt

◮ Limit gain with low-pass filter (extra pole):

D(s) = − sKTd

1+ sTd/N
Y(s)

(“fuskderivata”)

Maximal derivative gain N typically chosen in interval 5–20
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Example: Limited derivative gain

y(t) = sin t+ 0.01 sin 100t, Td = 1, N = 5
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Summary: Practical modifications

−1
sKTd

1+ sTd/N

β K

K

Ti

1

s

1

Tt

∑

∑

∑

∑

∑

y

r

v u

− +

Actuator
(or model)

(More to think about: bumpless transfer between manual/automatic

control, bumpless parameter changes, sampling filters, sampling,

. . . )
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Tuning methods for PID controllers

◮ Manual tuning (lab 1)

◮ Ziegler–Nichols methods

◮ The Lambda method

◮ Arresttidstrimning (project)

◮ Model-based tuning (lab 2)

◮ Relay methods

◮ Optimization-based methods

◮ . . .
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Ziegler–Nichols step response method

Experiment on open-loop system, read a and b in step response:

a

b

y

t

Controller K Ti Td
P 1/a
PI 0.9/a 3b

PID 1.2/a 2b 0.5b
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Ziegler–Nichols frequency method

(Ziegler–Nichols’ ultimate-sensitivity method)

Experiment on closed-loop system

1. Disconnect I and D parts in PID controller

2. Increase K until oscillations with constant amplitude. This

K = K0.
3. Measure period time T0 for oscillations.

Controller K Ti Td
P 0.5K0
PI 0.45K0 T0/1.2
PID 0.6K0 T0/2 T0/8

(Note that T0 = 2π /ω 0, where ω 0 is frequency that gives

−180○ phase shift)
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Ziegler–Nichols methods – warning

◮ Ziegler–Nichols’ methods give aggressive control with bad damping

◮ Recommendation: K lowered with 30–50 % for better robustness

◮ Example: PID control of Gp(s) = 1/(s+ 1)4:
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Lambda method

1. Read deadtime L, time constant T and static gain Kp = ∆y
∆u

:

∆y

∆u

Process output

Control signal

63%

L T
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Lambda-method

2. Choose λ = desired time constant for closed-loop system

◮ λ = T common choice
◮ λ = 2T a bit slower for more robustness

3. PI controller:

K = 1

Kp

T

L + λ
, Ti = T

PID controller (in serial form):

K ′ = 1

Kp

T

L/2+ λ
, T ′i = T , T ′d =

L

2
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Model based tuning (Lab 2)

1. Find process transfer function Gp(s)
2. Choose controller type Gc(s)
3. Compute closed-loop system transfer function:

G(s) = Gp(s)Gc(s)
1+ Gp(s)Gc(s)

4. Choose controller parameters to place poles for G(s) to

achieve desired behavior (pole placement)
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